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A complete, rigorous relativistic field-theory formulation of the nucleon-nucleon (NN) bremsstrahlung reaction
is presented. The resulting amplitude is analytic, Lorentz covariant and unitary as a matter of course and it is
gauge invariant; i.e., it satisfies a generalized Ward-Takahashi identity. The novel feature of this approach is
the consistent microscopic implementation of local gauge invariance across all interaction mechanisms of the
hadronic systems, thus serving as a constraint for all subprocesses. The formalism is quite readily adapted to
approximations and thus can be applied even in cases where the microscopic dynamical structure of the underlying
interacting hadronic systems is either not known in detail or too complex to be treated in detail. We point out how
the interaction currents resulting from the photon being attached to nucleon-nucleon-meson vertices can be treated
by phenomenological four-point contact currents that preserve gauge invariance. In an advance application of
the present formalism [Nakayama and Haberzettl, Phys. Rev. C 80, 051001(R) (2009)], such interaction currents
were found to contribute significantly in explaining experimental data. In addition, we provide a scheme that
permits—through an introduction of phenomenological five-point contact currents—the approximate treatment
of current contributions resulting from pieces of the NN interaction that cannot be incorporated exactly. In each
case, the approximation procedure ensures gauge invariance of the entire bremsstrahlung amplitude. We also
discuss the necessary modifications when taking into account baryonic states other than the nucleon N ; in detail,
we consider the �(1232) resonance by incorporating the couplings of the NN to the N� and �� systems and
the γN → � transitions.
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I. INTRODUCTION

The two-nucleon system is one of the simplest strongly
interacting systems. The study of the nucleon-nucleon (NN)
bremsstrahlung reaction, therefore, offers one of the most
fundamental and direct avenues for understanding how the
electromagnetic field interacts with strongly interacting
hadronic systems. In the past, the NN bremsstrahlung reaction
had been applied extensively mainly to learn about off-shell
properties of the NN interaction. It should be clear, however,
that off-shell effects are model dependent and cannot be
measured, and therefore they are meaningless quantities for
the purpose of comparison.

Even though the original motivation for investigating the
NN bremsstrahlung reaction has fallen away, understanding
the dynamics of such a fundamental process, nevertheless, is
of great importance from a general theoretical perspective.
This is highlighted by the fact that none of the past models of
NN bremsstrahlung could describe the high-precision proton-
proton bremsstrahlung data from the Kernfysisch Versneller
Instituut (KVI) [1,2] for coplanar geometries involving small
proton scattering angles. This was generally considered all the
more surprising since the irrelevance of off-shell effects was
taken as implicit proof positive that the coupling of a photon
to the interacting two-nucleon system was under control. The
discrepancy between the KVI data and the existing theoretical
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models, therefore, was quite unexpected. This longstanding
discrepancy of nearly a decade was resolved recently by the
present authors [3], who put forward a novel approach to the
NN bremsstrahlung reaction that takes into account details of
the photon coupling to interacting systems that had previously
been neglected. The study, in particular, revealed the impor-
tance of accounting for the corresponding interaction currents
in a manner consistent with the gauge-invariance constraint.

Another recent bremsstrahlung experiment concerns the
hard bremsstrahlung process p + p → pp(1S0) + γ measured
for the first time by the COSY-ANKE Collaboration [4]. In
the absence of free systems of bound diprotons, this process
was considered as an alternative to the γ + pp(1S0) → p + p

process, which complements the photodisintegration of the
deuteron. Here, the hardness of the bremsstrahlung is due to
the fact that the invariant mass of the two protons in the final
state is constrained experimentally to be less than 3 MeV above
its minimum value of twice the proton mass. In this kinematic
regime, the two protons in the final state are practically
confined to the 1S0 state and most of the available energy
is carried by the bremsstrahlung. Therefore, this kinematic
regime is as far away from the soft-photon limit as possible.
The proton-proton (pp) hard bremsstrahlung reaction has been
also measured at CELSIUS-Uppsala [5]. In spite of extensive
studies of the NN bremsstrahlung reaction in the past, no
dedicated experiments of pp hard bremsstrahlung with the
diproton in the final state had been available until these recent
measurements [4,5]. Also, apart from the very recent study of
Ref. [6], theoretical investigation of the p + p → pp(1S0) + γ

reaction has been virtually nonexistent so far.

064001-10556-2813/2012/85(6)/064001(14) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevC.80.051001
http://dx.doi.org/10.1103/PhysRevC.85.064001


H. HABERZETTL AND K. NAKAYAMA PHYSICAL REVIEW C 85, 064001 (2012)

Apart from the intrinsic interest in the elementary NN
bremsstrahlung process, the investigation of this reaction has
also an immediate impact in the area of heavy-ion physics.
Indeed, dilepton production in heavy-ion collisions is used
intensively as a probe of hadron dynamics in the nuclear
medium. Due to their weak interaction with hadrons, dileptons
are well suited to probe the hadron dynamics in the dense
region of heavy-ion collisions. The HADES Collaboration,
in particular, is currently engaged actively in the study of
dielectron production in heavy-ion as well as in elementary
NN collisions in the 1–2 GeV/u energy domain [7]. In order
to interpret the experimental data in heavy-ion collisions, it
is imperative to understand the underlying basic elementary
processes. Unfortunately, these basic elementary processes
are not yet fully under control. In fact, there are a number
of theoretical efforts to understand these basic reaction
processes [8,9]. According to these studies, among the various
competing mechanisms, the NN bremsstrahlung is one of
the major mechanisms for producing dielectrons in these
reactions.

On the theoretical side, the majority of the existing models
of NN bremsstrahlung are potential models. They have been
applied to the analyses of experimental data (mostly in
coplanar geometries) obtained up until the early 2000s, before
the more recent experiments mentioned above were performed.
Among those models, the most recent and sophisticated ones
that have been used in the analysis of the high-precision KVI
data [1,2] are the microscopic meson-exchange models of
Refs. [10–12]. There were also a number of other microscopic
model calculations made throughout the 1990s [13–21], which
are dynamically similar to those of Refs. [10–12], addressing
a variety of issues in the NN bremsstrahlung process. All
these models satisfy current conservation (at least in the
soft-photon approximation),1 but none of them obey the more
general gauge-invariance condition in terms of the generalized
Ward-Takahashi identity (WTI) employed in Ref. [3] (and
explained in more detail in the present work). Quite recently, it
was shown formally [22] how to maintain gauge invariance in a
theory of undressed nonrelativistic nucleons if one introduces a
finite cutoff in a reference theory that is presumed to be already
gauge invariant. When applied to effective field theories, in
particular, this implies that gauge invariance can be maintained
in such theories order by order in the expansion.

The purpose of the present paper is to present the complete,
rigorous covariant formulation of the NN bremsstrahlung
reaction whose successful advance application was reported
in Ref. [3]. The approach is based on a relativistic field
theory in which the photon is coupled in all possible ways
to the underlying two-nucleon T matrix obtained from the

1The current conservation of earlier models usually comes about
because, for pp bremsstrahlung, there are no exchange currents for
(uncharged) mesons and the four-point contact current discussed in
Ref. [3] is absent for phenomenological meson-nucleon-nucleon form
factors that depend only on the momentum of the exchanged meson.
For pn bremsstrahlung (see, e.g., Ref. [13]) the meson-exchange
currents are taken into account via Siegert’s theorem, which preserves
current conservation in the soft-photon limit.

corresponding covariant Bethe-Salpeter-type NN scattering
equation. This formulation follows the basic procedures
of the field-theoretical approach of Haberzettl [23] devel-
oped for pion photoproduction off the nucleon. The result-
ing bremsstrahlung amplitude satisfies analyticity, unitarity,
Lorentz covariance, and gauge invariance as a matter of course.
Gauge invariance, in particular, is shown explicitly by deriving
the corresponding generalized WTI.

We emphasize that the rigorous formalism presented here
is complete in its description of the underlying hadronic
dynamics and the resulting electromagnetic couplings, and its
applications are only limited by the available computing power.
However, it is quite readily adapted to approximations and thus
can be applied even in cases where the microscopic dynamical
structure of the underlying interacting hadronic systems is
either not known in detail or too complex to be treated in
detail. As a case in point, we mention that the success of the
advance application [3] of the present formalism to the KVI
data [1,2] was due to the incorporation of phenomenological
four-point contact currents that preserve gauge invariance
following the approach of Haberzettl, Nakayama, and
Krewald [24] based on the original ideas of Refs. [23,25]. In
addition, we provide a scheme that permits the approximate
treatment of current contributions resulting from pieces of the
NN interaction that cannot be incorporated explicitly. In each
case, the approximation procedure ensures gauge invariance
of the entire bremsstrahlung amplitude. We also discuss the
necessary modifications when taking into account baryonic
states other than the nucleon N . In detail, we consider the
�(1232) resonance by incorporating the couplings of the NN
to the N� and �� systems and the γN → � transitions. The
resulting expressions are quite generic in their topological
structure and thus may be used as a template for other baryonic
states.

In Sec. II, we present the details of the full four-dimensional
relativistic formulation, including a proof of the gauge invari-
ance of the resulting bremsstrahlung amplitude. In Sec. III,
we introduce the necessary modifications for a covariant
three-dimensional reduction and discuss its implications for
the description of the dynamics of the process. We then
point out, in Sec. IV, that if one aims for a dynamically
consistent microscopic description of all reaction mechanisms,
one must implement gauge invariance in terms of generalized
Ward-Takahashi identities for each subprocess—mere global
current conservation is not sufficient. We also show how one
can preserve the gauge invariance of the amplitude even if some
interaction-current mechanisms—both for hadronic three-
and four-point functions—cannot be incorporated exactly. In
Sec. V, we discuss what needs to be done to add additional
baryonic degrees of freedom, in particular, the coupling of
NN, N�, and �� channels. A summarizing assessment of the
present work is given in Sec. VI.

We emphasize that the present formalism is completely
general and applies to proton-proton, proton-neutron, as well
as neutron-neutron bremsstrahlung processes. Furthermore,
the photon can be either real or virtual. The former corresponds
to the usual NN bremsstrahlung process while the latter
case is suited for applications in dilepton production in both
elementary NN and heavy-ion collisions.
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II. FULL FORMALISM

The bremsstrahlung current is obtained from the nucleon-
nucleon T matrix by attaching an outgoing photon to all
reaction mechanisms of T in all possible ways. To this end, we
use here the gauge-derivative procedure developed in Ref. [23]
in the context of pion photoproduction. This procedure is
formally equivalent to employing minimal substitution for
the connected part of the hadronic Green’s function, and
then taking the functional derivative with respect to the
electromagnetic four-potential Aμ, in the limit of vanishing
Aμ (for details, see [23]). The current is then obtained by
removing the propagators of all external hadron legs from
this derivative in a Lehmann-Szymanzik-Zimmermann (LSZ)
reduction procedure [26,27].

A. Deriving the bremsstrahlung current

The nucleon-nucleon T matrix is determined by the cor-
responding four-dimensional Bethe-Salpeter scattering equa-
tions,

T = V + V G0T or T = V + T G0V, (1)

where V is the NN interaction given by the set of all two-
nucleon irreducible scattering mechanisms. G0 describes the
intermediate propagation of two noninteracting nucleons; i.e.,
schematically we have

G0 = [t1 ◦ t2], (2)

where ti denotes the propagator of the individual nucleon i

and “◦” stands for the convolution of the intermediate loop
integration.

The basic bremsstrahlung current B̃μ is obtained by
evaluating the LSZ-type equation

B̃μ = −G−1
0 {G0T G0}μG−1

0 , (3)

where −{· · ·}μ denotes the gauge derivative [23] taken here of
the connected hadronic NN Green’s function G0T G0, with μ

being the Lorentz index of the current. Using then the product
rule {YX}μ = Y {X}μ + {Y }μX for an (ordered) product YX

of a two-step sequence of hadronic reaction mechanisms
described by operators X (first step) and Y (second step),
we employ Eq. (1) repeatedly to find

B̃μ = (1 + T G0) (dμ + V μ) (G0T + 1) − dμ, (4)

where dμ defined by

dμ = −G−1
0 {G0}μG−1

0 (5)

subsumes the one-body current contributions from the indi-
vidual nucleons and

V μ = −{V }μ (6)

is the interaction current resulting from attaching the photon
to any internal mechanisms of the NN interaction. Details of
V μ will be discussed below.

G0d
µG0 = +

FIG. 1. Graphical representation of Eq. (8). Solid lines depict
nucleons and wavy lines indicate the outgoing bremsstrahlung
photon.

Explicitly, the photon contributions from the two-nucleon
propagator are found as

dμ = �
μ

1

(
δ2t

−1
2

) + (
δ1t

−1
1

)
�

μ

2 , (7)

where �
μ

i is the electromagnetic current operator of nucleon
i; δi denotes an implied δ function that makes the incoming
and outgoing momenta for the intermediate spectator nucleon
i the same. We thus have

G0d
μG0 = [

t1�
μ

1 t1 ◦ t2
] + [

t1 ◦ t2�
μ

2 t2
]
, (8)

which is represented graphically in Fig. 1.
Note that Eq. (4)—apart from the subtraction by dμ—

possesses the structure of a distorted-wave Born approxima-
tion (DWBA), with the factors (G0T + 1) and (1 + T G0)
supplying the Møller operators producing the initial and
final scattering states, respectively, distorted by the NN
interaction. The dμ contribution by itself—without any initial-
state or final-state NN interactions—is disconnected, as one
sees clearly from Fig. 1. The overall subtraction of dμ in
Eq. (4), therefore, is necessary to remove this (unphysical)
disconnected structure from B̃μ and retain only connected
physical contributions.

It is possible—and indeed desirable for the following—to
equivalently rewrite Eq. (4) to provide a full DWBA structure
for B̃μ of the form

B̃μ = (1 + T G0)J̃ μ(G0T + 1), (9)

where

J̃ μ = dμG0V + V G0d
μ + V μ − V G0d

μG0V (10)

is the completely connected current that describes the
bremsstrahlung reaction in the absence of any hadronic initial-
state or final-state interactions (with the exception of the
subtraction V G0d

μG0V ; see below); we shall refer to this
tree-level-type current as the basic production current. The
equivalence of this form of B̃μ to Eq. (4) is easily seen by
repeated applications of Eq. (1). The NN T matrices appearing
to the right or left of the basic production current J̃ μ in Eq. (9)
thus provide the initial-state interaction (ISI) or final-state
interaction (FSI), respectively, of the two nucleons external
to the basic production current J̃ μ.

The subtraction term V G0d
μG0V in J̃ μ removes here

the double counting of contributions T G0d
μG0T to the

full current B̃μ that arise from the two dμ contributions in
J̃ μ. As such, therefore, it is not a dynamically independent
contribution to B̃μ and appears here only because, for formal
reasons, we wish to retain the DWBA form of B̃μ in Eq. (9). We
shall see below, in Sec. III, where we treat the covariant three-
dimensional reduction of Eq. (9), that special considerations
are needed for this subtraction term if one wants to maintain
gauge invariance for the reduced amplitude.
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FIG. 2. Basic production current J μ of Eq. (11) for NN → NNγ . Time proceeds from right to left. External legs are labeled by the
four-momenta of the respective particles. Boxes labeled V subsume all two-nucleon irreducible contributions to the NN interaction that drive
the Bethe-Salpeter equation (1). The interaction current V μ contains all mechanisms where the photon emerges from within the interaction V

(i.e., any current mechanism not associated with an external leg of the interaction V ). The last diagram, Dμ, as given in Eq. (12), subsumes
all possible completely transverse contributions [cf. Eq. (15)], in addition to the subtraction that corrects the double counting arising from the
first two contributions (see text). Diagrams where the photon emerges from the lower nucleon line are suppressed; the antisymmetrization of
nucleons is implied.

Equations (9) and (10) are not the complete solution
of the bremsstrahlung problem yet, because the gauge-
derivative procedure—indeed any procedure based on minimal
substitution—cannot produce current contributions that are
completely transverse. Such contributions must be added to the
mechanisms obtained above for B̃μ. Without lack of generality,
we may do so by modifying the basic production current J̃ μ

according to

J̃ μ → Jμ = dμG0V + V G0d
μ + V μ + Dμ, (11)

where

Dμ = T μ − V G0d
μG0V (12)

contains the sum of all explicitly transverse five-point cur-
rents denoted by T μ, in addition to the subtraction current
V G0d

μG0V . In other words,

kμT μ = 0 (13)

is true irrespective of whether or not the external nucleons
are on-shell. The complete bremsstrahlung current Bμ then is
given by

B̃μ → Bμ = (1 + T G0)Jμ(G0T + 1). (14)

We emphasize that this equation and Eq. (11) provide an exact
generic description of the bremsstrahlung process off the NN
system. The structure of the basic production current Jμ is
depicted in Fig. 2.

The detailed nature of the transverse contribution T μ in
Eq. (12) must be specified by the underlying interaction
Lagrangians. Examples are meson-transition currents J

μ

M as
depicted in Fig. 3 and γN�-transition currents J

μ
� , i.e.,

T μ = J
μ

M + J
μ
� + · · · . (15)

M
k

1p′

2p′

1p

2p
M

FIG. 3. Generic example for meson transition currents J
μ

M con-
taining a transverse γM1M2 vertex, with M1 �= M2, occurring in Dμ

of Eq. (12) via its transverse contribution T μ. Examples are γρπ and
γωπ transition currents.

The latter will be discussed below, in Sec. V, when we consider
�(1232) contributions in detail.

The specific details of any particular application, of course,
depend on the mechanisms taken into account in the NN
interaction V that drives the scattering process in the Bethe-
Salpeter equation (1). For driving interactions based on single-
meson exchanges, the complete structure of Jμ is discussed
below, in Sec. IV A. In Sec. V, as mentioned already, we also
consider the structures arising from � contributions that go
beyond single-meson exchanges.

B. Proof of gauge invariance

It should be clear that the procedure used for deriving
the bremsstrahlung current Bμ does produce a current that
is gauge invariant as a matter of course. Nevertheless, we will
now explicitly prove gauge invariance because this will guide
us later, in Sec. III, in how to implement gauge invariance
when we calculate Bμ in a covariant three-dimensional
reduction.

To prove the gauge invariance of the current (14), we
first note that, for an outgoing photon with four-momentum
k, the four-divergence of dμ may be schematically written
as

kμdμ = Q̂G−1
0 − G−1

0 Q̂, (16)

where Q̂ is short for

Q̂ = Q̂1 + Q̂2. (17)

The operator Q̂i describes the charge Qi of nucleon i and it
removes the four-momentum k carried away by the photon
from any subsequent interaction of nucleon i (appearing on
the left of Q̂i). This notation allows one to keep track of
the kinematics without explicit four-momentum arguments;
i.e., by specifying initial momenta for the two nucleons,
the placement of the Q̂i immediately allows one to find
the momenta along each nucleon line. Equation (16) is an
immediate consequence of the Ward-Takahashi identity for
the nucleon current operator �

μ

i [27,28], i.e.,

kμ�
μ

i = Q̂i t
−1
i − t−1

i Q̂i , (18)
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applied to Eq. (7). Explicitly, with G0 specified as in Eq. (2),
we have

Q̂G−1
0 − G−1

0 Q̂

= [
Q̂1t

−1
1 − t−1

1 Q̂1
] ◦ t−1

2 + t−1
1 ◦ [

Q̂2t
−1
2 − t−1

2 Q̂2
]

= [
Q1t

−1
1 (p1) − t−1

1 (p1 − k)Q1
] ◦ t−1

2 (p2)

+ t−1
1 (p1) ◦ [

Q2t
−1
2 (p2) − t−1

2 (p2 − k)Q2
]

(19)

for a two-nucleon system, where p1 and p2 are the initial
four-momenta of nucleons 1 and 2, respectively; i.e., the
first term results from the photon being emitted by nucleon
1 and the second term results from it being emitted by
nucleon 2.

In the same schematic notation, the four-divergence of the
interaction current V μ then is simply [23,29]

kμV μ = V Q̂ − Q̂V

= V (p′
1, p

′
2; p1 − k, p2)Q1 + V (p′

1, p
′
2; p1, p2 − k)Q2

−Q1V (p′
1 + k, p′

2; p1, p2)

−Q2V (p′
1, p

′
2 + k; p1, p2), (20)

where the arguments of V are nucleon momenta and the
momentum dependence of the interaction current is

V μ = V μ(k, p′
1, p

′
2; p1, p2), with p′

1 + p′
2 + k = p1 + p2;

(21)

i.e., the momenta p1, p2 and p′
1, p

′
2 are those of the incoming

and outgoing nucleons, respectively. Whether the charge
operators Qi in Eq. (20) pertain to incoming or outgoing
nucleons is clear from where the Qi are placed in the equation.
In other words, if placed on the right of V , Qi describes the
charge of the incoming nucleon i, and if placed on the left,
it describes the charge of the outgoing nucleon i. Placing the
charge operators in this manner is necessary since they interact
with the isospin dependence of the interaction V .

The four-divergence of Jμ then follows as

kμJμ = (
Q̂G−1

0 − G−1
0 Q̂

)
G0V + V G0

(
Q̂G−1

0 − G−1
0 Q̂

)
+V Q̂ − Q̂V − V G0(Q̂G−1

0 − G−1
0 Q̂)G0V

= −G−1
0 Q̂G0V + V G0Q̂G−1

0 − V G0Q̂V + V Q̂G0V.

(22)

For the entire current, we then find

kμBμ = (1 + T G0)
(
V G0Q̂G−1

0 − G−1
0 Q̂G0V

−V G0Q̂V + V Q̂G0V
)
(G0T + 1), (23)

and thus, finally, using (1),

kμBμ = T G0Q̂G−1
0 − G−1

0 Q̂G0T . (24)

This is the correct generalized Ward-Takahashi identity [30]
for the bremsstrahlung current providing a conserved current
for external on-shell nucleons. In a more explicit notation,
using the same arguments for T and Bμ as for V and V μ,
respectively, in Eqs. (20) and (21), this reads

kμBμ = T (p′
1, p

′
2; p1 − k, p2) t1(p1 − k) Q1 t−1

1 (p1)

+ T (p′
1, p

′
2; p1, p2 − k) t2(p2 − k) Q2 t−1

2 (p2)

− t−1
1 (p′

1) Q1 t1(p′
1 + k) T (p′

1 + k, p′
2; p1, p2)

− t−1
2 (p′

2) Q2 t2(p′
2 + k) T (p′

1, p
′
2 + k; p1, p2). (25)

The inverse nucleon propagators t−1
i (p) appearing here ensure

that this four-divergence vanishes (i.e., that the bremsstrahlung
current is conserved) if all external nucleon legs are
on-shell.

III. APPROXIMATION: COVARIANT
THREE-DIMENSIONAL REDUCTION

To calculate any reaction amplitude in a full four-
dimensional framework is a daunting numerical task. In prac-
tical applications of relativistic reaction theories, therefore,
one often employs three-dimensional reductions that eliminate
the energy variable from loop integrations in a covariant
manner, leaving only integrations over the components of
three-momenta. Many such reduction schemes can be found
in the literature [31–34]. Our results presented below hold true
for any reduction scheme that puts both nucleons in loops on
their respective energy shells.

For hadronic reactions, the primary technical constraint
to be satisfied by any three-dimensional reduction is the
preservation of covariance and (relativistic) unitarity. For
reactions involving electromagnetic interactions, there is the
additional constraint of gauge invariance. This is a nontrivial
constraint since the reduction scheme, in general, will destroy
gauge invariance as a matter of course. Hence, to restore it, one
must introduce additional current mechanisms as part of the
reduction prescription for photoprocesses. As we shall see, this
cannot be done in a unique manner because gauge invariance
does not constrain transverse current contributions.

For the NN problem, three-dimensional reductions result
from replacing the free two-nucleon propagator G0 by one
containing a δ function that eliminates the energy integration
in loops. In the following, we make the replacement

G0 → g0 (26)

to indicate that the internal integration is a three-dimensional
one over the three-momentum of the loop. To obtain on-
the-energy-shell integral equations from the Bethe-Salpeter
equations (1) when using this reduction, the external nucleon
legs must be taken on shell as well. This provides the reduced
integral equations

t = v + vg0t = v + tg0v, (27)

where lowercase letters v and t (instead of V and T , respec-
tively) signify that all nucleons—internal and external—are
on their energy shell. However, when considering below the
gauge invariance of the bremsstrahlung current that results
from the reduction (26), we require fully off-shell T matrices.
They can be obtained from iterated versions of Eq. (1), which
are then subjected to the reduction (26), producing

T = V + V (g0 + g0tg0)V, (28)

where all external nucleons may be considered off-shell. This
off-shell T , thus, is obtained by quadratures from the integral-
equation on-shell solution t . However, this T is not the same
as the solution of the full four-dimensional Bethe-Salpeter
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scattering equation (1) even though we use the same notation
to keep matters simple, even at the risk of inviting confusion.
The T ’s appearing in the following context always refer to fully
off-shell or half off-shell versions of the T matrix defined by
the quadrature formula (28).

The previous proof of gauge invariance of the full four-
dimensional formalism given in Sec. II B shows that gauge
invariance depends on an intricate interplay of all hadronic
reaction mechanisms (which will also discussed in more
detail in Sec. IV). Any approximation, therefore, will in
general destroy gauge invariance. Hence, we expect that simply
subjecting the full bremsstrahlung current Bμ of Eq. (14) to
the reduction prescription (26) will not retain gauge invariance,
and that, therefore, additional steps will be necessary to ensure
gauge invariance. Since, from a formal point of view, any
modification of a given current can, without lack of generality,
always be expressed by adding an extra current, we may write
the gauge-invariant current B

μ
r that results from a judicious

adaptation of the three-dimensional reduction procedure to
Bμ of Eq. (14) in the form

Bμ → Bμ
r = [(T G0 + 1)Jμ(1 + G0T )]red + X

μ

GIP. (29)

The first term on the right-hand side, [· · ·]red, schematically de-
notes the necessary modifications of the hadronic mechanisms
in Bμ itself and the last term, X

μ

GIP, is the additional gauge-
invariance-preserving (GIP) current that is to be determined
to make B

μ
r gauge invariant. In other words, we demand

that

kμBμ
r = T G0Q̂G−1

0 − G−1
0 Q̂G0T , (30)

i.e., that the four-divergence of the reduced current Bμ
r remains

identical in form to the generalized WTI of Eq. (24), and we
are going to ensure this by choosing X

μ

GIP accordingly after
having determined [· · ·]red in Eq. (29). [We repeat here that—
completely consistent with the covariant three-dimensional
reduction—the off-shell T ’s of Eq. (30), and of the subsequent
equations in this section, are those defined by the off-shell
extension (28) of (27), and not the solutions of the original
Bethe-Salpeter equations (1) that appear in Eq. (24); see also
the discussion surrounding Eq. (28).]

As a first step, we employ the reduction for the external G0

factors and write

Bμ
r = (T g0 + 1)J̃ μ

r (1 + g0T ) + X
μ

GIP, (31)

where J̃
μ
r is the reduced form of the basic production current

Jμ of (11). For its determination, we note that one cannot
simply employ the reduction (26) for every G0 appearing in
Eq. (11) since this produces unphysical mechanisms. The box-
graph contribution

bμ = V G0d
μG0V (32)

+V V

(a)

V V V V
× ×

V V

× ×
(b)

FIG. 4. (a) Sum of box graphs describing Eq. (32), with rectangles
labeled V subsuming all mechanisms of the NN interaction. All inter-
nal nucleon lines are off-shell, in general. (b) The two possibilities of
putting nucleons on-shell in the internal loop of the first diagram of
(a), as indicated by “×” on the corresponding nucleon line, leaving
one nucleon at the photon vertex off-shell. Analogous diagrams can
be drawn for the corresponding second diagram.

shown in Fig. 4(a), which appears as a subtraction in Eq. (12),
cannot be reduced in the form

V G0d
μG0V → Vg0d

μg0V (unphysical) (33)

since this would have the bremsstrahlung photon emerging
from intermediate on-shell nucleons, which is not possible for
a physical photon. At least one of the nucleon legs at the photon
vertex—either the incoming or the outgoing one—must remain
off-shell. The two possibilities of doing that and allowing the
production of physical photons are

V G0d
μG0V →

{
V G0d

μg0V,

Vg0d
μG0V,

(34)

as shown in Fig. 4(b). Since there is nothing that suggests that
one choice is to be preferred over the other, we allow for both
and thus make the replacement

bμ → bμ
r = λiV G0d

μg0V + λf Vg0d
μG0V, (35)

where by symmetry we would have λi = λf = 1/2, of course,
but we want to allow here more flexibility for reasons given
below.

In detail, the reduced bremsstrahlung current thus reads

Bμ
r = (T g0 + 1)

[
dμG0V + V G0d

μ + V μ + Dμ
r

]
× (1 + g0T ) + X

μ

GIP, (36)

where

Dμ
r = T μ

r − bμ
r (37)

is the reduced form of Eq. (12), with T
μ
r denoting the reduced

form of the transverse current T μ satisfying kμT
μ
r = 0. Note

that the G0’s appearing in the dμ terms cannot be reduced to
g0’s for the same reason that the reduction (33) is not possible.
Evaluating the four-divergence of this expression gives

kμBμ
r = (T g0 + 1)

[(
Q̂G−1

0 − G−1
0 Q̂

)
G0V + V G0

(
Q̂G−1

0 − G−1
0 Q̂

) + V Q̂ − Q̂V − kμbμ
r

)]
(1 + g0T ) + kμX

μ

GIP

= −(T g0 + 1)G−1
0 Q̂G0T + T G0Q̂G−1

0 (1 + g0T ) − (T g0 + 1)kμbμ
r (1 + g0T ) + kμX

μ

GIP

= T G0Q̂G−1
0 − G−1

0 Q̂G0T − (T g0 + 1)kμbμ
r (1 + g0T ) + kμX

μ

GIP, (38)
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FIG. 5. Reduced basic bremsstrahlung production current Jμ
r of Eq. (47) resulting from the covariant three-dimensional reduction (see

Sec. III) for nucleon-nucleon interactions V based on single-meson exchanges only. Time proceeds from right to left. (These diagrams
correspond to the current employed in Ref. [3], where the exchanged mesons are M = π , η, ρ, ω, σ , and a0.) The nucleonic current corresponds
to the first two diagrams on the right-hand side and the meson-exchange current is depicted by the third diagram. The first four diagrams,
respectively labeled s, u, t, and c, correspond to the complete gauge-invariant description for the process NM → Nγ for the upper nucleon
line, with the labels s, u, and t alluding to the kinematic situations described by the corresponding Mandelstam variables (see Fig. 6 and the
corresponding discussion in Sec. IV A). The fourth diagram contains the NM → Nγ four-point contact current M

μ
int discussed in Sec. IV A,

labeled “c” in the diagram. The correct gauge-invariance treatment of this diagram was found to be crucial in reproducing the KVI data in
Ref. [3]. The diagrams corresponding to s, u, and c for the lower nucleon line are suppressed. The last diagram (labeled J

μ

T ) subsumes the
transverse five-point currents of (45). Transverse transition-current contributions are also subsumed in this diagram; examples are the γρπ ,
γωπ , and γN� transition currents depicted in Figs. 3 and 9, respectively. Antisymmetrization of identical nucleons is implied.

where we have used here that

T G0Q̂G−1
0 g0T = 0 and T g0G

−1
0 Q̂G0T = 0 (39)

vanish identically. For the proof, consider

g0G
−1
0 Q̂G0 → �1�2

s − (ε1 + ε2)2
◦ [

t−1
1 (p)Q1t1(p + k)

]
, (40)

where the right-hand side here provides one generic con-
tribution (stripped of all extraneous factors) contained in
the expression on the left. The “◦” symbol indicates the
remaining three-momentum loop integration. The variable s

is the squared total energy of the system and the εi are the
individual on-shell energies of the two on-shell nucleons in
the loop [indicated by the symbol “×” in Fig. 4(b)]. The �i

are the positive-energy projectors of the nucleons. The energy
component of p = (ε1, p) is on-shell and thus

�1(p) t−1
1 (p) = p2 − m2

2m
�1(p) = 0. (41)

Because p2 = m2, this term always vanishes for any p. There-
fore, even if s − (ε1 + ε2)2 should vanish as well for some p,
this cannot be compensated; i.e., the limit of the corresponding
0
0 situation is zero. This proves that T g0G

−1
0 Q̂G0T = 0; the

proof for T G0Q̂G−1
0 g0T = 0 follows in a similar fashion.

The first two terms in the last line of (38) already provide
the complete four-divergence (30) necessary for the gauge-
invariance condition to hold true. It follows then that the last
two terms must vanish,

kμX
μ

GIP − (T g0 + 1)kμbμ
r (1 + g0T )

!= 0. (42)

The four-divergence of X
μ

GIP thus is constrained by

kμX
μ

GIP = (T g0 + 1)kμb
μ

L (1 + g0T ), (43)

where b
μ

L describes the longitudinal pieces of the reduced box-
graph current b

μ
r . Hence, without lack of generality, we may

write

X
μ

GIP + (T g0 + 1)Dμ
r (1 + g0T ) = (T g0 + 1)Jμ

T (1 + g0T ),

(44)

where J
μ

T is the purely transverse current,

J
μ

T = T μ
r − λiV G0d

μ

T g0V − λf Vg0d
μ

T G0V ; (45)

d
μ

T here only contains the transverse pieces of the nucleon
currents as they appear in dμ. As far as gauge invariance of
B

μ
r is concerned, the current J

μ

T is irrelevant. Therefore, the
parameters λi and λf may now also be treated as independent,
unconstrained parameters.

To summarize the present results obtained for the three-
dimensional reduction, in this approximation the gauge-
invariant bremsstrahlung current reads

Bμ
r = (T g0 + 1)Jμ

r (1 + g0T ), (46)

where the reduced basic production current is given as

Jμ
r = dμG0V + V G0d

μ + V μ + J
μ

T . (47)

How one chooses J
μ

T in an application is not fixed by the
formalism, beyond the generic form given in Eq. (45). Note
that the generic graphical structure depicted in Fig. 2 remains
valid also for J

μ
r , with the last graph labeled Dμ on the right-

hand side of the figure depicting now the transverse five-point
current J

μ

T . For the specific case of NN interactions based on
single-meson exchanges only, the reduced basic production
current J

μ
r of Eq. (47) is illustrated diagrammatically in more

detail in Fig. 5.
Let us add some remarks here. Even though the procedure

to preserve gauge invariance was presented here in terms
of an additional ad hoc current X

μ

GIP, the derivation shows
that, rather than adding a current, the application of the
three-dimensional reduction procedure to the current Bμ really
amounts to dropping (at least part of) the reduced contribution
from bμ that was necessary in the full four-dimensional
treatment to prevent double counting of the T G0d

μG0T

contribution. The particular form of J
μ

T of Eq. (45) follows
from exploiting the constraint (43) to the extent to which it is
possible since the gauge invariance cannot constrain transverse
contributions. Our applications (those of Ref. [3] for the KVI
data and the recent application to the proton-proton data at
310 MeV incident energy taken at the PROMICE-WASA
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facility at Uppsala [36] and others whose results will be
reported elsewhere) suggest that the choice λi = λf = 0 yields
by far the best numerical results. In view of the fact that the
double-counted term T G0d

μG0T in the full four-dimensional
formulation of Sec. II A now appears in Eq. (46) as two
distinctly different contributions T G0d

μg0T + T g0d
μG0T ,

there are now no longer any terms counted doubly and thus
the corresponding subtraction is no longer necessary either.
The finding that λi = λf = 0 yields the best numerical results
is completely consistent with this fact. J

μ

T then contains
only transverse contributions from electromagnetic transitions
described explicitly in terms of the corresponding transition
Lagrangians, like those for γρπ , γωπ , and γN� (for the
latter, see the discussion in Sec. V).

IV. LOCAL GAUGE INVARIANCE

The gauge-invariance constraints in terms of the general-
ized Ward-Takahashi identities, either in the form (24) for the
full amplitude or as (30) for the reduced one, are just formal
constraints, of course, since the only physically relevant—
i.e., measurable—ramification is current conservation when
all external nucleons of the bremsstrahlung process are on
their respective energy shells. It is for this reason that the
current-conservation constraint,

kμBμ = 0 (external nucleons on-shell), (48)

called global gauge invariance, is the only constraint that is
implemented in many reaction models of photoprocesses. We
would like to advocate, however, that using this as the sole
constraint is not enough if one aims at providing a consistent
microscopic description of the photoreaction at hand. It was
shown in the preceding sections that the gauge invariance
of the total bremsstrahlung amplitude hinges in an essential
way on each subprocess providing its correct current share to
ensure the gauge invariance of the entire current—and thus
ultimately provide a conserved current. This is only possible
if the current associated with each subprocess satisfies its own
generalized Ward-Takahashi identity, as exemplified here by
Eq. (16) for the propagators and by Eq. (20) for the interaction
current. Thus, imposing local gauge invariance, i.e., imposing
consistent off-shell constraints of this kind for all subprocesses
in a microscopic description of the reaction at hand, will then
automatically ensure that the total amplitude will satisfy a
generalized WTI of its own. Not only does this mean that
it will indeed satisfy the physical constraint of a conserved
current, but beyond that it will ensure that if the process at
hand will be used as a subprocess for another, larger reaction,
it will automatically provide the correct contribution to make
the larger process gauge invariant as well.

A. Constraining subprocesses

For further discussion, we draw attention to the fact that
the reaction dynamics depicted by the first four diagrams on
the right-hand side of Fig. 5 correspond to the capture reaction
NM → Nγ , where the meson M is emitted by the spectator
nucleon depicted by the lower nucleon line. The corresponding

+ +
k

k
q

p' p'p p

q

+
p' p

kq

p'

q

p

k

t Cus

FIG. 6. Generic pion photoproduction diagrams γ + N → π +
N . Time proceeds from right to left. If read from left to right, this
corresponds to the pion-capture reaction as it appears in the first four
diagrams on the right-hand side of Fig. 5 along the upper nucleon
line. The last diagram here labeled “c” corresponds to the interaction
current arising from attaching the photon to the interior of the πNN
vertex. The properties of this contact-type four-point current M

μ
int

are essential to render the entire amplitude gauge invariant, with the
necessary constraint equation given by (51). At the tree level for
undressed hadrons, this term reduces to the Kroll-Ruderman term.

time-reversed equivalent meson-production process is shown
in Fig. 6 for the example of pion production. The current
amplitude for this process can always be broken down into
four generic contributions (see, for example, [23]),

Mμ = Mμ
s + Mμ

u + M
μ
t + M

μ
int, (49)

where the indices s, u, and t allude to the Mandelstam variables
describing the kinematic situations of the corresponding
diagrams in the figure. The corresponding interaction current,
in particular, is obtained by attaching the photon to the inner
workings of the meson-nucleon-nucleon vertex F according
to

M
μ
int = −{F }μ . (50)

If we demand now local gauge invariance, the current Mμ

must satisfy an off-shell generalized WTI. In addition to the
trivial contributions resulting from the propagator WTIs for
the currents associated with the external legs of M

μ
s , M

μ
u , and

M
μ
t , similar to Eq. (18), this means, in particular, that the

interaction current must satisfy [23]

kμM
μ
int = QNFu + QMFt − FsQN, (51)

where Fx denotes the meson-nucleon-nucleon vertices F ,
with the subscripts x = s, u, t corresponding to Mandelstam
variables of the respective kinematical situation of the vertices
in s-, u-, and t-channel contributions, as depicted in Fig. 6.
QM and QN are the charge operators of the meson and the
nucleon, respectively. Since the charge operators interact with
the isospin dependence of the vertex F , their placements before
or after Fx are significant to ensure charge conservation. Note
that Eq. (51) is the exact analog of Eq. (20) for the present
application, with Eq. (20) providing the four-divergence for
a five-point interaction current for an outgoing photon and
Eq. (51) constraining the four-point interaction current for
an incoming photon. By using the Q̂ notation introduced in
Eq. (17), this may be made more obvious by writing Eq. (51)
as

kμM
μ
int = (Q̂N + Q̂M )F − FQ̂N, (52)

where the charge operators of the final hadrons appear on
the left of F and that of the initial hadron on its right,
as is appropriate for the interaction current of any meson-
production process γN → NM similar to that depicted in
Fig. 6; for the reverse process NM → Nγ , one needs to change
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FIG. 7. Generic structure of interaction current V
μ

MEC, Eq. (54), for the single-meson exchange contribution VMEC of the NN interaction
depicted on the left. Time proceeds from right to left. The three diagrams on the right-hand side comprise the meson-exchange current and the
two interaction-current contributions M

μ

i , i = 1, 2, where the photon interacts with the interiors of the respective vertices for nucleons 1 and 2.

k → −k and exploit the isospin dependence of the vertex to
write Q̂MF = −FQ̂M since the meson changes from being
outgoing to incoming.

Demanding consistency of the microscopic dynamics
across various reactions means that the entire NM → Nγ

subprocess in Fig. 5 must satisfy the same generalized
Ward-Takahashi identity as the amplitude Mμ itself, except
for trivial modifications arising from the fact that this is
the time-reversed process. This must be true for any one
of the exchanged mesons—whether scalar, pseudoscalar, or
vector—in the bremsstrahlung process, not just for the pion
example shown in Fig. 6.

To illustrate in more detail how the requirement of local
gauge invariance ties together the various current mechanisms,
let us consider a single-meson-exchange contribution VMEC to
the full NN potential V . Generically, we may write

VMEC = F1tMF2, (53)

where the Fi are the meson-nucleon-nucleon vertices for
nucleon i = 1, 2 (including all coupling operators and isospin
dependencies) and tM describes the propagator for the ex-
changed meson M . Graphically, the process is given in the
diagram on the left-hand side of Fig. 7. If we now attach
an outgoing photon to all internal mechanisms of VMEC,
we obtain the three diagrams on the right-hand side of the
figure that comprise the corresponding NN interaction current,
V

μ

MEC = −{VMEC}μ. By employing the product rule for the
gauge derivative of the right-hand side of Eq. (53), this current
may be written as

V
μ

MEC = −F1 {tM}μ F2 − {F1}μ tMF2 − F1tM {F2}μ
= F1tM �

μ

M tMF2 + M
μ

1 tMF2 + F1tMM
μ

2 , (54)

where M
μ

i = −{Fi}μ is the four-point interaction current for
the vertex i = 1, 2 and

−{tM}μ = tM �
μ

M tM (55)

produces the current operator �
μ

M for the exchanged meson
that satisfies the single-particle WTI [27,28]

kμ�
μ

M = Q̂Mt−1
M − t−1

M Q̂M. (56)

Now, by assuming without lack of generality that four-
momentum and charge flow from vertex 2 to vertex 1 in Fig. 7,
the analogs of (52) read

kμM
μ

1 = F1(Q̂1 + Q̂M ) − Q̂1F1, (57a)

kμM
μ

2 = F2Q̂2 − (Q̂M + Q̂2)F2, (57b)

and thus

kμV
μ

MEC = F1tM Q̂MF2 − F1Q̂MtMF2

+F1(Q̂1 + Q̂M )tMF2 − Q̂1F1tMF2

+F1tMF2Q̂2 − F1tM (Q̂M + Q̂2)F2

= F1tMF2Q̂1 − Q̂1F1tMF2

+F1tMF2Q̂2 − Q̂2F1tMF2

= VMECQ̂ − Q̂VMEC, (58)

which is precisely the gauge-invariance constraint (20) for this
particular contribution to V . In this consistent microscopic
treatment of all subprocesses, therefore, the constraints local
gauge invariance places on the four-point interaction currents
M

μ
int of meson-production processes translate seamlessly into

the corresponding constraints on five-point currents of the
bremsstrahlung process. The essential step here is to ensure
the validity of (57a) for the four-point current in the diagram
labeled “c” in Fig. 5 and of (57b) for its counterpart for the
lower nucleon line (not shown in Fig. 5). These relations must
be true for each of the exchanged mesons.

The problem of how to ensure the validity of the constraints
(51) or (57) has been studied extensively by the present authors
and their collaborators for the equivalent photoproduction
processes, and, based on the original ideas presented in
Refs. [23,25], a general prescription was given in Ref. [24] that
is applicable just as well for the most general case of explicit
final-state interactions with completely dressed hadrons as
it is for phenomenological vertex functions. The necessary
extension in the context of bremsstrahlung—to account for the
virtual nature of the incoming and outgoing nucleons and the
exchanged meson at the four-point vertex—is accomplished
following the work of Ref. [35].

The details of the four-point currents M
μ

1 and M
μ

2 and
of the complete descriptions of the corresponding diagrams
depicted in Fig. 7 were already given in Ref. [3]; we will not
repeat them here. We emphasize, however, that the inclusion of
this interaction-type current, with the correct gauge-invariance
dynamics that ensure the validity of Eqs. (57), is essential to
bringing about the good description of the high-precision KVI
data [1,2] reported in Ref. [3]. This feature of our approach
resolves a longstanding discrepancy between the data and
their theoretical description and is a straightforward result
of the consistent application of the off-shell gauge-invariance
constraint in terms of the Ward-Takahashi identity, as outlined
here.
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B. Interaction current V μ for phenomenological NN
interactions: A systematic gauge-invariance-preserving

approximation

The previous discussions show that the gauge-invariance
conditions (20) and (57) for the respective interaction currents
are of crucial importance to ensure an overall bremsstrahlung
amplitude that satisfies gauge invariance. The understanding
here is that the detailed reaction mechanisms that go into
providing the details of these interaction currents are com-
pletely known and that therefore it would be straightforward to
make sure that the corresponding gauge-invariance conditions
are indeed satisfied. This is generally the case only for
NN interactions based on single-meson exchanges between
nucleons without any phenomenological form factors. And
if one employs phenomenological form factors, one must
resort to the prescriptions given in Refs. [23–25,35] to ensure
Eqs. (57), as discussed in the preceding section. However,
beyond problems associated with phenomenological form fac-
tors, it is conceivable that some details would not be available
in some instances either because the microscopic coupling of
the photon to the internal dynamics of the interaction would not
be feasible or sensible or because it would be too complicated
for practical applications. Examples of the former would be NN
interactions based on position-space methods where there are
no (momentum-dependent) exchange mechanisms that permit
the coupling of a photon in a dynamically meaningful way.
Examples of the latter might be baryon contributions beyond
the nucleon since they require box-type NN contributions with
intermediate non-nucleonic baryonic contributions that might
be too cumbersome to be treated with explicit photon couplings
(see Sec. V for N� and/or �� systems and the resulting
graphical structures depicted in Fig. 8).

Nevertheless, each of the corresponding interaction-current
contributions must satisfy its appropriate gauge-invariance
condition; otherwise, the gauge invariance of the entire
amplitude breaks down. We will show here how one can
ensure that gauge invariance is preserved for any phenomeno-
logical contribution to the NN interaction by constructing a

++

+ ++

Δ Δ Δ Δ Δ

N N N Δ N

Δ Δ Δ Δ Δ

Δ Δ Δ N Δ

TΔ
Δ,Δ TΔ

N,Δ

TΔ
N,N TΔ

Δ,N

FIG. 8. Contributions to the NN interaction involving intermedi-
ate N� and �� systems and intermediate transitions T �

f i between
such systems as given by V� in Eq. (69). Summations over all possible
exchanged mesons that mediate transitions to the � state are implied.
Antisymmetrization of external nucleons is implied.

phenomenological interaction current that satisfies appropriate
constraints.

To this end let us assume the total NN interaction V can be
split up into n independent contributions,

V = V1 + V2 + · · · + Vn. (59)

By formally coupling a photon to each contribution according
to V

μ

i = −{Vi}, the total interaction current V μ then breaks
down accordingly into n independent contributions,

V μ = V
μ

1 + V
μ

2 + · · · + V μ
n , (60)

which, because of their independence, must each separately
satisfy a gauge-invariance condition similar to (20), i.e.,

kμV
μ

i = ViQ̂ − Q̂Vi, i = 1, 2, . . . , n; (61)

otherwise, the total current V μ could not satisfy (20).
Let us assume now that one of the Vi is such that the

construction V
μ

i = −{V }μ is not readily available. In this case,
we may devise an auxiliary phenomenological current Ṽ

μ

i

instead that satisfies exactly the same four-divergence relation
(61) as would have to be satisfied by V

μ

i if it were available.
To this end, we adapt the procedure used successfully in
Refs. [23–25] for the four-point interaction currents M

μ
int of

meson production to the present five-point-current case and
make the ansatz

V
μ

i → Ṽ
μ

i = −[Vi(p
′
1, p

′
2; p1 − k, p2) − Wi(k, p′

1, p
′
2; p1, p2)]

Q1(2p1 − k)μ

(p1 − k)2 − p2
1

− [Vi(p
′
1, p

′
2; p1, p2 − k)

−Wi(k, p′
1, p

′
2; p1, p2)]

Q2(2p2 − k)μ

(p2 − k)2 − p2
2

− Q1(2p′
1 + k)μ

(p′
1 + k)2 − p′ 2

1

[Vi(p
′
1 + k, p′

2; p1, p2) − Wi(k, p′
1, p

′
2; p1, p2)]

− Q2(2p′
2 + k)μ

(p′
2 + k)2 − p′ 2

2

[Vi(p
′
1, p

′
2 + k; p1, p2) − Wi(k, p′

1, p
′
2; p1, p2)], (62)

where Wi is a function to be chosen to ensure that each term
here is free of propagator singularities. The four-divergence of
this auxiliary current is then readily seen to produce indeed

kμṼ
μ

i = ViQ̂ − Q̂Vi (63)

since

Wi(k, p′
1, p

′
2; p1, p2)(Q1 + Q2)initial

− (Q1 + Q2)finalWi(k, p′
1, p

′
2; p1, p2) = 0 (64)
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vanishes because of charge conservation. The ansatz (62) thus preserves the gauge-invariance condition for the entire
interaction. As to how to choose Wi , one of the simplest possibilities is

Wi(k, p′
1, p

′
2; p1, p2) = Vi(p

′
1, p

′
2; p1, p2) + [

(p1 − k)2 − p2
1

][
(p2 − k)2 − p2

2

][
(p′

1 + k)2 − p′ 2
1

]
× [

(p′
2 + k)2 − p′ 2

2

]
Ri(k, p′

1, p
′
2; p1, p2), (65)

where Ri(k, p′
1, p

′
2; p1, p2), except for symmetry constraints, is largely arbitrary (and may be equal to zero). This choice ensures

that the resulting GIP current is free of kinematic singularities, as it must be. In detail, one thus has

Ṽ
μ

i = −Vi(p′
1, p

′
2; p1 − k, p2) − Vi(p′

1, p
′
2; p1, p2)

(p1 − k)2 − p2
1

Q1(2p1 − k)μ − Vi(p′
1, p

′
2; p1, p2 − k) − Vi(p′

1, p
′
2; p1, p2)

(p2 − k)2 − p2
2

Q2(2p2 − k)μ

−Q1(2p′
1 + k)μ

Vi(p′
1 + k, p′

2; p1, p2) − Vi(p′
1, p

′
2; p1, p2)

(p′
1 + k)2 − p′ 2

1

− Q2(2p′
2 + k)μ

Vi(p′
1, p

′
2 + k; p1, p2) − Vi(p′

1, p
′
2; p1, p2)

(p′
2 + k)2 − p′ 2

2

+Ri(k, p′
1, p

′
2; p1, p2)

[
(p′

1 + k)2 − p′ 2
1

][
(p′

2 + k)2 − p′ 2
2

]{[
(p2 − k)2 − p2

2

]
Q1(2p1 − k)μ

+ [
(p1 − k)2 − p2

1

]
Q2(2p2 − k)μ

} + {
Q1(2p′

1 + k)μ
[
(p′

2 − k)2 − p′ 2
2

] + Q2(2p′
2 + k)μ

[
(p′

1 − k)2 − p′ 2
1

]}
× [

(p1 − k)2 − p2
1

][
(p2 − k)2 − p2

2

]
Ri(k, p′

1, p
′
2; p1, p2). (66)

Note that the subtracted potential contribution
Vi(p′

1, p
′
2; p1, p2) is unphysical since p′

1 + p′
2 �= p1 + p2.

Hence, the procedure just outlined allows a systematic
hybrid treatment of all independent contributions Vi to the full
interaction V where some five-point currents V

μ

i can be treated
explicitly and some may be replaced by auxiliary currents Ṽ

μ

i

according to Eq. (62). The total interaction current V μ will
satisfy the condition (20) as a matter of course and gauge
invariance is not at issue.

V. EXTENSION TO COUPLED CHANNELS:
NN, N�, AND ��

The derivation of the bremsstrahlung current in Sec. II A
is completely generic and will remain true regardless of the
actual mechanisms taken into account in the nucleon-nucleon
interaction V that drives the Bethe-Salpeter equation (1). The
current mechanisms depicted in Fig. 5 assume an interaction
based on single-meson exchanges between nucleons only.
Here we briefly discuss the necessary modifications if such ex-
changes involve transitions between different baryonic states.
We limit the discussion to transitions between the nucleon N

and the �(1232) mediated by single-meson exchanges (i.e.,
we consider the effect of coupling the channels NN, N�, and
��); transitions into other (resonant) baryonic states can be
treated along the same lines.

It is a very simple and straightforward exercise to decouple
the corresponding set of Bethe-Salpeter equations that couple
the NN, N�, and �� channels and write the NN interaction
appropriate for the single-channel Bethe-Salpeter equation (1)
as

V = VMEC + V�. (67)

The first term, VMEC, describes single-meson exchanges
between nucleons, as shown on the left-hand side of Fig. 7,

that provide the current mechanisms depicted on the right-
hand side of the figure. The second term, V�, contains all
intermediate N� or �� contributions and their transitions.
Using the notation

UN : meson-exchange transition NN → N� (68a)

and

U�: meson-exchange transition NN → �� (68b)

for the transition interactions that mediate the coupling to the
primary NN channel, we obtain

V� = U
†
N

(
G�

N + G�
NT �

N,NG�
N

)
UN + U

†
�G�

�T �
�,NG�

NUN

+U
†
�

(
G�

� + G�
�T �

�,�G�
�

)
U� + U

†
NG�

NT �
N,�G�

�U�,

(69)

where G�
N and G�

� describe the intermediate propagation of the
�N and the �� systems, respectively. Intermediate transitions
�N → �N , �N → ��, �� → �N , and �� → �� are
subsumed in the respective T matrices T �

N,N , T �
�,N , T �

N,�, and
T �

�,�.
Figure 8 provides a graphical representation of V�. Cou-

pling a photon to each of the mechanisms depicted here results
in the interaction current

V
μ
� = −{V�}μ, (70)

which, together with the interaction current V
μ

MEC depicted
generically in Fig. 7, constitutes the total interaction current

V μ = V
μ

MEC + V
μ
� (71)

(if nucleons and �’s are the only baryon degrees of free-
dom considered). Of course, calculating V

μ
� explicitly is a

formidable task. There are eight current contributions for each
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of the simple box graphs (where the photon can couple to
each of the four intermediate hadrons and the four vertices)
and eleven for each of the graphs involving an intermediate
T matrix. By considering only π and ρ exchanges for these
graphs involving the � and allowing for the four possibilities
of exchanging these mesons, altogether, therefore, there are
240 current terms. This is without separately accounting for
the internal mechanisms resulting from coupling the photon
to the T matrices with � degrees of freedom, which is similar
in complexity to the NN bremsstrahlung current itself. In
view of this complexity, we forego drawing the corresponding
diagrams for V

μ
� .

Each set of currents resulting from one graph in Fig. 8
corresponds to an independent interaction current, as discussed
in conjunction with (60), and therefore must satisfy the gauge-
invariance condition (61) independently. If an exact treatment
of the corresponding interaction current is not feasible in view
of the complexity of the problem, from the point of view of
gauge invariance this may also be done in an approximate
manner by constructing an auxiliary current for each of the
graphs in Fig. 8 along the lines discussed in Sec. IV B.

In addition to the hadronic transitions into intermediate �

states, there are also direct electromagnetic transitions γN →
�. Such contributions cannot be obtained by applying the
gauge-derivative method used in Sec. II A, or by any other
method based on minimal substitution. They must be added
by hand, in terms of their own �Nγ Lagrangian. Their full
contribution to the basic production current Jμ of Eq. (11)
may be written as

J
μ
� = d

μ

N� G�
N T�N,NN + TNN,�N G�

N d
μ

�N, (72)

where T�N,NN and TNN,�N are the T matrices resulting from
summing all two-nucleon irreducible transitions NN → �N

and �N → NN , respectively; d
μ

N� and d
μ

�N , in an obvious
schematic notation borrowed from the NN contributions,
contains the electromagnetic transition current � → N and
N → �, respectively, along the baryon lines that emit the
photon, as depicted in Fig. 9 for the lowest-order single-
meson exchange contributions to the respective T matrices.
These contributions are manifestly transverse and hence have
no impact on gauge invariance. Graphically, they may be
subsumed in the right-most diagrams of Figs. 2 or 5, depending
on whether one considers the full formalism or its three-
dimensional reduction, respectively. In other words, J

μ
� given

+
us 1p

2p

1p

2p

1p′

2p′

1p′

2p′

k k

M MΔ Δ

FIG. 9. Lowest-order electromagnetic γN�-transition contribu-
tion to J

μ

� of Eq. (72), with M subsuming all exchanged mesons
compatible with the process. The full contribution involves replacing
the single-meson exchanges in the two graphs by the T matrix repre-
senting the sum of all two-nucleon irreducible transitions NN → �N

and �N → NN, respectively. The transition currents are transverse
and thus have no bearing on gauge invariance. Antisymmetrization
of nucleons is implied.

above is part of the transverse current T μ, as anticipated
already in Eq. (15).

In summary, the full basic interaction current for NN
bremsstrahlung, including � degrees of freedom, becomes

Jμ = dμG0V + V G0d
μ + V μ + [

J
μ

M + J
μ
� − V G0d

μG0V
]
,

(73)

where the groupings of the four terms correspond to the
four graphs on the right-hand side of Fig. 2. Here, V and
V μ contain � degrees of freedom according to Eqs. (67)
and (71), respectively, and the transverse current is taken as
T μ = J

μ

M + J
μ
� . In the reduced case, we have

Jμ
r = dμG0V + V G0d

μ + V μ + [
J

μ

M + J
μ
r�

]
, (74)

where the last grouping is the explicit transverse current
J

μ

T = J
μ

M + J
μ
r�, with λi and λf of Eq. (45) put to zero; the

reduced N�-transition current J
μ
r� is obtained by the corre-

sponding three-dimensional reductions of the loop integrations
within J

μ
� .

VI. SUMMARY

We have presented a complete, rigorous formulation of the
NN bremsstrahlung reaction based on a relativistic field-theory
approach in which the photon is coupled in all possible ways
to the underlying two-nucleon T matrix obtained from the
corresponding covariant Bethe-Salpeter-type NN scattering
equation using the gauge-derivative procedure of Haberzettl
[23]. The resulting bremsstrahlung amplitude is unitary and
analytic as a matter of course and it satisfies full local gauge
invariance as dictated by the generalized Ward-Takahashi
identity. The novel feature of this approach is the consistent—
i.e., gauge-invariant—incorporation of interaction currents
resulting from the photon coupling internally to interacting
hadronic systems.

We emphasize in this respect that to achieve gauge invari-
ance in a microscopic description of the reaction dynamics
at hand, it is not sufficient to consider mere global current
conservation. The interdependence of reaction mechanisms
makes it necessary that each subprocess of the reaction
provide its consistent contribution to ensure the overall gauge
invariance of the entire process. In a microscopic description,
therefore, overall gauge invariance of the reaction flows
from the correct and consistent description of local off-shell
gauge invariance in terms of the respective Ward-Takahashi
identities of the contributing subprocesses. For the present
case of NN bremsstrahlung, in particular, it was shown in
Sec. IV A that an essential part of the underlying dynamics
can be understood as a time-reversed meson photoproduction
process in the presence of a spectator nucleon and that,
therefore, the corresponding off-shell gauge-invariance results
of Refs. [23–25] fully apply here, thus readily providing a
description of the four-point contact-type interaction currents
M

μ

i (as they appear in Fig. 7).
The formalism, in particular, is quite readily adapted

to approximations and thus can be applied even in cases
where the microscopic dynamical structure of the underlying
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interacting hadronic systems is either not known in detail or
too complex to be treated in detail. We have pointed out,
in Sec. IV A, how the interaction currents resulting from the
photon being attached to nucleon-nucleon-meson vertices can
be treated by phenomenological four-point contact currents
that preserve gauge invariance following the approach of
Haberzettl, Nakayama, and Krewald [24]. In an advanced
application of the present formalism [3], such interaction
currents had been shown to contribute significantly to repro-
ducing the high-precision proton-proton bremsstrahlung data
at 190 MeV obtained at KVI [1], thus removing a longstanding
discrepancy between theory and experiment. In addition, we
have provided a scheme that permits the approximate treatment
of current contributions resulting from pieces of the NN
interaction that cannot be incorporated exactly. In each case,
the approximation procedure ensures gauge invariance of the
entire bremsstrahlung amplitude.

We have also discussed the necessary modifications when
taking into account baryonic states other than the nucleon N ;
in detail, we consider the �(1232) resonance by incorporating
the couplings of the NN to the N� and �� systems and the
γN → � transitions. Lowest-order nonloop � contributions
of the kind shown in Fig. 9 have been implemented in Ref. [36],
where the present formalism was applied to the new proton-
proton bremsstrahlung data at 310 MeV taken at Uppsala;
while these results are encouraging, there is still room for
improvement.

We point out in this context that the present approach in the
form of the basic equation (14) results from a comprehensive
field theory of the NN bremsstrahlung process that in principle
allows for all possible hadronic degrees of freedom and all
possible electromagnetic couplings. In its full implementation,
therefore, this is not a model approach. The complexity of the
problem, however, makes it necessary to employ certain model

assumptions to render it manageable in practice, which may,
on occasion, fall short of providing a complete description of
all experimental data. A case in point are the truncations of the
� contributions in the application to the Uppsala data reported
in Ref. [36]. However, incorporating the current contributions
resulting from � loops like the ones depicted in Fig. 8 requires
enormous computing power not available to us at present.
There is also room for improvement in our application to
the KVI data discussed above [3]. While the contact-current
mechanism suggested by our theory (see caption of Fig. 5)
seems to provide the solution for the cross-section data
puzzle that plagued earlier theoretical approaches, there is
still work to be done for the KVI analyzing-power data,
which in some instances is not described well in Ref. [3].
Whether resolving these discrepancies requires more refined
model assumptions about the details of the contact current or
other mechanisms is an open question at the moment. Further
numerical applications will be reported elsewhere.

Finally, we emphasize that, despite its completeness and
generality, the present approach is quite flexible and amenable
to approximations, as discussed in Sec. IV B. Moreover, by
following the procedures outlined in Ref. [24], it offers well-
defined avenues for improving upon any approximation in a
systematic manner. Ultimately, the degree of sophistication
that can be implemented for any application is only limited
by the available computing power. We expect, therefore, that
the formalism presented here will also be useful in the on-
going investigation of hard bremsstrahlung [4,5], as well as in
dilepton production processes [7] where the photon is virtual.
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