
PHYSICAL REVIEW C 85, 064003 (2012)

Di-neutron and the three-nucleon continuum observables
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We investigate how strongly a hypothetical 1S0 bound state of two neutrons would affect observables in
neutron-deuteron reactions. To that aim we extend our momentum-space scheme of solving the three-nucleon
Faddeev equations and incorporate in addition to the deuteron also a 1S0 di-neutron bound state. We discuss
effects induced by a di-neutron on the angular distributions of the neutron-deuteron elastic scattering and
deuteron breakup cross sections. A comparison to the available data for the neutron-deuteron total cross section
and elastic scattering angular distributions cannot decisively exclude the possibility that two neutrons can form
a 1S0 bound state. However, strong modifications of the final-state-interaction peaks in the neutron-deuteron
breakup reaction seem to disallow the existence of a di-neutron.
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I. INTRODUCTION

The investigation of neutron-deuteron (nd) elastic scattering
and the deuteron breakup observables [1] revealed a number of
discrepancies between data and theoretical predictions based
on either modern nucleon-nucleon potentials, such as AV18
[2]; charge-dependent (CD) Bonn [3]; and Nijm1, 2, and 93 [4];
or nuclear forces derived in the framework of chiral effective
field theory [5]. These potentials describe very accurately the
existing nucleon-nucleon (NN) database with χ2 values per
data point close to 1. Some of these discrepancies can be
explained by including in the three-nucleon (3N) Hamiltonian
in addition to pairwise interactions also three-nucleon forces
(3NF’s). However, some observables still cannot be explained
and they reveal a high insensitivity to the underlying dynamics,
especially to the choice of 3NF’s. The neutron-neutron (nn)
quasi-free-scattering (QFS) configuration in the kinematically
complete nd breakup is one such example. Another one is
the symmetrical space-star (SST) geometry. The nn QFS
refers to the kinematical configuration in which the outgoing
proton is at rest in the laboratory system. In the case of
SST the momenta of the three outgoing nucleons have equal
magnitude with an angle of 120◦ between two adjacent
momenta. In the three-nucleon center-of-mass (c.m.) system
these momenta form a plane perpendicular to the incoming
nucleon momentum. In the QFS and SST configurations
the theoretical predictions underestimate the data by about
20%. Together with the fact that the cross section in these
configurations is dominated by 1S0 and 3S1 contributions this
led to the conjecture that something might be wrong with the
1S0 nn force, and that two neutrons may even form a bound
state [6,7].

These observations motivated us to investigate the con-
sequences a possible 1S0 di-neutron would have on different
observables in the nd reaction, and to what degree the available
nd data allow for such a bound state. Specifically, we would
like to find out whether or not the existence of the di-neutron
could help resolve the discrepancies referred to above in the
QFS and SST nd breakup configurations.

In Sec. II we extend our formulation of the momentum-
space treatment of the 3N Faddeev equations to include, in
addition to the deuteron, also the 1S0 bound state of two
neutrons. Changing the strength of the 1S0 nn interaction of the
CD Bonn potential, we produce a number of forces that allow
two neutrons to be bound with different di-neutron binding
energies. In Sec. III we present theoretical predictions based
on the solution of the 3N Faddeev equations and compare
them to the available nd data. We summarize and conclude in
Sec. IV.

II. FADDEEV EQUATIONS WITH DI-NEUTRON

We shortly present the basics of our momentum-space
treatment of the 3N Faddeev equations and calculations of
the transition operators for different reactions in the 3N
continuum based on solutions of these equations. For a detailed
presentation we refer to Refs. [1,8]. We put an emphasis on
changes of the standard approach in the case when, beside
the deuteron, also one additional bound state appears in some
partial wave.

For calculating processes initiated from a state |�1,1〉 ≡
|�q0, φd〉, which describes the neutron moving with relative
momentum �q0 with respect to the deuteron with wave function
φd , one needs the state |T 〉 which fulfills the 3N Faddeev
equation

|T 〉 = tP |�1,1〉 + tPG0|T 〉, (1)

where P is defined in terms of the transposition operators
of three nucleons, P = P12P23 + P13P23. The quantity G0

is the free 3N propagator and t is the two-nucleon off-shell
t matrix. Knowing |T 〉, the breakup as well as the elastic
nd scattering amplitudes can be obtained by quadratures in
the standard manner [1]. Namely, the transition amplitude for
elastic scattering 〈�′

1,1|U |�1,1〉 was given by the authors of
Refs. [1,8]

〈�′
1,1|U |�1,1〉 = 〈�′

1,1|PG−1
0 |�1,1〉 + 〈�′

1,1|P |T 〉, (2)
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and for breakup 〈�0|U0|�1,1〉 by

〈�0|U0|�1,1〉 = 〈�0|(1 + P )|T 〉. (3)

The state |�0〉 ≡ 1√
2
(1 − P23)| �p�q〉 corresponds to a kine-

matically complete breakup configuration described by the
standard Jacobi momenta �p and �q, and |�′

1,1〉 is the outgoing
state in elastic scattering with a new direction of the relative
neutron-deuteron momentum �q ′

0, but with the same magnitude
as in the initial channel |�q ′

0| = |�q0|.
Introducing the momentum space 3N partial-wave basis

|pqα〉 ≡ |pq(ls)j (λ1/2)I (jI )J (t1/2)T 〉 with the two-body
subsystem orbital angular momentum l, spin s, total angular
momentum j , and isospin t , coupled with the corresponding
quantum numbers of the spectator nucleon (the orbital angular
momentum λ, spin 1/2, total angular momentum I , and isospin
1/2) to the total angular momentum J and isospin T of the
3N system, and projecting Eq. (1) on these states, we obtain
a system of coupled integral equations in two continuous
variables p and q. For details of the numerical treatment of
that system, and particularly of the kernel part 〈pqα|tPG0|T 〉,
we refer to Ref. [1].

The two-nucleon t matrix conserves the spectator momen-
tum q and all discrete quantum numbers except for the orbital
angular momentum l

〈pqα|t(E)|p′q ′α′〉
= δ(q − q ′)

q2
t
sαjαtα
lα lᾱ

(
pp′; E(q) = E − 3

4m
q2

)

× δsαsα′ δjαjα′ δtαtα′ δλαλα′ δIαIα′ (4)

and it has a pole in channels α for which the two-nucleon
subsystem has a bound state.

In the channels |α〉 = |αd〉, which contain the two-body
3S1–3D1 states, we extract the deuteron pole. Thus we
define

t
sαjαtα
lα lᾱ

[p, p′; E(q)] ≡ t̂
sαjαtα
lα lᾱ

[p, p′; E(q)]

E + iε − 3
4m

q2 − εd

(5)

for the deuteron quantum numbers sα = jα = 1, tα =
0, lα, lᾱ = 0, 2 and keep t as it is otherwise. Obviously that
pole property carries over to the T amplitude, and we define
just for the |α〉 = |αd〉 channels

〈pqα|T 〉 = 〈pqα|T̂ 〉
E + iε − 3

4m
q2 − εd

. (6)

Since the energy E of the 3N system is determined by the
incoming neutron energy Ec.m.: E = Ec.m. + εd ≡ 3

4m
q2

0 + εd ,
the deuteron pole occurs at q = q0.

If besides the deuteron an additional bound state exists in
some two-nucleon partial wave state, one needs to extract
in channels |α〉, which contain that two-nucleon state, the
corresponding pole of the t matrix by performing the same
procedure as for the deuteron. Let us assume that this
state is a bound state of two neutrons in the 1S0 state with

wave function φnn and binding energy εnn, and let us denote
by |�1,2〉 ≡ | �̄q0, φnn〉 the two-body channel built on the di-
neutron, from which or to which different reactions can be
initiated.

In the channels |α〉 = |α1S0〉, which contain the 1S0 di-
neutron, we define

t
sαjαtα
lα lᾱ

[p, p′; E(q)] ≡ t̂
sαjαtα
lα lᾱ

[p, p′; E(q)]

E + iε − 3
4m

q2 − εnn

= t̂
sαjαtα
lα lᾱ

[p, p′; E(q)]
3

4m

(
q̄2

0 − q2
) + iε

(7)

and the di-neutron pole occurs at q = q̄0 =√
q2

0 + 4m
3 (εd − εnn). Again that pole property carries

over to the T amplitude and we define for the |α〉 = |α1S0〉
channels the amplitude 〈pqα|T̂ 〉 similarly to Eq. (6). The
numerical treatment of that new pole follows the treatment of
the deuteron pole [1]. It requires the set of q points which,
in addition to q = q0 needed for the numerical treatment
of the deuteron pole, contains also the q = q̄0 point. Since
the di-neutron occurs in the neutron-neutron 1S0 state, it
implies charge independence breaking, and the resulting
difference between the 1S0 nn and np interactions requires
an inclusion of the total 3N isospin component T = 3/2
for channels α containing 1S0 [9] to calculate properly
observables.

The existence of the 1S0 di-neutron increases the number
of possible reactions within the 3N system, and therefore,
necessitates a generalization of the unitarity relation to include
those additional processes. It has the form

〈�1,a|U |�1,a′ 〉∗ − 〈�1,a′ |U |�1,a〉

= 2πi
∑
b=1,2

∫
d3q〈��q,b|U |�1,a′ 〉∗δ(Eb

�q − E�q
)

×〈��q,b|U |�1,a〉 + 2πi/6
∫

d3pd3q〈�0|U0|�1,a′ 〉∗

× δ(Epq − E�q)〈�0|U0|�1,a〉, (8)

with a = 1 and 2 for the deuteron and di-neutron channels,
respectively. One can choose a′ = 1 or a′ = 2 and a = 1 or
a = 2. For a = a′ = 1 this leads on the left side to the forward
scattering amplitude and on the right to the total cross section.
The energies Eb

�q = E�q + Eb are given by the binding energies
of the deuteron E1 = εd or di-neutron E2 = εnn.

The angular distribution for the process n + d → p +
di-neutron is given by the transition amplitude 〈�1,2|U |�1,1〉

dσ

d�
(n + d → p + di-neutron)

=
(

2m

3

)2

(2π )4 q̄0

q0

∑
mpmnmd

|〈�1,2|U |�1,1〉|2, (9)
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where the PG−1
0 and PT contributions to U are given by

〈�1,2|PG−1
0 |�1,1〉 = 〈φnn,mp, �̄q0|PG−1

0 |φd,mn,md, �q0||ẑ〉
= 2√

4π

[
εd − 1

m

(
1

4
q2

0 + q̄2
0 + �q0 · �̄q0

)] (
1

2

1

2
1

∣∣∣∣ − 1

2
,−1

2
,−1

) (
1

2

1

2
0

∣∣∣∣ − 1

2
,

1

2
, 0

)

×φnn

(∣∣∣∣�q0 + 1

2
�̄q0

∣∣∣∣
) ∑

l=0,2

(l11|md + mn − mp,−mn + mp,md )

(
1

2

1

2
1

∣∣∣∣ − mn,mp,−mn + mp

)

×
(

1

2

1

2
0

∣∣∣∣mn,−mn, 0

)
φd

l

(∣∣∣∣1

2
�q0 + �̄q0

∣∣∣∣
)

Yl,md+mn−mp

(
1

2
�q0 + �̄q0

)
(10)

and

〈�1,2|P |T 〉 = 〈φnn,mp, �̄q0|P |T 〉
=

∑
Jπ M

∑
α′α0

δI0J δl00δs00δj00

(
λ0

1

2
I

∣∣∣∣M − μ′, μ′,M
)(

1
1

2
T0

∣∣∣∣ − 1,
1

2
,−1

2

)
Yλ0,M−μ′ ( ˆ̄q0)

×
∫ ∞

0
q ′2dq ′

∫ 1

−1
dxφnn(π1)

Gα0,α′ (q̄0, q
′, x)

π
l0
1 π

lα′
2

〈
π2, q

′, α′|T 〉
, (11)

with

π1 =
√

q ′2 + 1

4
q̄2

0 + q ′q̄0x,

(12)

π2 =
√

q̄2
0 + 1

4
q ′2 + q ′q̄0x.

Here it was assumed that the relative neutron-deuteron momen-
tum �q0 in the incoming channel is directed along the z axis.
The standard convention for isospin projections was used: − 1

2
for the neutron and + 1

2 for the proton. In Eq. (11) the channels
α0 contain the di-neutron two-nucleon subsystem quantum
numbers with isospin t0 = 1 and its projection νt0 = −1 and
the total isospin T0 of the 3N system with T0 = 1

2 or T0 = 3
2 .

The geometrical coefficient Gα0,α′ (q̄0, q
′, x) stems from the

matrix elements of the permutation operator P [1].

III. RESULTS

In the following we present and compare to the available nd
data the theoretical predictions for the cross sections in elastic
nd scattering and breakup observables assuming different 1S0

nn forces. We take the CD Bonn [3] potential as the NN
interaction and multiply its 1S0 nn component by a factor λ

to generate a number of 1S0 nn forces among which some
provide binding of two neutrons. In Table I we show values of
the nn scattering length ann, the effective range parameter reff,
and the di-neutron binding energy εnn for different λ values.
Changing λ from 0.9 to 1.4 leads to nn 1S0 forces with different,
negative as well as positive, values of the scattering length.
To see whether our conclusions depend on the particular 1S0

nn potential used, and on the method applied to generate the
nn bound state, we also performed calculations with a chiral
NN potential in next-to-leading order (NLO) of the chiral
expansion [5], and by adjusting its 1S0 nn low-energy constants
to obtain a di-neutron with a given binding energy.

A. Total cross section

The results for the nd total cross section are shown in
Fig. 1, and for a number of energies, they are also presented
in Table II. The theoretical predictions obtained with different
nn 1S0 forces are compared to numerous data taken over many
years. Up to about 100 MeV there is nice agreement between
all data and theory based on the CD Bonn potential, especially
with the very precise data of Ref. [10]. When instead of the
original CD Bonn 1S0 nn force the modified interaction with
factor λ = 0.9 is taken, the resulting cross-section values seem
to be not excluded by the total cross-section data. However,
for λ = 1.21, with the di-neutron binding energy εnn =
−144 keV, the predicted total cross section for energies up
to ≈ 10 MeV differs from the data by about three standard
deviations. At higher energies, the calculated total cross section
clearly deviates by more than three standard deviations from
the data. Increasing the factor λ to 1.3 or 1.4 leads to total
cross-section values that strongly overestimate the data.

In Figs. 2 and 3 we compare theoretical predictions
for the total elastic scattering and breakup cross sections,
respectively, with the corresponding data. For the elastic
scattering component of the total cross section (see Fig. 2), the
theoretical predictions with different nn 1S0 forces are close to

TABLE I. The di-neutron binding energy εnn, the nn scattering
length ann, and the effective range parameter reff for different factors
λ by which the nn 1S0 component of the CD Bonn potential was
multiplied.

λ εnn [MeV] ann [fm] reff [fm]

0.9 – −8.25 3.12
1.0 – −18.80 2.82
1.19 −0.099 +21.69 2.39
1.21 −0.144 +18.22 2.35
1.3 −0.441 +10.95 2.20
1.4 −0.939 +7.87 2.07
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H. WITAŁA AND W. GLÖCKLE PHYSICAL REVIEW C 85, 064003 (2012)

10 100
E

n
 [MeV]

100

1000

σ to
t [

m
b]

FIG. 1. (Color online) Total cross section for neutron-deuteron
scattering as a function of neutron laboratory energy. Different curves
show the sensitivity of the total cross section to changes of the nn 1S0

force component. Those changes were induced by multiplying the 1S0

nn matrix element of the CD Bonn potential by the factor λ. The solid
(blue) curve is the full result based on the original CD Bonn potential
(λ = 1.0) and all partial waves with 2N total angular momenta up to
jmax = 3 included. The (black) dotted, (red) short-dashed, (maroon)
long-dashed, and (green) double-dot-dashed curves correspond to
λ = 0.9, 1.21, 1.3, and 1.4, respectively. The (magenta) circles, (red)
x-es, and (maroon) diamonds are nd data of Refs. [10–12].
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FIG. 2. (Color online) Total neutron-deuteron elastic scattering

cross section as a function of neutron laboratory energy. Different
curves show the sensitivity of that cross section to changes of the nn
1S0 force component. For their description see Fig. 1. The (maroon)
diamonds are nd data of Ref. [12].

each other and they agree with the data at energies up to about
En ≈ 20 MeV. However, at energies above En ≈ 20 MeV the
calculated cross-section values for λ > 1 start to deviate from
the standard CD Bonn and λ = 0.9 values and the data seem
to prefer larger values of λ.

TABLE II. The theoretical (evaluated at the nucleon laboratory energy Eth) and experimental (taken at Eexp) nd total cross section. The
theoretical values were obtained with the CD Bonn potential, where the 1S0 nn component was multiplied by the factor λ.

Eth σexp Eexp σλ=0.9
th σλ=1.0

th σλ=1.21
th σλ=1.3

th σλ=1.4
th

[MeV] [mb] [MeV] [mb] [mb] [mb] [mb] [mb]

8.0 1207 ± 13 8.0 [13] 1203.4 1205.6 1258.5 1301.4 1353.5
1213.3 ± 5.58 8.038 [14]

1224 ± 10 8.0 [11]
10.0 1055 ± 10 10.0 [13] 1026.4 1036.1 1089.9 1123.7 1162.5

1051.1 ± 6.9 10.026 [14]
1045.0 ± 3.4127 9.9218 [10]

13.0 867 ± 12 12.995 [13] 837.96 851.76 900.91 926.56 954.72
14.1 803 ± 14 14.1 [15] 783.94 798.25 845.37 868.91 894.52

790 ± 20 14.1 [16]
809 ± 6 14.1 [17]
778 ± 22 14.1 [18]
806 ± 6 14.1 [18]
810 ± 30 14.2 [19]

19.0 627.96 ± 12.16 18.932 [14] 603.47 617.55 655.92 673.20 691.76
632 ± 14 19.01 [20]

26.0 455 ± 12 26.015 [13] 444.41 456.18 485.43 497.83 511.16
451.47 ± 17.72 26.082 [14]

42.5 267.7 ± 3.9 42.5 [21] 259.24 266.35 283.32 290.27 297.88
65.0 166.5 ± 2.9 63.5 [21] 157.24 160.95 170.27 173.96 178.13

161.7 ± 2.8 66.5 [21]
168.27.0 ± 0.48333 65.039 [10]
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FIG. 3. (Color online) Total neutron-deuteron breakup cross
section as a function of neutron laboratory energy. Different curves
show the sensitivity of that cross section to changes of the nn 1S0

force component. For their description see Fig. 1. The (red) crosses,
(green) circles, (blue) squares, and (maroon) diamonds are nd data of
Refs. [12,22–24].

For the total breakup cross section (see Fig. 3) the data
seem to be compatible with all theoretical predictions with
the exception of the data from Ref. [24]. These data taken in
the energy range 12 MeV < En < 22 MeV clearly support the
CD Bonn potential prediction. However, they do not exclude
definitely cross-section values obtained with λ = 1.21.

At low energies the nd interaction is parameterized by
the doublet 2and and quartet 4and scattering lengths. While
2and is strongly influenced by 3NF’s, 4and is practically
insensitive to such interactions [25]. In Table III we show
how these scattering lengths change with the modification of
the 1S0 nn CD Bonn potential. While the doublet scattering
length drastically changes with λ, the quartet scattering length
remains practically constant under such modifications of the
1S0 nn force, remaining close to the experimental value of
4and = (6.35 ± 0.02) fm [26].

TABLE III. The doublet 2and and quartet 4and nd scattering lengths
for the different factors λ by which the nn 1S0 component of the CD
Bonn potential was multiplied. The calculations were done with all
partial waves with the 2N total angular momenta up to jmax = 3
included.

λ 2and [fm] 4and [fm]

0.9 1.51485 6.34602
1.0 0.93174 6.34600
1.21 −0.43567 6.34596
1.3 −1.18887 6.34593
1.4 −2.37605 6.34589
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FIG. 4. (Color online) Neutron-deuteron elastic scattering angu-
lar distributions dσ/d� at a number of incoming neutron laboratory
energies. Different curves show the sensitivity to changes of the nn
1S0 force component. For their description see Fig. 1. At (a)–(c)
En = 8, 10, and 14 MeV the (magenta) circles and (red) x-es are nd
data of Refs. [11,27]. At En = 14 MeV the (maroon) stars, (green)
triangle-down, and (black) triangle-up are nd data of Refs. [12,28,29].
At (d) En = 65 MeV the (blue) circles are En = 66 MeV nd data of
Ref. [30].

B. Elastic neutron-deuteron scattering

The nd elastic scattering angular distributions are shown in
Fig. 4. At c.m. scattering angles 
c.m. > 45◦ different theories
practically overlap and agree with the data for all four energies
shown. Such a behavior is not surprising because at backward
angles the exchange term PG−1

0 , given by the deuteron wave
function, dominates the elastic scattering transition amplitude.
The properties of the nn 1S0 interaction should play a decisive
role at forward angles. Indeed, at angles below 
c.m. < 45◦
differences between theoretical predictions based on various
nn 1S0 forces become notice and they increase with decreasing
angle. Unfortunately, only at En = 14.1 MeV forward angles
are nd elastic scattering cross-section data available, with five
data points falling into that region of interest. While the two
data points at the smallest angles support the CD Bonn cross
section, the three at larger angles prefer increased values of λ.
Precise nd elastic scattering data at forward angles are required
to decide whether or not a stronger nn 1S0 force is allowed.

C. Breakup

Among the numerous kinematically complete nd breakup
configurations, the largest discrepancies between the theory
and data have been found for the nn QFS and SST geometries.
For these configurations the theoretical cross section is
insensitive to the underlying dynamics and remains unchanged
when the different realistic NN potentials are augmented with
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FIG. 5. (Color online) The cross section d5σ/d�1d�2dS as a
function of the S-curve arc-length in the Elab

n = 26 MeV nd breakup
reaction for the (a) QFS nn and (b) QFS np kinematically complete
configurations of Ref. [31]. For description of curves see Fig. 1.

available 3NF’s. In addition, if instead of the nn QFS the
theory is compared to the only available np QFS data set [31]
a nice agreement is found. The QFS and SST configurations
are dominated by the 1S0 and 3S1 NN force components [6],
which practically saturate the QFS and SST cross section at
low energies [6,7]. This observation would suggest that the
nn 1S0 force is probably responsible for the large discrepancy
between the data and theory.

For the nn and np QFS configurations we show in Fig. 5
the sensitivity to the underlying nn 1S0 force. As expected,
changes of that force cause drastic modifications of the nn
QFS cross section, but leaving np QFS practically unaffected.
As was shown in Ref. [7], such drastic modifications of the nn
QFS cross section are caused by changes of the effective range
parameter, which in turn are induced by the factor λ. Changes
in the nn scattering length practically leave the nn QFS cross
section unaffected.

In contrast to the nn QFS, the SST geometry is more stable
against changes of the 1S0 nn force. As shown in Fig. 6,
changing the factor λ does not bring the theory closer to the
data. While λ = 0.9 provides smaller SST cross-section values
than the CD Bonn potential, using λ > 1 and increasing it so
that the di-neutron is formed leads to cross-section values
which again are below the CD Bonn potential predictions.
Therefore, by modifying the 1S0 nn force it is not possible
to explain the large discrepancy for the SST. Because it is
improbable that the deuteron properties are so badly known
that the 3S1–3D1 NN force component would require a
modification, the source for that disagreement must be sought
elsewhere. One possibility could be the indirect influence of the
di-neutron on some breakup configurations by contributing in
specific regions of the phase space to the breakup background.

For the 1S0 nn force that allows the di-neutron to exist, the nn
scattering length becomes positive. This should have a drastic
influence on the nn final-state interaction (FSI) in nd breakup,
where the two outgoing neutrons with equal momenta strongly
interact in the 1S0 state. We show in Fig. 7 the changes in the FSI
peak when the nn scattering length ann changes from negative
to positive values. For the same magnitude of ann, the nn FSI
cross section is strongly reduced for the positive sign of ann.
The question arises whether or not the existing nn FSI cross-
section data can be understood if the di-neutron were to exist.
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FIG. 6. (Color online) The cross section d5σ/d�1d�2dS as a
function of the S-curve arc-length in the Elab

n = 13 MeV nd breakup
reaction 2H (n, nn)1H for the SST configuration with the laboratory
angles of the two detected neutrons θ1 = θ2 = 52.8◦ and φ12 = 180◦.
For description of curves see Fig. 1. The (magenta) solid dots and
(red) x-ses are nd data of Refs. [32–34].

To answer this question, we show in Fig. 8 cross-section
results for four kinematically complete nn FSI configurations
for which data exist and which were analyzed by the authors
of Ref. [35] with the aim of extracting the neutron-neutron
scattering length. Consistent values for ann have been found
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FIG. 7. (Color online) The cross section d5σ/d�1d�2dS for the
Elab

n = 13 MeV nd breakup reaction 2H (n, n1H )n as a function of
the S-curve length for the nn FSI configuration. For description of
curves see Fig. 1.
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FIG. 8. (Color online) The cross section d5σ/d�1d�2dS as a
function of the S-curve arc-length in the Elab

n = 13 MeV nd breakup
reaction 2H (n, nn)1H for four FSI nn geometries. Different curves
show the sensitivity of the cross-section values to the changes of the
nn 1S0 force component. Those changes were induced for the (black)
dotted, (red) dashed, and (blue) solid curves by multiplying the 1S0

nn matrix element of the CD Bonn potential by the factor λ. The
dotted (black) curves are the full result based on the original CD
Bonn potential (λ = 1.0) and all partial waves with 2N total angular
momenta up to jmax = 3 included. The (red) dashed and (blue) solid
curves correspond to λ = 1.19 and 1.21, respectively. The (magenta)
dash-dotted and (green) double-dash-dotted curves show results of
Faddeev calculations performed with the chiral NLO potential and all
partial waves with 2N total angular momenta up to jmax = 3 included.
They differ in the nn 1S0 force which for the (magenta) dash-dotted
curve was obtained with the constants C1(1S0) = 1.0 and C2(1S0) =
1.0 (original NLO potential, see text for explanation) leading to ann =
−17.6 fm and reff = 2.75 fm. For the (green) double-dash-dotted
curve we use C1(1S0) = 1.50 and C2(1S0) = 1.29415, resulting in
ann = +17.5 fm and reff = 2.41 fm.

in each of those four configurations with the average value
of ann = 18.7 ± 0.7 fm. As can be seen in Fig. 8, again
changing ann to positive values, reduces significantly the nn
FSI cross section. The comparison of the cross-section results
obtained with λ = 1.19 and λ = 1.21 to the CD Bonn potential
values clearly demonstrates that no theoretical analysis of
the data of Ref. [35], using positive values of ann, would
provide consistent values for the nn scattering length in those
four geometries. While the analysis of the θ1 = θ2 = 43◦
configuration would probably provide ann = +21.69 fm, a
similar analysis of the configurations at smaller θ1 = θ2 would
provide clearly larger positive values for the nn scattering
length.

In Fig. 9 we show three additional FSI configurations for
which data are available. For the 2H (n, nn)1H kinematically
complete breakup, the data of the authors of Ref. [33] support
the CD Bonn potential cross-section predictions. Each of the
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FIG. 9. (Color online) The cross section d5σ/d�1d�2dS as a
function of the S-curve arc-length at Elab

n = 13 MeV for the (a), (c)
2H (n, nn)1H and (b) 2H (n, n1H )n breakup reaction and three FSI
geometries. Different curves demonstrate the sensitivity of that cross
section to changes of the nn 1S0 force component. For their description
see Fig. 8.

two configurations given in Fig. 9 contains two np FSI peaks.
The theoretical analysis of these np FSI peaks, if performed
with positive values of ann, would provide different values for
the neutron-proton scattering length anp, which, in addition,
would be inconsistent with the well-known experimental value
for anp.

In Fig. 9 we also show the 2H (n, n1H )n breakup configura-
tion for which data have been taken and analyzed in Ref. [36].
This geometry contains both np and nn FSI peaks. Again, the
analysis of the np FSI peak, if performed with positive ann,
would provide too large magnitudes for anp.

To see how our conclusions depend on the NN potential
used and on the method applied to modify the 1S0 nn force,
we present in Fig. 8 also cross-section values obtained with
the NLO chiral perturbation theory potential of the authors
of Ref. [5], including all np and nn forces up to the total
angular momentum jmax = 3 in the two-nucleon subsystem.
The 1S0 component of that interaction is composed of the
one- and two-pion exchange terms and contact interactions
parameterized by two parameters C̃1S0 and C1S0

V (1S0) = C̃1S0 + C1S0 (p2 + p′2). (13)

The standard values are C̃1S0 = −0.1557374 × 104 GeV2 and
C1S0 = 1.5075220 × 104 GeV4 for the cutoff combinations
{�, �̃} = {450 MeV, 500 MeV} [5]. Changes of the nn 1S0

interaction can be induced by multiplying C̃1S0 with a factor
C2(1S0) and C1S0 with a factor C1(1S0). In Fig. 8 we present
two predictions based on the NLO potential with negative
[ann = −17.6 fm—the (magenta) dash-dotted curve] and
positive [ann = +17.5 fm—the (green) double-dash-dotted
curve] values of the neutron-neutron scattering length. By
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Fig. 1.

comparing them with different CD Bonn potential predictions
and taking into account the differences between their ann

values, it becomes clear that both the potentials and methods
used for changing the 1S0 nn interaction lead to the same
conclusions.

The FSI region can also be investigated in kinematically
incomplete breakup measurement, in which the energy spec-
trum of the outgoing protons is measured at a given laboratory
angle. In Fig. 10 we show modifications of the proton spectrum
for 14 MeV nd breakup at a proton laboratory angle of θ = 4◦.
Here, changing the sign of ann leads to the disappearance
of the FSI peak. In addition, at lower proton energies, the
modification of 1S0 nn force by factors λ > 1 significantly
increases the breakup cross section.

The analysis of existing kinematically incomplete nd
breakup spectra performed by the authors of Refs. [37,38]
pointed to inconsistencies in the experimental data and
revealed unexplained differences of more than 25% in regions
of the proton energy spectrum where large numbers of different
three-nucleon configurations contribute to the cross section.
The question arises whether the existence of the di-neutron and
the corresponding modification of the 1S0 nn force can account
for this observation and whether the strong FSI enhancement
seen in the experimental proton spectrum provides evidence
for the existence of the di-neutron. To answer this question, a
theoretical Monte Carlo analysis of the experimental spectra
obtained at different proton production angles, which would
provide the angular distribution for the di-neutron cross
section, is required. The resulting angular distribution should
then be compared to the theoretical angular distribution for the
n + 2H →1H + di-neutron transition. However, in view of the
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FIG. 11. (Color online) The angular distributions dσ/d� for
the 2H (n,1H ) di-neutron reaction at a number of incoming neutron
laboratory energies. The (red) short-dashed, (maroon) long-dashed,
and (green) dashed-double-dotted curves correspond to the factor
λ = 1.21, 1.3, and 1.4, respectively.

results presented above for the kinematically complete nn FSI
configurations, it seems highly unlikely that the analysis of
kinematically incomplete spectra would provide a clear signal
for the existence of the di-neutron.

D. Transition from the neutron-deuteron to the
proton–di-neutron channel

For values of λ = 1.21, 1.3, and 1.4, which allow for the
bound 1S0 state of two neutrons, the transition to the proton–
di-neutron channel is possible. In Fig. 11 we show angular
distributions for the n + d → p + di-neutron reaction. The
cross section for this reaction is an order of magnitude smaller
than that for nd elastic scattering, with the largest cross section
at backward c.m. angles for low incoming neutron energies.

In view of the discrepancies found in the nd breakup
reaction, especially in the SST configuration, it would be inter-
esting to study in which phase-space region the hypothetical
di-neutron state could mostly affect the breakup configurations
by contributing in an uncontrolled manner to the background.
To answer this question, again Monte Carlo simulations of the
specific experimental conditions are required.

IV. SUMMARY AND CONCLUSION

We investigate to what extent available nd data allow for
a hypothetical 1S0 bound state of two neutrons and if such
a di-neutron can help explain the discrepancies between the
theory and data found in some kinematically complete nd
breakup configurations. To this aim we extend our numerical
momentum-space treatment of the 3N Faddeev equation to
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include, in addition to the deuteron also the 1S0 bound state,
the di-neutron. Solutions of this equation with modified nn 1S0

CD Bonn forces provide predictions for the cross section in
different nd reactions.

We find that the available nd data for the nd scattering
total cross section are incompatible with the existence of a
di-neutron with binding energy |εnn| > 100 keV. The data
for the total elastic scattering and breakup cross sections do
not exclude such a possibility. Also, data for the nd elastic
scattering angular distribution cannot decisively exclude such
a state. However, in this case, precise data at forward angles,
if available, could provide more constraints on the existence
of the di-neutron.

The modifications of the 1S0 nn force component cannot
provide an explanation for the large discrepancy between the
theory and data for the SST geometry in the nd breakup
reaction. Allowing for the di-neutron provides even smaller
SST cross-section values, thus increasing that discrepancy.

The transition from negative to positive nn scattering
lengths leads to significant modifications of the FSI cross

section. In the outgoing proton spectrum of the kinematically
incomplete nd breakup positive scattering lengths cause
a strong suppressing of the FSI peak at maximal proton
energies. Careful Monte Carlo theoretical analyses of existing
proton energy spectra are required to find out whether or
not those spectra provide a clear signal for the existence
of the di-neutron. However, kinematically complete FSI
configurations for which data exist disallow positive values
for ann.
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