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Fine structure of charge-exchange spin-dipole excitations in 16O
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The charge-exchange spin-dipole (SD) excitations for both (p, n) and (n, p) channels in 16O are investigated
in the fully self-consistent random phase approximation based on the covariant density functional theory. The
fine structure of SD excitations in the most up-to-date 16O( �p, �n)16F experiment is excellently reproduced without
any readjustment in the functional. The SD excitations are characterized by the delicate balance between the σ -
and ω-meson fields via the exchange terms. The fine structure of SD excitations for the 16O(n, p)16N channel is
predicted for future experiments.
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The nuclear charge-exchange excitations [1] correspond to
the transitions from the ground state of the nucleus (N,Z)
to the final states in the neighboring nuclei (N ∓ 1, Z ± 1)
in the isospin lowering T− and raising T+ channels, respec-
tively. These excitations can take place spontaneously such
as the well-known β decays or be induced by external fields
such as the charge-exchange (p, n) or (n, p) reactions. They
are categorized according to the orbital angular momentum
transfer as allowed transitions with L = 0 and first- and
second-forbidden transitions with L = 1 and L = 2, etc.
Meanwhile, they are also classified by the spin’s degree
of freedom as the non-spin-flip modes with S = 0 and the
spin-flip modes with S = 1.

Among all the nuclear charge-exchange excitation modes,
the spin-dipole (SD) excitations with S = 1 and L = 1 have
attracted more and more attention due to their connection
with the neutron-skin thickness [2], the cross sections of
neutrino-nucleus scattering [3,4], the double beta decay rates
[5], and so on. Different from the famous Gamow-Teller (GT)
excitations having a single spin-parity Jπ = 1+ component,
the SD excitations are composed of three collective compo-
nents with spin-parity Jπ = 0−, 1−, and 2−. It is relatively
straightforward to distinguish the orbital angular momentum
transfer L by the angular distributions of double differential
cross sections, but it is not trivial to resolve different Jπ

components in SD excitations [1]. However, the resolution
of these three Jπ components is crucial to understand the
multipole-dependent effects on the neutrino-nucleus scattering
[6] and neutrinoless double beta (0νββ) decays [7,8], and
the strengths of nucleon-nucleon effective tensor interactions
[9,10] for understanding the evolution of the single-particle
energies in exotic nuclei [11,12]. In particular, the Jπ = 0−
states can also serve as doorways for parity mixing in
compound nuclear states [13]. Therefore, the investigation
of the fine structure for SD excitations including all Jπ

components has become one of the central issues for both
experimental and theoretical nuclear physics, particle physics,
and astrophysics.

Charge-exchange excitations in 16O are of particular inter-
est in both nuclear physics and astrophysics. For instance, 16O
is the key nucleus in the water Čherenkov detector for (anti-

)neutrinos providing evident signals of supernova neutrino
bursts and neutrino oscillations [14–16]. In one of the most
recent experiments, the fine structure of GT and SD excitations
in 16O has been identified by using the 16O( �p, �n)16F reaction
with polarized proton beam [17]. In this experiment, the known
SD states [18] of Ex � 8 MeV have been clearly identified,
where the excitation energies Ex are measured from the ground
state of the daughter nucleus 16F. As shown with arrows in
Fig. 1, the peak at Ex ≈ 0 MeV is composed of the triplets
of Jπ = 0−, 1−, 2− states, while the main SD resonance
at Ex ≈ 7.5 MeV and the shoulder at Ex = 5.86 MeV are
found to be Jπ = 2− states. It is also identified from this
experiment that the broad SD resonances at Ex ≈ 9.5 and
12 MeV are formed by the mixture of Jπ = 1− and 2− states,
where the former resonance is dominated by the Jπ = 2−
component and the latter one is dominated by the Jπ = 1−
component. The experimental data in such details provide a
rigorous calibration for theories, in particular the microscopic
theories aiming at describing both ground states and excited
states all over the periodic table with a high predictive
power.

Theoretically, the nuclear charge-exchange excitations are
mainly investigated by the shell model and the random phase
approximation (RPA) built on energy density functionals.
Limited by the computational facilities available, the RPA
approach is the only microscopic method that can be im-
plemented for the whole nuclear chart. The same energy
density functional should be used for describing both the
nuclear ground state and excited states for the model self-
consistency [19,20], in order to restore the symmetries of the
system Hamiltonian broken by the mean-field approximation,
to separate the spurious states from the physical states, as
well as to maintain the predictive power for nuclei far away
from the stability line. Recently, such full self-consistency
has been achieved in the framework of covariant density
functional theory (CDFT) [21] [i.e., the self-consistent RPA
built on the relativistic Hartree-Fock (RHF) theory] denoting
as RHF + RPA below. Excellent agreement with the GT
resonances data in 48Ca, 90Zr, and 208Pb has been obtained
without any readjustment of the covariant energy density
functional [21].
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FIG. 1. (Color online) Strength distributions of the SD excitations
in 16O for the T− channel. The J π = 0−, 1−, and 2− contributions
calculated by RHF + RPA with PKO1 [23] (upper panel) and
RH + RPA with DD-ME2 [28] (lower panel) are shown as the
dash-dotted, dotted, and dashed lines, respectively, while their sums
are shown as the solid lines. The energy of the lowest RPA state is
taken as reference and a Lorentzian smearing parameter � = 1 MeV
is used. The experimental data [17,18] are shown with arrows, whose
widths illustrate the widths of the corresponding resonances.

In this paper, the self-consistent RHF + RPA approach will
be used to investigate the fine structure of the SD excitations
for both (p, n) and (n, p) channels in 16O with the most up-
to-date data. The main focus will be the understanding of
the characteristics of SD excitations and the calibration of
theoretical models.

The basic ansatz of RHF theory is an effective Lagrangian
density L, in which nucleons are described as Dirac spinors
that interact with each other by exchanging the σ , ω, ρ, π

mesons, and photons [22,23]. The system energy functional E

is then obtained as the expectation of the effective Hamiltonian
sandwiched by the trial ground-state wave function within
Hartree-Fock and no-sea approximations. This theory is also
called Dirac-Fock method in atomic physics [24,25]. For the
fully self-consistent RPA established beyond, the particle-hole
(ph) residual interactions are strictly derived by taking the

second derivative of the same energy functional E as [21,26],

Vσ (1, 2) = −[gσγ0]1[gσγ0]2Dσ (1, 2), (1a)

Vω(1, 2) = [gωγ0γ
μ]1[gωγ0γμ]2Dω(1, 2), (1b)

Vρ(1, 2) = [gργ0γ
μ�τ ]1 · [gργ0γμ�τ ]2Dρ(1, 2), (1c)

Vπ (1, 2) = −
[

fπ

mπ

�τγ0γ5γ
k∂k

]
1

·
[
fπ

mπ

�τγ0γ5γ
l∂l

]
2

Dπ (1, 2),

(1d)

where Di(1, 2) denotes the Yukawa propagator. The pionic
zero-range counterterm, which cancels the contact interaction
of the pseudovector π -N coupling is

Vπδ(1, 2) = g′
[

fπ

mπ

�τγ0γ5γ

]
1

·
[

fπ

mπ

�τγ0γ5γ

]
2

δ(r1 − r2),

(2)
where g′ = 1/3.

In the present RHF + RPA calculations, the effective
interaction is taken as PKO1 [23], which is determined by
a set of selected nuclear ground-state properties, and has
no free parameters for nuclear excitations. The radial Dirac
equations are solved in coordinate space within a spherical
box with radius R = 25 fm and mesh size dr = 0.1 fm [27].
The single-particle energy truncations for RPA matrices are
taken as [−M,M + 100 MeV] with M the nucleon mass.

In the upper panel of Fig. 1, the strength distributions of
the SD excitations in the T− channel of 16O calculated by the
RHF + RPA approach with PKO1 [23] are shown by taking
the lowest RPA state as reference. The spin-parity Jπ = 0−,
1−, and 2− contributions are shown as the dash-dotted, dotted,
and dashed lines, respectively, while their sum is shown as
the solid line. For comparison, the experimental low-lying SD
excitations [18] and resonances [17] are denoted with arrows,
while their widths illustrate the widths of the SD resonances at
Ex ≈ 7.5, 9.5, and 12 MeV, respectively. One should be careful
that, different from the GT case, the strength distributions are
not proportional to the experimental cross sections at zero-
degrees for the SD excitations.

In general, the profiles of the Jπ = 0−, 1−, and 2−
excitations are well reproduced by the calculations. Focusing
on the details, firstly, the 0−

1 , 1−
1 , and 2−

1 triplets are found
at Ex ≈ 0 MeV. Secondly, the main giant resonance at Ex ≈
7.5 MeV as well as its shoulder structure at Ex ≈ 6 MeV
(which could not be described by the shell model calculations
[17]) generated by the Jπ = 2− component are excellently
reproduced. The shoulder structure is formed by the coherent
excitations of (νp−1

3/2πd5/2) and (νp−1
1/2πd5/2). In contrast,

it is suppressed by the interference between (νp−1
1/2πd3/2)

and (νp−1
3/2πs1/2) in the shell model calculations. Thirdly,

the broad resonances at Ex ≈ 9.5 and 11 ∼ 13 MeV are
understood as the mixture of the Jπ = 1− and 2− excitations.
According to the transition strengths, the former resonance
is dominated by the Jπ = 2− component, whereas the latter
one is dominated by the Jπ = 1− component. To conclude,
the fine structure of the SD excitations can be described
robustly by the self-consistent RPA based on a covariant
density functional without any readjustment. For the Jπ = 0−
resonances beyond Ex = 10 MeV, where no clear bumps
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have been observed experimentally [17], the present theory
predicts such resonances being fragmented at the range of
Ex = 12 ∼ 18 MeV with the peak at Ex ≈ 14.5 MeV. The
peak energy is consistent with the shell model prediction in
Ref. [17]. Such a fragmented feature could be considered as
one of the reasons why the Jπ = 0− resonances are so difficult
to be observed.

To illustrate the effects of the exchange terms, the calculated
SD strength distributions by the conventional RH + RPA
approach [29] with DD-ME2 [28] are shown in the lower
panel of Fig. 1, where g′ in Eq. (2) is readjusted to 0.52
according to Ref. [30]. It can be seen that the general profile of
Ex � 8 MeV calculated without exchange terms is similar to
that with exchange terms. However, substantial discrepancies
can be seen for the SD resonances beyond Ex = 8 MeV. The
mixture of the Jπ = 1− and 2− excitations at Ex ≈ 9.5 MeV is
missing, and the Jπ = 1− resonances are too high in energy by
comparing with the data. It is also worthwhile to note that the
Jπ = 0− resonances are centralized at Ex = 10 ∼ 12 MeV.

In order to understand the differences between the pre-
dictions by RHF + RPA and RH + RPA, the unperturbed and
collective SD excitations are shown in Fig. 2. The unperturbed
excitations for all Jπ components are found to be quite
similar by these two approaches. This indicates that there is
no substantial difference for the calculated single-particle
spectra with or without exchange terms. However, when the
collectivity is switched on, it is clear that the ph residual
interactions in these two frameworks play very different
roles. In particular, the most profound difference is found
in the Jπ = 0− component (i.e., the residual interactions are
repulsive in RHF + RPA and slightly attractive in RH + RPA).

FIG. 2. (Color online) The unperturbed (Hartree-Fock for PKO1
and Hartree for DD-ME2) and collective (RPA) excitations for the
J π = 0−, 1−, and 2− components.

FIG. 3. (Color online) Diagonal matrix elements of the particle-
hole residual interactions for the J π = 0−, 1−, and 2− excitations.
The total strengths are decomposed into the contributions from the σ

and ω mesons (σ + ω), the ρ meson, the pseudovector π -N coupling
(π PV) and its zero-range counterterm (π ZR). The configurations
are displayed as the format of neutron-hole-proton-particle.

To further understand these discrepancies and evaluate
the significance of the model self-consistency, by taking the
diagonal matrix elements of the main ph configurations for
the Jπ = 0−, 1−, and 2− excitations as examples, the total
strengths of the ph residual interactions are presented in Fig. 3
together with the corresponding contributions from the σ and
ω mesons, the ρ meson, the pseudovector π -N coupling and
its zero-range counterterm.

Within RHF + RPA, the total strengths of the ph residual
interactions are essentially determined by the delicate balance
between the σ and ω mesons via the exchange terms. The
ρ meson seems to be important in the natural-parity channel,
while the pseudovector π -N coupling and its zero-range coun-
terterm play minor roles due to the strong suppression of the
coupling strength fπ of PKO1 [23] in nuclear medium. As the
σ and ω mesons are well calibrated by the central and spin-orbit
potentials for the nuclear ground-state properties, the proper
description of the SD excitations provides a stringent and
critical test of the theoretical model. It is noted that, different
from the Skyrme HF + RPA calculations [10], here the explicit
tensor interactions are not necessary to reproduce the data.

Within RH + RPA, the total strengths of the ph residual
interactions are essentially determined by the ρ meson for
the natural-parity channel and by the pseudovector π -N
coupling and its zero-range counterterm for the unnatural-
parity channels. As the pseudovector π -N coupling and its
zero-range counterterm are absent in the description of the
nuclear ground-state properties, the adjustment of g′ with the
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FIG. 4. (Color online) Same as the upper panel of Fig. 1, but for
the T+ channel. The experimental data are taken from Refs. [18,31].

GT (Jπ = 1+) excitation energy introduces an extra parameter
and therefore influences its self-consistency.

Encouraged by the success in reproducing the fine structure
of charge-exchange SD excitations in the T− channel of 16O,
it is worthwhile to investigate other phenomena interesting
for future experiments by using the microscopic and fully
self-consistent RHF + PRA approach.

The strength distributions of the SD excitations in the T+
channel of 16O calculated by the RHF + RPA with PKO1 are
shown in Fig. 4 by taking the lowest RPA state as reference. The
0−

1 , 1−
1 , and 2−

1 triplets are found at Ex = 0 ∼ 2 MeV. The main
resonance and a shoulderlike structure dominated by the Jπ =
2− component appear at Ex ≈ 8.3 MeV and Ex ≈ 6.5 MeV,
respectively. The broad giant resonance at Ex = 11 ∼ 15 MeV

is superposed of the Jπ = 1− and 2− excitations with the
Jπ = 1− component dominant in transition strengths. At
Ex = 13 ∼ 17 MeV, the Jπ = 0− resonances are predicted
to be fragmented. These calculations are well supported by
the available experimental low-lying SD excitations [18] and
resonances [31] denoted by arrows with their corresponding
widths. The predicated fine structure might be verified by
future experiments with polarized beams.

In summary, the charge-exchange SD excitations in 16O
have been investigated with the fully self-consistent RPA based
on the covariant density functional theory. The fine structure of
SD excitations in the most up-to-date 16O( �p, �n)16F experiment
is excellently reproduced without any readjustment in the
functional. The existing discrepancy between the data and the
shell model calculations for the Jπ = 2− shoulder structure
at Ex ≈ 6 MeV has been clarified. The characteristics of SD
excitations are understood with the delicate balance between
the σ - and ω-meson fields via the exchange terms without
the necessity of explicit tensor interactions. The fine structure
of SD excitations for 16O(n, p)16N channel has also been
predicted for future experiments.
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