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Nuclear matter with chiral forces in Brueckner-Hartree-Fock approximation
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We compute the binding energy of symmetric nuclear matter in the Brueckner-Hartree-Fock approach using
chiral two-nucleon and three-nucleon forces. We find strong overbinding, which cannot be remedied by the
current version of three-body forces.
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I. INTRODUCTION

The idealized system of symmetric nuclear matter is a
traditional benchmark environment for theoretical many-body
methods [1], apart from its practical interest for the physics
of heavy-ion collisions and stellar structure, for example. In
particular, a realistic reproduction of the empirical saturation
point of nuclear matter is already a nontrivial task [2,3]. It is
now known that any realistic many-body approach requires
as input two-nucleon forces (2NF) supplemented by three-
nucleon forces (3NF) in order to achieve this goal.

While several high-quality nucleon-nucleon (NN) poten-
tials are available nowadays, the development of consistent
microscopic 3NF is a matter of current research. Traditionally
the meson-exchange picture [4] is used to derive or motivate
NN potentials and also 3NF. A new development is the
derivation of 2NF and 3NF in a low-momentum expansion
based on chiral symmetry [5]. So far 2NF have been derived
up to fourth order in that manner [6,7], termed N3LO, which
allows rather precise fits of the NN phase shifts, at least for
not too large scattering energies below about 300 MeV. Chiral
3NF are currently available at N2LO level [8,9], since going to
the next order represents still a formidable technical challenge.

It is thus of interest to examine the predictions of the current
2NF (N3LO) + 3NF (N2LO) interaction in combination with
a many-body method for dense nuclear matter. In this article we
perform this study within the Brueckner-Hartree-Fock (BHF)
approach to nuclear matter [10,11].

Nuclear and neutron matter have recently also been studied
in a variational method [12], employing the same chiral 3NF,
but in combination with the empirical Argonne V ′

8 potential
instead of the consistent chiral 2NF. Few-body calculations of
3H and 4He nuclei with the same 2NF (N3LO) + 3NF (N2LO)
chiral interaction have been carried out in [9,13] and with the
2NF (V18) + 3NF (N2LO) interaction in [14].

We remark finally that sometimes the chiral forces are
further transformed into effective “low-momentum” interac-
tions [15–17], which simplifies related many- and few-body
calculations. This procedure introduces additional assump-
tions and parameters, and we will make some comparison
at the end.

We now briefly review the formalism of treating 3NF within
the BHF approach, specify the N2LO 3NF within this method,
and then present our results.

II. FORMALISM

We use the N3LO 2NF of Ref. [6], which is in practice
given in terms of the usual operator structure of a NN potential
in momentum space and can be employed straightforwardly
in the Bethe-Goldstone equation (5). It involves a chiral cutoff
� = 500 MeV, the same as also applied in the N2LO 3NF
later.

At the present state of the art of the BHF approach, the
3NF is reduced to an effective density-dependent local 2NF
in coordinate space by averaging over the third nucleon in
the medium [18–27], taking account of the NN in-medium
correlations by means of the BHF NN correlation function g:

V12(r) =
∑
σ3,τ3

∑
r3

V132 (1)

with
∑
r3

= ρ

∫
d3r3 g2

xg
2
y,

∫
d3r3 = 2π

r

∫ ∞

0
dx x

∫ r+x

|r−x|
dy y,

(2)

and r = r2 − r1, x = r3 − r1, y = r3 − r2. Here the correla-
tion function g is related to the BHF defect function η,

gr = 1 − η(r), η(r) = φLSJ (kr) − uLSJ (k, r), (3)

with the (un)correlated wave functions (φ)u, where in practice
only the s waves are considered and a suitable average in
momentum space is performed [23–25].

The result is an effective local NN potential with the
operator structure

V12(r)=VI (r) + (σ 1 · σ 2)VS(r) + (τ 1 · τ 2)VN (r)

+ (τ 1 · τ 2)(σ 1 · σ 2)VC(r)

+ S12(r̂)[(τ 1 · τ 2)VT (r) + VQ(r)], (4)

where S12(r̂) = 3(σ 1 · r̂)(σ 2 · r̂) − σ 1 · σ 2 is the tensor oper-
ator and the components VO, O = I, S,N,C, T ,Q depend
on the nucleon density ρ = 2k3

F/3π2. They are added to the
bare potential V2NF in the Bethe-Goldstone equation for the G

matrix,

G[E; ρ] = V +
∑

k1,k2>kF

V
|k1k2〉〈k1k2|

E − e(k1) − e(k2) + iε
G[E; ρ] (5)
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with V = V2NF + V3NF, and are recalculated together with the
single-particle energy e(k) = k2/2mN + U (k),

U (k; ρ) = Re
∑
k′�kF

〈kk′|G[e(k) + e(k′); ρ]|kk′〉A, (6)

and the defect functions in every BHF iteration step until
convergence is reached. In the BHF approximation the energy
per nucleon is then given by

B

A
= 3

5

k2
F

2mN

+ 1

2ρ
Re

∑
k1,k2�kF

〈k1k2|G[e(k1) + e(k2); ρ]|k1k2〉A.

(7)

We thus use the standard two-hole line (BHF) approximation
with the continuous choice of single-particle energies. It has
been confirmed that this is a reliable procedure within the hole-
line expansion [11], since the three-hole line contributions have
been shown to be quite small [28].

The 3NF averaging procedure avoids the difficult problem
of solving the relevant Faddeev equation involving 3NF. It
allows us to include the direct and some single-exchange 3NF
diagrams in the ladder summation of the BHF approximation,
but neglects in particular the double-exchange 3NF diagrams
[19–21,23]. The individual sizes of these missing contributions
have been estimated to be of the order of 20% [20]. This
approximation has been extensively used and considered
reliable in the past. Going beyond it will require a consistent
inclusion of 3NF into the hole-line expansion, a considerable
effort which might be achieved in the future.

Within a meson-exchange approach the different com-
ponents VO(r) of the effective 3NF, Eq. (4), are specified
in detail in Ref. [26]. The ππ contribution, which appears
in equivalent form in the chiral 3NF, reads explicitly in
the standard Tucson-Melbourne (TM) notation involving the
parameters a, b, c [20,29] (in the following m denotes the pion
mass)

V ππ
O (r) = m

(
gπNNm

8πmN

)2 1

3

∑
r3

×
[

(a − 2c)zrGxGy + czr (FxGy + FyGx)

+ b

3
(YxYy + 2PrTxTy)

]
, (O = C)

×
[

(a − 2c)QGxGy + cQ(FxGy + FyGx)

+ b

3
(PxYxTy +PyYyTx +PTxTy)

]
, (O = T ), (8)

while for the N2LO contact-term contributions [12,14] we find
the effective averaged potentials

V D
O (r) = cD

(
m2

4πF 2
π

)2
m2

�χ

gA

8

1

3

∑
r3

× [YxZy + YyZx], (O = C)

× [PyTxZy + PxTyZx], (O = T ) (9)

and

V E
N (r) = cE

(
m2

4πF 2
π

)2
m2

�χ

∑
r3

ZxZy (10)

with the following definitions and abbreviations:

zr ≡ x̂ · ŷ = x2 + y2 − r2

2xy
,

zx = r2 + y2 − x2

2ry
, zy = r2 + x2 − y2

2rx
, (11)

Pr ≡ P2(zr ) = 3z2
r − 1

2
,

Q = −zr + 3zxzy

2
, P = 3zrQ − Px − Py. (12)

The various form factor functions F,G, Y, T , Z are defined as

Zr = Z0(r), (13a)

Fr = − 1

m

∂

∂r
Z0(r), (13b)

Gr = − 1

m

∂

∂r
Z1(r), (13c)

Yr = 1

m2

(
∂2

∂r2
+ 2

r

∂

∂r

)
Z1(r), (13d)

Tr = 1

m2

(
∂2

∂r2
− 1

r

∂

∂r

)
Z1(r), (13e)

based on the propagator functions Z0 and Z1,

Zn(r) = 4π

m(3−2n)

∫
d3q

(2π )3
eiq·r e−q4/�4

(q2 + m2)n
(14)

= 4π

m(3−2n)

1

2π2

∫
dq q2j0(qr)

e−q4/�4

(q2 + m2)n
, (15)

regulated with the quartic exponential cutoff employed in
Refs. [9,12–14]. Figure 1 illustrates the different form factor
functions. One notes in particular the small magnitude of
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FIG. 1. (Color online) Different form factors, Eq. (13).
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the function G, which implies the minor importance of the
parameter a (and c) in Eq. (8). Z and Y probe dominantly the
short-range part of the nuclear correlations.

The 3NF at N2LO level produces therefore effective con-
tributions in the O = N,C, T channels. A possible ambiguity
regarding the N channel (∼ τ 1 · τ 2) contribution stemming
from the E term, Eq. (10), has been discussed in detail in
Ref. [12], but this is the operator structure that has also been
selected in the few-body calculations of 3H and 4He nuclei [9]
that are used to fix some parameters of the model.

In fact the various parameters of the N2LO 3NF are
chosen as in [9,12–14], namely we use m = 138 MeV, Fπ =
92.4 MeV, � = 500 MeV, �χ = 700 MeV, gA = 1.29, and
the standard ππ 3NF parameters c1 = −0.81 GeV−1 and
c3 = −3.2 GeV−1 compatible with the N3LO 2NF [5,9]. This
yields

gπNN = gAmN

Fπ

≈ 13.10 (16)

according to the Goldberger-Treiman relation, and [9]

a − 2c = 4m2

F 2
π

c1m ≈ −1.00, (17)

b = 2

F 2
π

c3m
3 ≈ −1.97, (18)

c = 0, (19)

which is close to the most recent phenomenological meson-
exchange parametrization TM99′ [29], a = −1.12, b =
−2.80, c = 0 (with different regularization, however). The
choice of the contact term parameters cD and cE is discussed
in the following.

III. RESULTS

In order to illustrate qualitatively the effect of the different
components VO(r) of the averaged 3NF, Eq. (4), we start
by setting cD = cE = 1 and c1, c3 as specified above, and
display the effective potentials obtained at normal density,
ρ = 0.17 fm−3, in Fig. 2. For this choice of parameters all
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FIG. 2. (Color online) Different components, Eq. (4), of the
effective 3NF with cD = cE = 1 at normal density.
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FIG. 3. (Color online) Binding energy of symmetric nuclear
matter at normal density as a function of cD with cE = 0 and vice
versa.

components turn out to have an attractive effect in symmetric
matter, consistent with the nuclear matter results of Ref. [12]:
One observes fairly attractive ππ parts V ππ

C,T and also V E
N

corresponds to substantial attraction in symmetric matter,
while the V D

C,T components are also very weakly attractive.
The qualitative reason for the different magnitudes of the D

and E contributions is essentially the global relative factor
gA/8 ≈ 1/6 in their definition, Eqs. (9), (10).

Since with the N3LO 2NF potential alone symmetric
matter at high density is strongly overbound in the BHF
approximation (see the solid curve in Fig. 4), it is obvious
from this result that at least one of the parameters cD or cE

has to have a large negative value in order to potentially create
the required repulsive effect of the 3NF. We examine this
hypothesis in Fig. 3, where the value of the BHF binding
energy of symmetric nuclear matter at normal density is
shown as a function of cD for cE = 0 or vice versa. It is,
however, obvious from this figure that even for fairly large
values of the parameters, a realistic value B/A ≈ −15 MeV
cannot be reached. The main reason is the very attractive ππ

force, which causes (with parameters uniquely fixed by the
N3LO 2NF) additional binding of the order of 10 MeV at
normal density. This in turn is due to the small value of the
chiral momentum-space cutoff, which extends the attraction in
coordinate space (Fig. 2) up to much larger values (r � 2 fm)
than is the case with typical meson-exchange potentials which
operate with larger cutoffs; see, e.g., Fig. 1 of [27]. The
iteration in the BHF ladder of the averaged ππ 3NF, which
has the operator structure of a one-pion-exchange potential,
leads then to a fairly strong attraction in symmetric matter.

This is confirmed by Fig. 4 that shows the saturation curves
of symmetric nuclear matter up to a density of ρ = 0.5 fm−3,
which is perhaps at the limit of validity of the chiral N3LO
potential, which is more restricted in energy/density than
the traditional meson-exchange/phenomenological potentials:
The Fermi momentum at this density is about 2 fm−1, similar to
the relative momenta for NN scattering at a laboratory energy
of 350 MeV. We compare different representative choices of cD
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FIG. 4. (Color online) Saturation curves of symmetric nuclear
matter with different choices of cD and cE . The saturation point
without 3NF is indicated on the solid curve.

and cE , namely (i) cD = cE = 0 (red dashed): using only the
ππ part of the 3NF; (ii) cD = 1, cE = −0.029 (green dotted):
the choice made in Ref. [9] in order to fit the binding energies
of 3H and 4He in a no-core shell model; (iii) cD = −1, cE =
−0.331 (blue dash-dotted): an alternative choice made in
Refs. [9,13] for the same purpose; (iv) cD = cE = −2 (purple
dash-dot-dotted): a supposedly rather repulsive contribution
to the 3NF, according to the previous considerations. From
the results (in all cases the total 3NF contribution is attractive
and no saturation is obtained at all) one can conclude that in
the present approximation the main effect of chiral 3NF is
provided by the attractive ππ part, which parameters are fixed
already at the two-body level. For no choice of the independent
additional parameters cD, cE satisfactory saturation properties
can be obtained in the BHF approximation.

The dominance of the attractive ππ part has also been
pointed out in Refs. [9,12,14]. We briefly comment on the
related nuclear matter calculations of Refs. [12] and [17].
Both involve exactly the same N2LO 3NF as studied in our
work. In the FHNC calculation of [12] this force is combined
with the Argonne V ′

8 2NF, breaking the consistency of the
chiral environment. Nevertheless, also with this combination
no satisfactory saturation properties of nuclear matter could
be obtained.

In [16] both 2NF and 3NF are further “renormalization-
group” transformed to low-momentum forces, effectively re-
moving the short-distance part of the interactions, and allowing
a perturbative treatment up to second order. As a consequence
the 2NF becomes highly attractive (symmetric matter does
not saturate any more) and a large and repulsive 3NF is
required in order to restore saturation, which then depends
on the various regularization parameters of the model. In this
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FIG. 5. (Color online) Energy of pure neutron matter in different
approximations. The markers represent results of Ref. [16].

sense this approach is counterintuitive to the meson-exchange
picture; see also the extended discussion in [15] and [1].

For completeness we show in Fig. 5 the binding energy of
pure neutron matter in our approach. As has been discussed
in great detail in Ref. [12], in this environment the D and E

contact contributions vanish in the case of the unregularized
model with very large cutoff �; however, in the case of
finite cutoff their contributions can be substantial. This feature
may presently be regarded as a conceptual problem of the
regularized theory [30]. We therefore present in the figure
results with different choices of parameters: The solid black
curve shows the N2LO 2NF result without 3NF contribution,
and the dashed red curve includes 3NF without contact term
contributions, i.e., cD = cE = 0. In neutron matter the effect
of the ππ 3NF is rather small and repulsive, due to the
missing 3SD1 tensor force attraction. The BHF result happens
to be very close (within 0.5 MeV) to the comparable one of
the second-order perturbative calculation with low-momentum
interactions of Ref. [16] (markers), even though the in-medium
averaging procedure for the 3NF in the latter case allows us to
include also the double-exchange diagrams in contrast to the
BHF procedure. The effect of the contact terms is demonstrated
by the gray dash-dotted (cD = 1, cE = 0) and turquoise
dash-dot-dotted (cD = 0, cE = 1) curves. In particular the E

contribution is thus potentially substantial [12] and could be
used to adjust the neutron matter binding energy. However,
in view of the comments above and the results obtained for
symmetric matter, this would not be very meaningful.

IV. SUMMARY

In conclusion, symmetric nuclear matter computed using
the N3LO 2NF only is strongly overbound in the BHF
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approach and not only [17]. Adding the ππ part of the N2LO
3NF adds even further attraction. The D,E-contact terms in
the present N2LO version of chiral 3NF are too weak and not
able to reverse this situation, even deviating substantially from
the typical values of the parameters cD and cE obtained from
fits to properties of light nuclei.

This result is not surprising: It is well known that in
the meson-exchange approach to 3NF heavier mesons play
a nonnegligible role. In particular, πρ and ρρ contributions
[21,26] modify strongly (decrease the attraction) the pure ππ

part, but only adding scalar contributions [23,24,26,27] allows
providing the necessary repulsion required for the saturation
mechanism. In the present version of chiral 3NF, these effects
of heavier mesons are only partially included in the very
rudimentary form of the D,E contact terms. It remains to
be seen whether chiral 3NF of higher order are able to provide
the missing contributions. Any conclusion based on the current
N2LO version of chiral 3NF appears premature.

In the future, apart from developing further the chiral 3NF,
it is desirable to set up in particular a consistent treatment
of 3NF within the hole-line expansion. However, we do not
expect qualitative changes of the results presented here, since
the (too) strong attraction of the meson-exchange ππ 3NF has
been well known since its invention.
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and P. Granǵe, Phys. Lett. B 92, 46 (1980).
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