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Shell model plus cluster description of negative parity states in 212Po
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The intraband electromagnetic transitions in 210Po and 210Pb are well described within the shell model
approach. In contrast, similar transitions in 212Po are one order of magnitude smaller than the experimental values,
suggesting the existence of an α-cluster component in the structure of this nucleus. To probe this assumption
we introduced Gaussian-like components in the single-particle orbitals. We thus obtained an enhancement of
intraband transitions, as well as a proper description of the absolute α-decay width in 212Po. We analyzed the
recently measured unnatural parity states I− in 212Po in terms of the collective octupole excitation in 208Pb coupled
to positive parity states in 210Pb. They are connected by relatively large dipole transitions to yrast positive natural
parity states. We described E1 transitions by using the same α-cluster component and an effective neutron dipole
charge eν = −eZ/A. B(E2) values and absolute α-decay width in 212Po are simultaneously described within the
shell model plus a cluster component depending upon one free strength parameter.
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I. INTRODUCTION

The nucleus 212Po, with two neutrons and two protons
outside the 208Pb double magic core, has been a playing ground
for methods and models which include the α particle as an
elementary degree of freedom. In α-decay processes the α

particle was considered as a cluster moving around the 208Pb
core, since the time when Gamow proposed the penetrability
theory up to a time in the early 1960s, when it was realized
that there were strong limitations with the Gamow theory if
absolute decay widths were to be evaluated. In Ref. [1] it
is concluded that a proper treatment of the absolute decay
width would require a microscopic (shell model) framework
where configuration mixing would play an important role.
This conclusion was reached after calculations with only very
few configurations, which was at the limit of the computing
facilities at that time. These calculations showed that the
corresponding absolute decay width could be wrong (too
small) by as much as six orders of magnitude in comparison
with the experimental data. It was in the late 1970s that this
computing limitation could be overcome, showing that indeed
the inclusion of many configurations increases the value of the
absolute decay width by more than four orders of magnitude
[2]. Shortly afterwards it was shown that the physical reason
behind that big increase is that through such configurations
one describes the clustering of the two neutrons and the two
protons that eventually become the α particle [3]. Yet, the
calculated width was still two orders of magnitude too small.
The additional inclusion of proton-neutron configurations, and
the corresponding clustering, improves this value but only by
factor of about 5 [4]. Only a theory where combined shell- and
cluster-model configurations were considered could reproduce
the absolute decay width [5,6]. The amount of the cluster

component in this theory was as large as 30%. This may justify
extreme cluster models, where the states of 212Po are explained
as a result of an α particle moving around the 208Pb core [7–10].
In fact the α-cluster model has shown to be able to reproduce
well many levels in 212Po, and it is been applied at present
even to describe properties of spherical as well as deformed
nuclei [11]. But it is important to point out that shell model
approaches have been also used to calculate some properties of
excited states of 212Po [12,13]. While the energies of the yrast
states are mostly found to be close to the experimental ones,
these calculations cannot reproduce the large experimental E2
transition strengths [13], which are well accounted for from
the α clustering [8–10].

A recent experiment evidenced several levels of unnatural
parity, organized in two multiplets 4−, 6−, 8− with almost
degenerate energies of 1.8 and 2.0 MeV, respectively, plus an
isolated state 10− at 2.46 MeV. They are strongly connected
by E1 transitions to the corresponding 4+, 6+, 8+, 10+ states,
respectively [14,15]. These states cannot be fully described as
an α cluster moving around the ground state, since in such a
model the parity of a level is (−1)lα , where lα is the angular
momentum of the α particle. That is, only natural parity
states are prone to be treated within straightforward α-particle
models. To circumvent this problem it was proposed, very soon
after Ref. [14] appeared, a coupled channel α-particle model,
which allows the α particle to couple to the 208Pb core in an
excited 3− state [16].

There is another fully microscopic possibility of explaining
the strong E1 transitions mentioned above. As pointed out
in Ref. [15], the collective particle-hole 3− state in 208Pb [14]
may couple to two-particle states to induce the doublet of states
connected by the E1 transitions, in a fashion similar to what
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was found in the Gd region [17]. In this paper we will apply
such a particle-vibration coupling scheme trying to describe
the structure of 212Po measured in Ref. [14].

The formalism is presented in Sec. II. Applications
are in Sec. III and a summary and conclusions are in
Sec. IV.

II. THE FORMALISM

The almost degenerate unnatural parity multiplet I− =
4−, 6−, 8− in 210Po was detected and interpreted as a pure
two-proton configuration (πh 9

2
+ ⊗ πj 15

2

−
)I− [14] [see Table I

for the single-particle (sp) states in 208Pb]. The degeneracy
of the multiplet was explained in terms of a surface delta
interaction which showed, as expected, that the matrix el-
ements connecting such pairs are very small. This is in
contrast to the matrix elements connecting natural parity pairs
carrying, e.g., spin and parity I−, where I is an odd spin.
The same feature was predicted in 210Pb, where a similar
multiplet would appear as the result of the two-neutron
configuration (νg 9

2
− ⊗ νi 13

2
+

)I− , but this was not observed
yet.

Therefore, it would be appealing to interpret the two
bands of unnatural parity states I− = 4−, 6−, 8− in 212Po
as two multiplets of proton and neutron origin, respectively.
This interpretation is endorsed by the zeroth-order energy
of the states. With the sp energies of Table I one finds
that they would lie at 3.13 and 3.37 MeV, respectively.
Thus, their relative distance is correct and one can imagine
an interaction pushing them to the experimental position.
However, this simple description fails in providing the correct
B(E1) values corresponding to the decay from the multiplets
to the natural positive parity states in 212Po, which are built as
neutron pairs carrying angular momentum and parity I+ times
proton pairs in the ground state [18]. In this framework the
B(E1) values from the proton multiplet to the corresponding
I+ states vanish. Moreover, the E1 transitions from the

neutron multiplet also vanish since no neutron pair coupled
to angular momentum 1− can be built, as can be seen in
Table I.

However, a similar excitation can be built as a three-particle
one-hole (3p-1h) excitation. Many shell model calculations
without including core excitations have been performed in
212Po predicting a large number of levels (see Ref. [12] and
references therein). Most of the available experimental data
were thus well reproduced, although many calculated levels
have not been observed yet. In particular, Ref. [12] predicts
a 3− state at 1.952 Mev, while in recent experimental data
[15] a 3− state was found at 1.537 MeV. This probably is a
fraction of the collective 208Pb(3−

1 ) state at 2.6 MeV. There
are strong indications of other core excited states in 212Po.
As pointed out in Ref. [15], there are a number of pairs of
states with different parities which are strongly connected by
E1 transitions. These states cannot be explained within the
shell model without including core excitations. In fact, there
are examples of such states in the Gd region, although the
corresponding E1 transitions are not exceptionally strong (for
details see Ref. [15]). The aim of this paper is to show that the
main characteristic of these pairs of states is that the normal
parity ones correspond to two-neutron excitations, i.e., states
of angular momentum J and parity (−1)J of the form

|212Po(J+)〉 = |210Pb(J+) ⊗ 210Po(g.s.)〉, (2.1)

while the unnatural parity states are of the form

|212Po(I−)〉 = |[210Pb(J+) ⊗ 210Pb(3−)]I− ⊗ 210Po(g.s.)〉.
(2.2)

It is worthwhile to point out that the two additional protons in
210Po(3−), as compared to the 208Pb core, induce a softening
of the collective state with a lowering of the energy well below
2.6 MeV [15].

TABLE I. Single-particle proton (left) and neutron (right) levels in 208Pb obtained by using the Blomqvist-Wahlborn set of Woods-Saxon
parameters [22]. They are labeled from bottom to top in increasing energy order. Magic numbers are indicated.

n lπ jπ επ (MeV) n lν jν εν (MeV)

Z = 126
11 1 p1/2− 0.47 12 4 g7/2+ − 0.74
10 3 f 5/2− − 0.53 11 0 s1/2+ − 1.37
9 1 p3/2− − 0.70 10 7 j15/2− − 1.86
8 6 i13/2+ − 1.86 9 2 d5/2+ − 2.04
7 3 f 7/2− − 3.55 8 6 i11/2+ − 2.77
6 5 h9/2− − 3.80 7 4 g9/2+ − 3.90

Z = 82 N = 126
6 1 p1/2− − 7.39

5 0 s1/2+ − 8.72 5 3 f 5/2− − 8.06
4 2 d3/2+ − 9.11 4 1 p3/2− − 8.33
3 5 h11/2− − 9.28 3 6 i13/2+ − 8.55
2 2 d5/2+ − 11.05 2 3 f 7/2− − 10.47
1 4 g7/2+ − 12.38 1 5 h9/2− − 10.67

Z = 50 N = 82
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TABLE II. Energies of the pairing (yrast) states 210Pb(J +) (in MeV) referred to the 208Pb(g.s.) core extracted from experiment [24,25].

J + 0 2 4 6 8 10

ω(210Pb(J +)) −9.122 −8.322 −8.024 −7.929 −7.844 −7.316

A. Shell model natural parity states

As in Ref. [18], we will first evaluate the two-particle states
by using the Tamm-Dankoff appproximation (TDA). The two-
neutron state carrying angular momentum J needed to evaluate
the natural parity states in Eq. (2.1) is given by

|�J+(210Pb)〉 = �
†
JM (ν1)|�(208Pb)〉, (2.3)

where �
†
JM (νn) is the creation operator of the lowest correlated

two-neutron state, with the eigenvalue index n = 1. In the
two-neutron case of 210Pb it is

�
†
JM (ν1) =

∑
j1�j2

X
(1)
J (νj1j2)A

†
JM (νj1j2). (2.4)

In this equation X is the TDA two-particle wave function
amplitude and the bare two-particle creation operator is defined
by

A
†
JM (τj1j2) = 1


j1j2

(a†
τj1

⊗ a
†
τj2

)JM

(2.5)

j1j2 ≡ √

1 + δj1j2 ,

where a
†
τj is the sp creation operator corresponding to a particle

moving in a Woods-Saxon mean field. The index τ labels
protons (τ = π ) as well as neutrons (τ = ν). In the same
fashion one evaluates the two-proton ground state of 210Po.

The two-particle wave function amplitudes X will be
evaluated by using the Hamiltonian

Ĥτ =
∑

j

ετj N̂τj + ĤPτ , (2.6)

where we introduced the pairing Hamiltonian

ĤPτ = −
∑
J+

GJ+ (τ )Ĵ [P †
J+ (τ ) ⊗ P̃J+ (τ )]0, (2.7)

in terms of the pair operator defined as

P
†
J+M (τ ) =

∑
j1�j2

2qJ (τj1j2)


j1j2

A
†
J+M (τj1j2). (2.8)

Here, the factor qJ (τj1j2) is proportional to the reduced matrix
element of the multipole operator, i.e.,

qJ (τj1j2) = 1

Ĵ
〈τj1||QJ ||τj2〉. (2.9)

The interaction strength GJ+ (τ ) will be obtained by fitting
the two-particle binding energy of the yrast state with angular
momentum J+. In Ref. [18], this formalism was used in order
to obtain the positive parity states. Indeed, from Table II of
Ref. [18] it can be seen that basic states in 210Po, 210Pb,
and 210Bi are well reproduced. At the same time, one sees
from Table III of the same reference that the low-lying states
in 212Po are reasonably described without any additional
parametrization.

B. Shell model unnatural parity states

In this subsection we will briefly present the formalism to
describe the coupling between the two-neutron states and the
particle-hole 3− mode. The wave function (2.2) can be viewed
as having the form

|212Po(I−)〉 = |210Pb(I−) ⊗ 210Po(g.s.)〉, (2.10)

where

|210Pb(I−)〉 = |�I−(210Pb)〉 = �
†
I−M |�(208Pb)〉, (2.11)

and

�
†
I−M =

∑
J=I,I±2

ZI (J )[�†
3−(1) ⊗ �

†
J+ (ν1)]I−M.

(2.12)

Here, we introduced the collective p-h creation operator

�
†
3− (n) =

∑
τj1j2

X (n)
3− (τj1j2)B†

3−μ(τj1j2), (2.13)

where n is the eigenvalue index and the p-h pair operator is
given by

B
†
3−μ(τj1j2) ≡ (a†

τj1
⊗ ãτj2 )3−μ. (2.14)

We evaluated the metric matrix of the basis defining the �†

operator. It turns out that it is rather close to unity and therefore
the Pauli correlations are relatively small within the multistep
shell model (MSM) approach [18,19].

For the evaluation of the p-h amplitudes X (n)
3− we will use

the standard octupole-octupole interaction

ĤQττ ′ = −F3− (ττ ′)3̂[Q†
3−(τ ) ⊗ Q̃3−(τ ′)]0, (2.15)

in terms of the octupole operator

Q
†
3−μ(τ ) =

∑
j1j2

q3(τj1j2)B†
3−μ(τj1j2). (2.16)

We neglected the random phase approximation (RPA) correla-
tions [20]. Our calculations show that for the 3− state in 208Pb
at E = 2.615 MeV such correlations are not very important.
The sum of the backward amplitudes squared gives the value∑

τj1j2
[Y (1)

3− (τj1j2)]2 ≈ 0.15. Our results will show to what
extent the TDA approximation (2.13) is able to describe the
unnatural parity states in 212Po.

TABLE III. The MSM interaction energies Eint =

(210Pb(J +), 210Po(g.s.)) extracted from experiment as described in
the text. Energies are in MeV and referred to the 208Pb(g.s.).

J + 0 2 4 6 8

Eint −1.438 −1.511 −1.434 −1.304 −1.340
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The corresponding energies will be obtained by using
effective interaction matrix elements extracted from exper-
iment [17]. We notice that in Eq. (2.2) the energy of the
unnatural parity states can be written as a sum of the energies
corresponding to the pairing states 210Pb(J+) and 210Po(g.s.)
plus the energy of the particle-hole vibration state 210Pb(3−).
In addition one has to add the energies 
 provided by the
interaction among all these degrees of freedom. That is,

E(212Po(I−))

= ω(210Pb(J+)) + ω(208Pb(3−)) + ω(210Po(g.s.))

+
(210Po(g.s.), 208Pb(3−); 3−) + 
(210Pb(J+),

× 210Po(g.s.); J+) + 
(210Pb(J+), 208Pb(3−); I−).

(2.17)

All these energies will be taken from experimental data, as
will be seen in the applications below, except the last term, for
which there is not enough data to allow a reliable extraction of
the value of 
. Instead we will evaluate this number by using
the multistep shell model [19], where the two-body interaction
matrix elements are replaced by the corresponding energies
and wave functions. In Ref. [19] the fourparticle case in terms
of a two- times two-particle basis was analyzed. Proceeding
in the same fashion one obtains for our particle-hole times
two-particle case the expression


(210Pb(J+), 208Pb(3−); I−)

= −
∑
ijkl

[ω(210Pb(J+)) + ω(208Pb(3−)) − εk − εj

−εl + εi] × X3− (ij ; Pb(3−))X3− (ik; Pb(3−))XJ+ (kl;

× 210Pb(J+))XJ+ (j l; 210Pb(J+))7(2J+ + 1)

×
⎧⎨
⎩

i j 3−
k l J+

3− J+ I−

⎫⎬
⎭ . (2.18)

where the index i labels a hole state and j, k, l label particle
states. The quantities X are the TDA wave function amplitudes,
overlined amplitudes are defined in the Appendix, and the rest
of the notation is standard.

C. α-clustering component

It is known that the shell model (SM) estimate of the
α-decay width, even including a very large number of
configurations, underestimates the experimental value of 212Po
by several orders of magnitude [2]. Even the introduction of
narrow Gamow resonances is able to describe only 1% of
the decay width [18]. On the other hand, the shell model
B(E2) values in the same nucleus are similar to those in 210Pb,
but are one order of magnitude smaller with respect to the
experimental data. In order to explain these discrepancies one
can add to the sp SM radial wave function a cluster component
for each angular momentum,

ψl(r) = ψ
(SM)
l (r) + ψ

(clus)
l (r), (2.19)

where for simplicity of notation we dropped the isospin index.
We use the standard expansion of the SM component in terms
of spherical harmonic oscillator (ho) wave functions, with the

standard ho parameter β0 = MNω/h̄, and h̄ω = 41A−1/3,

ψ
(SM)
l (r) =

∑
N�N0

bnl(−)nR(β0)
nl (r). (2.20)

The phase factor (−)n ensures a common sign of the spherical
ho wave functions at large distances.

Notice that we can use as a cluster component similar sp
wave functions, i.e. spherical ho functions, with a principal
quantum number larger than the maximal value N > N0 = 5
for protons and N > N0 = 6 for neutrons (see Table I), i.e.,

ψ
(clus)
l (r) =

∑
N

cnl(−)nR(β)
nl (r), (2.21)

There are two ways to determine the expansion
coefficients cnl .

(a) First, one can simultaneously determine bnl and cnl

in Eqs. (2.20) and (2.21) by diagonalizing the Woods-Saxon
mean field and normalizing to unity the wave function (2.19). A
mixed basis (2.19) with two different ho parameters was used
in Ref. [6]. By using a smaller ho parameter for the cluster
components (2.21), i.e., β < β0, one obtains an enhancement
of the wave function tail, and thus of the decay width. The
energies of bound sp states and narrow resonances are not
affected by this procedure. Only the level density of low-lying
sp states in the continuum, which increases, is affected.

(b) It is also possible to diagonalize the residual two-body
interaction between protons and neutrons. For this purpose,
the authors of Ref. [5] used a basis containing Gaussian-like
sp wave functions as cluster components, i.e.,

ψ
(clus)
l (r) = N (clus)

l e−βc(r−r0)2/2, (2.22)

where the sp ho parameter βc is connected to the α-particle
ho parameter by the relation 4βc = βα = 0.513 fm−2, which
takes into account the fact that the α-particle wave function
is a product of two proton and two neutron wave functions.
In order to ensure proper normalization, the SM component

should be multiplied by the factor N (SM)
l =

√
1 − [N (clus)

l ]2.
Let us also mention that the single-particle harmonic-

oscillator parameter β0 ≈ 0.16 fm−2 is rather close to βc/4 =
0.13 fm−2 and therefore the induced spuriosity is relatively
small. We have chosen r0 = 1.2A1/3, i.e., the standard bulk
value.

It is worthwhile to mention that the expansion of the
Gaussian function in Eq. (2.22) in terms of spherical harmonic-
oscillator functions [Eq. (2.21)] is very convergent. Thus,
in Fig. 1(a), the Gaussian (2.22) is plotted by a solid line,
while dot-dashed lines denote various terms entering the
expansion (2.21) corresponding to the angular momentum
l = 5. In Fig. 1(b) we give the coefficients cnl for various
angular momenta l = 0, 1, . . . , 8. Notice that the maximal
value of these distributions corresponds to a large value of
the principal quantum number N = 2n + l ∈ [8, 10]. In this
way the overlap between ψ

(SM)
l are ψ

(clus)
l is relatively small.

The product of two proton and two neutron single-particle
wave functions can be written as a product between the relative
and center of mass (cm) wave functions for both terms (2.20)
and (2.21) [21]. The overlap with the α-particle wave function
gives the so-called preformation amplitude in terms of the cm
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FIG. 1. (a) A Gaussian centered on the nuclear surface (solid
line), given by Eq. (2.22), and its spherical harmonic oscillator
components (dot-dashed lines). (b) The expansion coefficiens (2.21)
of the Gaussian (2.22) for different angular momenta l.

radius

�(R) = �(SM)
cm (R) + �(clus)

cm (R), (2.23)

where for simplicity we neglected the interference terms.
The theoretical decay width from a spherical nucleus has the
following standard representation [21]:

�th = h̄v

[
�(R)

G0(R)

]2

, (2.24)

in terms of the irregular monopole Coulomb function G0(R)
and the relative velocity of emitted fragments v. We will
estimate the logarithm of the ratio between the theoretical
and experimental decay widths, i.e.,

log10
�th

�exp
= log10 �2(R) − log10

[
G2

0(R)

h̄v

1

�exp

]
.

(2.25)

Notice that the radial matrix element of the electric transition
operator in a spherical ho basis behaves as

〈
R(β)

nl

∣∣rλ
∣∣R(β)

n′l′
〉 ∼

(
N

β

)λ/2

, N = 2n + l. (2.26)

As shown in Fig. 1(b), the decomposition of the cluster wave
function given by Eq. (2.21) shows a significant spreading
of the principal quantum number above the SM value, i.e.,
N > N0. It thus becomes clear that the cluster component
leads to an enhancement of the B(Eλ) value, since the reduced
matrix element of the quadrupole operator is proportional to
Nλ/2 [see Eq. (2.26)].

Therefore the cluster component ensures a simultaneous
enhancement of both α-decay width and B(Eλ) value of the
electromagnetic transitions in 212Po.

III. NUMERICAL APPLICATION

We will use as a representation the sp states shown
in Table I, which include the major shells N = 4, 5 for
protons and N = 5, 6 for neutrons. Let us mention that the
Blomqvist-Wahlborn set of Woods-Saxon parameters in this
table gives the best description of single-particle levels in the
four odd-A nuclei close to 208Pb [22]; see also Fig. 2.15 of
Ref. [23]. With this representation we evaluated the energies
and wave functions of the correlated two-proton states in 210Po
and two-neutron states in 210Pb. The positive parity states
in 212Po were estimated within the MSM procedure as in
Ref. [18] without any additional parametrization. They are
given in Fig. 2 by open symbols, while the corresponding
experimental data are plotted by filled symbols. We found
that the proton-neutron interaction is small and therefore the
energies of positive parity states in 212Po are close to the
corresponding energy in 210Pb. As seen in Fig. 2, the largest
difference between these two sets of states is about 200 keV.

The challenge of the calculation is to evaluate the unnatural
parity states 4−, 6−, and 8− of 212Po. The experimental data
[14,15] display two groups of states, almost degenerated in
energy, as two nearly parallel bands with almost constant
values around E = 1.8 and 2.0 MeV (see the filled circles
of Fig. 3). This means that in Eq. (2.12) one state with a given
even spin J+ is dominant, i.e., ZI (J ) ∼ δJ ;I,I±1, and each J

value is able to create a triplet of almost degenerate states.
To perform the calculation of these states as precisely as

possible we took the effective matrix elements from experi-
ment, as mentioned above, by using Eqs. (2.17) and (2.18). The
energies of the particle-hole and pairing modes, referred to the
208Pb(g.s.) core, are [24,25] ω(208Pb(3−)) = 2.615 MeV and
ω(210Po(g.s.)) = −8.782 MeV. The values of ω(210Pb(J+))
are given in Table II. The corresponding wave functions were
evaluated as described above.

0 2 4 6 8
angular momentum

0.0

0.5

1.0

1.5

E
xc

ita
tio

n 
en

er
gy

 (
M

eV
)

210
Pb

210
Po

212
Po

FIG. 2. (Color online) Energies of the positive parity states in
210Pb (circles), 210Po (squares), and 212Po (diamonds), as a function
of angular momentum. Experimental values are drawn with filled
symbols and theoretical results [18] are drawn with open symbols.
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FIG. 3. (Color online) Energies of the negative parity states in
212Po as a function of angular momentum. Experimental values
[14,15] are drawn with filled symbols and theoretical predictions
(this work) are drawn with open symbols.

The next quantities needed in Eq. (2.17) are the interaction
energies 
. We will evaluate them separately.

A. The interaction energy �(210Po(g.s.), 208Pb(3−); 3−)

The interaction between the pairing mode 210Po(g.s.) and
the particle-hole vibration 208Pb(3−), that is, the quantity

(210Po(g.s.), 208Pb(3−); 3−), can be extracted from exper-
imental data. To do this we assume that these collective
modes are built upon each other such that |210Po(3−)〉 ≈
|210Po(g.s.) ⊗ 208Pb(3−); 3−〉. Therefore the energy carried
by the state 210Po(3−) is E(210Po(3−)) = ω(210Po(g.s.)) +
ω(208Pb(3−)) + 
(210 (g.s.),208 Pb(3−); 3−). From experimen-
tal data [24] one has E(210Po(3−)) = 2.387 MeV. One
has also to consider in this case of proton excitations
the attractive Coulomb interaction between the two proton
particles in the 210Po(g.s.) mode and the proton hole in

TABLE V. Same as in Table IV, but for the energies of natural
parity 3p-1h states I−.

I− J + EMSM E(212Po(I−)) Eexp(212Po(I−))
(MeV) (MeV) (MeV)

1− 4+ −0.116 1.995
3− 2+ −0.356 1.350 1.537
5− 6+ −0.168 2.140 2.103
7− 8+ −0.137 2.318 2.374
9− 8+ −0.258 2.197 2.470
11− 8+ −0.317 2.137 2.409

the 208Pb(3−) mode. This contribution is twice the value
corresponding to the particle-hole contribution, which in this
case we estimated to be −0.258 MeV (see Eq. (4.3) of
Ref. [26]). Referring all energies to the core one finally obtains

(210Po(g.s.), 208Pb(3−); 3−) = −0.745.

B. The interaction energy �(210Pb( J+), 210Po(g.s.); J+)

In the evaluation of this quantity we assume |212Po(J+)〉 ≈
|210Pb(J+) ⊗ 210Po(g.s.)〉. Proceeding as above one obtains
for the energy of this state the value E(212Po(J+)) =
ω(210Pb(J+)) + ω(210Po(g.s.)) + 
(210Pb(J+), 210Po(g.s.)).
We took the values of E(212Po(J+)) and the energies ω

from experiment [24]. The resulting values of 
 are given in
Table III.

C. The interaction energy �(210Pb( J+), 208Pb(3−); I−)

We evaluated this energy by using Eq. (2.18) with the
single-particle energies given in Table I. This is the last
contribution to the total energy E(212Po(I−)) given by
Eq. (2.17). We summed up all these contributions and referred
their values to the ground state of 212Po. The values of

(210Pb(J+), 208Pb(3−); I−) as well as E(212Po(I−)) are
presented in Table IV. By using the same procedure we
obtain the results for similar natural parity 3p-1h states having
Iπ = 1−, 3−, 5−, 7−, 9−; they are given in Table V.

It is seen in Table IV that the experimental energies of
the even-spin states (see the filled circles in Fig. 3) are fitted

TABLE IV. Calculated energies E(212Po(I−)) corresponding to the states |212Po(J +)〉 [Eq. (2.1)]. The MSM partial contribution is EMSM =

(210Pb(J +), 208Pb(3−); I−). Energies are in MeV and referred to 212Po(g.s.). In the fifth column are the experimental energies, the SM
B(E1: I− → I+) values with eν = −eZ/A are in the sixth column, and in the seventh column are the SM + cluster values. In the last column
are the experimental B(E1: I− → I+).

I− J + EMSM E(212Po(I−)) Eexp(212Po(I−)) B(E1)(1)
th B(E1)(2)

th B(E1)exp

(MeV) (MeV) (MeV) (104 W.u.) (104 W.u.) (104 W.u.)

2− 2+ −0.407 1.236 5 1
4+ −0.204 1.907 15 63

4− 4+ −0.303 1.808 1.744 9 11 25
6+ −0.107 2.201 1.946 2 4 11

6− 6+ −0.213 1.886 1.787 37 122 66
8+ −0.490 2.197 2.016 3 8 19

8− 6+ −0.489 1.816 1.751 43 148 200
8+ −0.215 2.240 1.986 8 24

10− 8+ −0.360 2.135 2.465 2 1 18
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within 150 keV, although the experimental tendency, where the
states 6− reach a maximun, is not reproduced. However, these
differences are so small that they can be included within the
general agreement of 150 keV beween theory and experiment.

One can see a nice agreement with the experimental
values. It turns out that more than 90% of the contribution to
Eq. (2.4) comes from the diagonal reduced matrix element with
j = j ′ = h9/2− for protons and j = j ′ = g9/2+ for neutrons
(see Table I). The same combinations give the dominant
contribution of the proton/neutron TDA amplitudes, i.e.,∣∣∣∣X(1)

J+

(
τ

9

2

∓
, τ

9

2

∓)∣∣∣∣ > 0.9, τ = π, ν, (3.1)

with J+ = 2+, 4+, 6+, 8+.
We estimated the B(E2) values according to Eq. (A3) by

using the effective charges given by

eπ = e(1 + χ ), eν = eχ, χ = 1. (3.2)

Let us mention that the polarization parameter χ = 1
is suggested by systematic calculations, in particular by
Ref. [13]. The corresponding numbers are shown in Table VI.
In Ref. [8] the large B(E2) values in 212Po are reproduced
within a pure cluster model. Here, one considers that the α

cluster has a volume distribution. Anyway, an α particle can
exist only on the nuclear surface and not inside. All micro-
scopic estimates of the formation amplitude [2–6] indicate
this feature. Thus, it is difficult to compare a pure volume
cluster model with our shell model plus surface α cluster.

It has to be pointed out that the B(E2) experimental values
in 212Po (the sixth column of Table VI) are one order of
magnitude larger that the corresponding values in 210Pb [15].
As we already mentioned, the previously computed B(E2)
values in 212Po are one order of magnitude smaller.

This difference should be explained by an additional α-
clustering component in Eq. (2.19). In order to determine the
parameters of this component we first estimated the theoretical
α-decay width by using the preformation amplitude (2.23) in
Eq. (2.25). It turns out that the SM component underestimates
the experimental value by three orders of magnitude. Since the
SM preformation amplitude �cm(R) has a maximum around
r0 = 1.2A1/3 [21], we adopted it as the the radius of the α-
cluster distribution at the nuclear surface. As mentioned above,
the ho parameter was taken to be four times the α-particle
value 4βc = βα = 0.513 fm−2. The only free parameter is the
amplitude of the cluster factor, which we considered to be
the same for all sp states. This approximation is justified,
since practically only the states πh9/2− and νg9/2+ provide

0
0.02
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0.1
0.12
0.14
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x 10
-3

5 6 7 8 9 10 11 12
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0
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4

9 9.5 10 10.5 11 11.5 12

FIG. 4. (a) The α-particle preformation amplitude squared (2.23)
(solid line) and its cluster part (dashed line).(b) The logarithm of the
ratio between theoretical and experimental α-decay widths versus cm
radius (solid line). The dashed and dot-dashed line are the two terms
of Eq. (2.25), respectively.

a significant contribution. We fixed this parameter to reproduce
the experimental value of the α-decay width, which provides
the value N (clus) = 0.3.

In Fig. 4(a) the preformation amplitude squared is shown
(solid line) as well as the contribution of the cluster component
(dashed line). In Fig. 4(b) the logarithm of the ratio between
the theoretical and experimental decay widths is plotted as a
function of the cm radius (solid line). One outstanding feature
of this figure is the good agreement between the theoretical
and experimental decay widths around the region of the
geometrical touching configuration. Here the dependence upon
the cm radius R is weak and therefore the decay width (2.24)
practically does depend upon it in this region. This proves the
validity of our calculation. The dashed and dot-dashed lines in
Fig. 4 give the two terms of Eq. (2.25). The first (second) term
corresponds to the internal (external) cm wave functions of the
α particle. Thus, our approach is self-consistent because the
derivatives of the two terms are almost equal and the final result
practically does not depend upon the matching cm radius.

Notice that the value of the cluster normalization factor,
N (clus) = 0.3, is close to that given by Ref. [5]. Finally, we
used this value in Eqs. (A1) and (2.19) to estimate the B(E2)

TABLE VI. Experimental and theoretical B(E2) values in 210Po (second and third columns), 210Pb (fourth and fifth columns), and 212Po
(sixth and last columns) in Weiskopf units.

J ′ → J 210Po B(E2)th 210Pb B(E2)th 212Po B(E2)th
B(E2)exp B(E2)exp B(E2)exp

2 → 0 0.56(12) 6.7 1.4(4) 3.9 9.2
4 → 2 4.6(2) 12.9 3.2(7) 3.5 20.8
6 → 4 3.0(1) 8.9 2.2(3) 2.4 13.5(36) 14.4
8 → 6 1.18(3) 3.9 0.62(5) 1.0 4.60(9) 5.8
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FIG. 5. (a) B(E1) values for transitions I− → I+ in Table IV
versus the proton-neutron coupling strength F3− (πν) for a vanishing
α-clustering amplitude N (clus) = 0 (solid lines). The transitions
between natural parity states (I + 1)− → I+ are given by dashed
lines. (b) Same as in (a) but for N (clus) = 0.3.

values in 212Po. The results are given in the last column
of Table VI. One sees a nice agreement with respect to the
experimental data.

We then proceeded to the evaluation of the B(E1) values
corresponding to the unnatural parity states. The theoretical
neutron dipole charge is eν = −eZ/A. In order to simplify
the calculations we used equal proton and neutron octupole
strengths, i.e., F3−(ππ ) = F3−(νν). The proton-neutron oc-
tupole strength F3−(πν) is determined by using Eq. (A10).
Thus, the interval of values is given by

F3−(πν) ∈ [
0,

(
S(1)

π S(1)
ν

)−1/2]
, (3.3)

where the quantities S(1)
τ are the ones defined by Eq. (A9) for

the lowest root n = 1. We analyzed the dependence of B(E1)
values versus the proton-neutron octupole strength. In Fig. 5(a)
we give by solid lines B(E1) values as functions of F3−(πν),
according to Eq. (A8), for transitions in Table IV. Here, we
considered a vanishing α-cluster correction, i.e., N (clus) = 0
in Eq. (2.22). The largest transitions are explicitely labeled on
the plot. One clearly sees that these dependencies are rather
smooth, the strongest variation being lower than a factor of 2.

It is important to stress that one has opposite situations
for E1 transitions between natural parity states [(I + 1)− →
I+, i.e., 5− → 4+, 7− → 6+, 9− → 8+] and unnatural parity
states [I− → I+] even though the two sets of negative parity
states are described by the same ansatz (2.12). In the first case,
the two terms entering Eq. (A6) have the same sign, thus their
difference leads to significantly smaller values. This feature
can be seen in Fig. 5, where the dependence of the B(E1)
values upon the proton-neutron strength F3−(πν) for these
transitions is given by dashed lines.

The largest values of B(E1), corresponding to F3−(πν) =
0, are given in the sixth column of Table IV. They are
significantly smaller than the experimental values given in
the last column.
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FIG. 6. (a) The largest octupole TDA amplitude, given by the
neutron pair (νg 9

2

+ ⊗ νp 3
2

−
)3− , versus the proton-neutron coupling

strength F3− (πν) is drawn by a dashed line. Other important
amplitudes are given by dotted lines. The TDA amplitude giving the
leading contribution in E1 transitions, corresponding to the neutron
p-h pair (νg 9

2

+ ⊗ νf 7
2

−
)3− , is plotted by a solid line. The α-clustering

amplitude is N (clus) = 0. (b) Same as in (a), but for N (clus) = 0.3.

In Fig. 5(b) we plotted the same dependencies, but consid-
ering the same α-cluster correction reproducing the absolute
value of the α-decay width, i.e., N (clus) = 0.3. One notices an
important enhancement of these values. Indeed, the enhance-
ment provided by the same cluster term given by Eq. (2.22) is
given by the radial part of the reduced matrix elements, which
according to Eq. (2.26), are proportional to

√
N .

The largest B(E1) values, corresponding to F3−(πν) = 0,
are shown in the sixth column of Table IV and they are,
except for the last line, in reasonable agreement with the
experimental data, given in the last column. Notice that the
clustering enhancement increases with the value of the spin I .
Indeed, Eq. (A6) shows that the dipole transition operator is
proportional to I .

The 3− state has a very collective character due to the
fact that many components have significant amplitudes, larger
than 0.3. It turns out that the dominant component is given by
the particle-hole neutron amplitude |X (1)

3− (νg 9
2

+
, νp 3

2
−

)| > 0.5
(see Table I). It is plotted in Fig. 6(a) by a dashed line versus the
proton-neutron octupole strength for a vanishing α-clustering
amplitude N (clus) = 0. One obtains an important enhancement
for N (clus) = 0.3, as can be seen in Fig. 6(b).

Several other important amplitudes corresponding to vari-
ous neutron pairs (νj1 ⊗ νj2)3− are plotted by dotted lines in
Fig. 6(a). It turns out that only one specific two-neutron state
plays an important role in the E1 transitions. Thus, in the dipole
transition operator (A6) the dominant component is given by
the particle-hole neutron pair (νg 9

2
+ ⊗ νf 7

2
−

)3− , with 
j = 1,
in spite of the fact that the TDA amplitude corresponding to
this pair is not the largest one, its value being less than 0.3.
This amplitude is plotted in Fig. 6(a) by a solid line for a
vanishing α-clustering amplitude N (clus) = 0. It has the same
order of magnitude as in Ref. [20], although there the RPA
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FIG. 7. The distribution of different terms in the E1 transition
operator (A6) divided by the electric charge (in fm) versus the
neutron state number for the strongest transition 8−

1 → 8+ in 212Po, by
consideringN (clus) = 0 (open circles connected by a dashed line). The
maximum corresponds to the neutron dipole pair (νg 9

2

+ ⊗ νf 7
2

−
)1− .

The dark circles connected with a solid line show the same
dependence, but for N (clus) = 0.3.

was used. Its enhancement for N (clus) = 0.3 is not spectacular,
as can be seen in Fig. 6(b), but the B(E1) value strongly
increases. Notice that for this combination the two terms of the
dipole transition operator (A6) have opposite phases and their
difference has a relatively large value. Finally let us mention
that the amplitudes plotted by dotted lines are unchanged and
even decrease when increasing the cluster amplitude, as can
be seen from Fig. 6(b).

In order to visualize the contribution of different terms in
the E1 transition operator (A6), we plotted them versus the
neutron state number n for the strongest transition 8− → 8+.
Thus, in Fig. 7 we give this distribution for those terms with
an absolute value larger than 10−4 and a vanishing clustering
N (clus) = 0, represented by open circles connected with a
dashed line. The second state with the largest contribution
corresponds to the neutron dipole pair (νg 9

2
+ ⊗ νf 7

2
−

)1− .
One can see the enhancement of this peak by including the
α-clustering term with N (clus) = 0.3 (dark circles connected
by a solid line).

There is one exception, corresponding to the transition from
the state I = 10−

1 , where the leading contribution is given by

the term (νi 11
2

+ ⊗ νf 7
2

−
)3− with 
j = 2. This feature explains

why the transition from the state 10−
1 has a small value, in

agreement with the experiment. It is worth mentioning that the
two-neutron state 10+ has a different structure compared to
Eq. (3.1), since in 210Pb it is∣∣∣∣X(1)

10+

(
νg

9

2

+
, νi

11

2

+)∣∣∣∣ > 0.9, (3.4)

pushing its energy to a larger value (see Fig. 2), together with
the energy of the corresponding state 10− in 210Pb.

TABLE VII. The ratios between the half-life of the α decay from
the ground state and from excited natural parity states of 212Po. In the
second column are given experimental values [14] and in the third
column are the theoretical estimates. In the last column are given
similar theoretical values from Table VII (last column) of Ref. [27].

J T0/TJ (exp) T0/TJ T0/TJ [27]

2 26.1 24.2
4 48.9 44.7
6 12.0 17.5 15.4
8 0.6 1.8 1.7

Finally, let us mention that the ratios between the α-decay
half-life from the ground state and from excited natural parity
states of 212Po, computed in Table VII by using the above
described formalism, are in agreement with those predicted
in Ref. [27].

IV. SUMMARY AND CONCLUSIONS

In this paper we have shown that the pairs of natural and
unnatural parity states seen in 212Po ( [14,15]) appear as a result
of two different mechanisms. The natural positive parity states
are two-neutron excitations built upon the nucleus 210Po(g.s.).
We described these states by using a pairing Hamiltonian.
The interaction strengths were fixed as usual, i.e., by fitting
the energy of each multipolarity to the corresponding yrast
state. It was found that the B(E2) values in 210Po are in
good agreement with experimental data by using an effective
neutron charge eν = e. However, the shell-model predictions
of the corresponding B(E2) values in 212Po are smaller
than the experimental data by one order of magnitude. In
order to explain this discrepancy we used a surface α-cluster
component. It turns out that a cluster admixture of 30% is able
to simultaneously describe B(E2) and absolute α-decay width
as already shown previously in Ref. [5]. B(E2) values and
absolute α-decay width in 212Po are simultaneously described
within the shell model plus a cluster component depending
upon one free strength parameter.

We described the unnatural negative parity states in 212Po
as two-neutron excitations in 210Pb coupled to the collective
ph 3− state in 208Pb times 210Po(g.s.). The energies of the
corresponding I− states are in reasonable agreement with the
experimental data. The B(E1) values are also in a reasonably
good agreement with existing experimental data, by using an
effective neutron charge eν = −eZ/A which is the theoretical
neutron dipole charge.

Looking at the experimental spectrum of 212Po (see
Refs. [14,15]), one gets the impression that the story of two
more or less parallel bands of unnatural parity states repeats
itself for the odd-spin states (5+, 7+, 9+) only ∼2 MeV higher.
These states are connected by strong E1 transitions to the
corresponding negative natural parity states J− = 5−, 7−, 9−,
analagous to what happens in the case of the even spins
described in this work. In order to describe these transitions
one has to suppose for odd-spin states a similar structure to
Eq. (2.12), i.e., I+ = (3− ⊗ J−)I+ . The only difference is that
the natural parity states J− are again given by Eq. (2.12). In
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other words, the odd-spin unnatural parity states may be based
on the double excitation of the 3− state in 208Pb; see, e.g.,
Ref. [28]. The analysis of odd-spin unnatural parity states is
under way.
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APPENDIX

We give in this Appendix some analytic relations used in
our calculations.

(A) The intraband Eλ : J ′ → J transition is described by
the reduced matrix element

〈J ||T̂λ||J ′〉 =
∑

τ=π,ν

eτ (−)λ+J Ĵ Ĵ ′
∑

j1j2j
′
1j

′
2

〈τj1||T̂λ||τj ′
1〉(−)j

′
1−j2

×W (Jj1J
′j ′

1; j2λ)X
(1)
J (j1j2)X

(1)
J ′ (j ′

1j
′
2)δj2j

′
2
,

(A1)

where eτ are the effective charges. We introduced the extended
amplitude by

X
(n)
J (τj1j2) = X

(n)
J (τj1j2)
j1j2 , j1 � j2

= X
(n)
J (τj2j1)
j2j1 (−)j1+j2−J+1, j1 > j2.

(A2)

The B(E2) value is computed according to the following
relation:

B(E2: J ′ → J ) = 1

2J ′ + 1

∣∣〈J ||T̂2||J ′〉∣∣2
. (A3)

(B) The E1 transition operator is given by

T̂1μ =
∑

τ

eτ

∑
k1k2

1√
3
〈τk1||r||τk2〉(a†

τk1
ãτk2 )1μ

=
∑

τ

eτ

∑
k1k2

1√
3
〈τk1|r|τk2〉〈k1||Y1||k2〉(a†

τk1
ãτk2 )1μ,

(A4)

where we introduced the effective dipole charges

eπ = N

A
, eν = −Z

A
. (A5)

Thus, one obtains

|〈�I−||T̂1||�†
I+(1)〉| = |〈�I+(1)||T̂1||�†

I−〉| ≡ T1(λ−, J+; I− → I+) =
∑

τ

eτ

√
(2λ− + 1)(2J+ + 1)(2I+ + 1)

×
∑
j1�j2

∑
j3j4

1


j1j2

X
(1)
J+(τj1j2)X (1)

λ− (τj3j4)

∣∣∣∣∣∣X
(1)
I+ (τj2j3)〈τj1||r||τj4〉

⎧⎨
⎩

j1 j2 J+
j4 j3 λ−
1− I+ I−

⎫⎬
⎭ (−)j3+j4

− X
(1)
I+ (τj1j3)〈τj2||r||τj4〉

⎧⎨
⎩

j1 j2 J+
j3 j4 λ−
I+ 1− I−

⎫⎬
⎭

∣∣∣∣∣∣ , (A6)

with λ = 3 and we explicitely indicated the parities. Notice
that this relation is valid for any value of λ and different values
of initial I− and final spin I+,

B(E1: I− → I+) = 1

2I− + 1
[T1(λ−, J+; I− → I+)]2.

(A7)

(C) The dispersion relation, derived from TDA equation
for separable forces, describing particle-hole collective exci-
tations of the multipolarity λ,

∣∣∣∣ 1 − Fλ(ππ )S(n)
π −Fλ(πν)S(n)

ν

−Fλ(νπ )S(n)
π 1 − Fλ(ππ )S(n)

ν

∣∣∣∣ = 0, (A8)

with the short-hand notation

S(n)
τ =

∑
j1j2

2q2
λ(τj1j2)(ετj1 − ετj2 )

(ετj1 − ετj2 )2 − ω2
λ(n)

, (A9)

gives the following expression for the proton-neutron interac-
tion:

Fλ(πν) = Fλ(νπ )

=
√[

1 − Fλ(ππ )S(n)
π

][
1 − Fλ(νν)S(n)

ν

]
S

(n)
π S

(n)
ν

.

(A10)
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