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In-medium similarity renormalization group for open-shell nuclei
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We present a nonperturbative derivation of effective valence-shell Hamiltonians in the framework of the re-
cently developed in-medium similarity renormalization group (IM-SRG). As a first application, we calculate the
spectra of p- and sd-shell nuclei, 6Li and 18O, based on evolved chiral nucleon-nucleon interactions. For 6Li,
the spectrum is in very good agreement with ab initio results. For 18O, the IM-SRG provides a new method for
the shell model to systematically go beyond effective interaction techniques based on diagrammatic expansions.
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Introduction. Advances in ab initio methods for nuclear
structure combined with nuclear forces based on chiral
effective field theory (EFT) have lead to many exciting
developments for light nuclei and medium-mass nuclei around
closed-shell configurations (see, e.g., Ref. [1]). For open-shell
systems with many valence nucleons, however, the shell model
remains the most successful approach to understand and pre-
dict nuclear structure, including the evolution of shell structure
with changing neutron and proton numbers, properties of
ground and excited states, and electroweak transitions [2].
Moreover, the shell model has recently revealed new insights
into the impact of long-range tensor [3] and three-nucleon
forces [4] in neutron-rich nuclei. These are dominated by pion
exchanges, which provides a link between nuclear structure
and developments in chiral EFT interactions. Despite the many
successes of the shell model, the microscopic derivation of
effective interactions and operators among valence nucleons
from nuclear forces is still largely based on perturbative
approaches where the convergence remains an open problem.

In this Rapid Communication, we present a new nonpertur-
bative derivation of effective valence-shell Hamiltonians in the
framework of the in-medium similarity renormalization group
(IM-SRG), which we recently developed for closed-shell
nuclei [5,6]. The IM-SRG is based on a renormalization
group evolution that decouples degrees of freedom that are
not relevant for the problem of interest [7,8]. We show how
the IM-SRG can be generalized to open-shell systems away
from doubly magic nuclei. For 6Li, we present results for the
ground-state energy and spectrum in very good agreement with
ab initio methods. We then discuss for 18O how the IM-SRG
goes significantly beyond effective interaction techniques
based on diagrammatic expansions [9], opening up a promising
method to connect nuclear forces and the shell model.

IM-SRG and generator choices. The IM-SRG starts from
a Hamiltonian H that is normal ordered with respect to
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a finite-density reference state |�〉 (e.g., the Hartree-Fock
ground state):

H = E0 +
∑

ij

fij {a†
i aj } + 1

2!2

∑

ijkl

�ijkl {a†
i a

†
j alak}, (1)

where the normal ordered strings of creation and annihilation
operators obey 〈�|{a†

i , . . . , aj }|�〉 = 0. We include normal
ordered zero-, one-, and two-body operators, E0, f , and �,
which approximately include induced three- and higher-body
interactions, and solve the IM-SRG flow equations to obtain
the evolved Hamiltonian H (s) [5]. We refer to this truncation
as IM-SRG(2) since we keep up to normal ordered two-body
operators. The evolution is equivalent to a series of unitary
transformations that are designed to evolve H (s) as s → ∞ to
an appropriately defined “diagonal” part H d(s) [7,8,10,11]:

H (s) = U (s)HU †(s) ≡ H d(s) + H od(s) → H d(∞). (2)

The unitary transformation U (s) is determined by the gener-
ator η(s) ≡ [dU (s)/ds] U †(s), which is constructed from the
diagonal part,

η(s) = [H d(s),H (s)] = [H d(s),H od(s)] , (3)

and guarantees that the “off-diagonal” coupling H od is driven
to zero with increasing s [8].

For the ground state of closed-shell nuclei, one eliminates
all terms that couple the reference state |�c〉 to the rest
of the Hilbert space. This is achieved when the matrix
elements between |�c〉 and all n-particle–n-hole states vanish,
〈npnh|H (∞)|�c〉 = 0. Therefore, one defines H od

c to be
composed of all one- and two-body operators that connect
hole (h) with particle (p) states so that {H od

c } = {fph, �pp′hh′ }
plus Hermitian conjugates, as was demonstrated in Ref. [5].

For open-shell nuclei, particle states p can either be valence
particles or particle states above the valence space, which
we denote by v and q respectively. We want to decouple
states that are not in the valence space, spanned by |�v〉 =
{a†

v1
, . . . , a†

vN
}|�c〉, where N is the number of valence nucleons

and |�c〉 is the reference state for the core nucleus with Ac

nucleons. This can be realized by defining H od through the set
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FIG. 1. Schematic illustration for the valence-space decoupling
by the IM-SRG evolution from H (s = 0) → H (∞) for two valence
nucleons.

of matrix elements
{
H od

1

} = {fph, fqv, �pp′hh′ , �pp′(vh or hv), �(pq or qp)vv′ }, (4)

where p = v, q, plus Hermitian conjugates. As an alternative
generator choice H od

2 , we also drive the one-body part to
diagonal, so that we define

{
H od

2

} = {
H od

1 , fpp′ , fhh′
}
. (5)

These generators both lead to a diagonal part H d
1,2 where states

outside the valence space are decoupled by the IM-SRG flow,
illustrated in Fig. 1, leading to

PH d
1,2(∞)Q = QH d

1,2(∞)P = 0 , (6)

with P = ∑
v |�v〉〈�v| and Q = 1 − P . The off-diagonal

parts in Eqs. (4) and (5) can also be derived using the
counting operator C = ∑

i ci{a†
i ai}, with ci = 1, 0,−1 for

q, v, h states, respectively. The C operator counts the number
of excitations on top of a valence-space state |�v〉. It is
then straightforward to verify that the above choices of
H od

1,2 ensure 0 = CH (∞)|�v〉 = [C,H (∞)]|�v〉, which leads
to the decoupling of valence-space states from arbitrary
excitations. See also Ref. [12] for an application to algebraic
models.

After the IM-SRG(2) evolution, the effective valence-shell
Hamiltonian is given by Heff ≡ PH d

1,2(∞)P − E
Ac

0 , where

E
Ac

0 is the zero-body piece of the evolved Hamiltonian
corresponding to the ground-state energy of the core. We then
solve a reduced eigenvalue problem in the N valence-particle
space,

Heff|χn〉 = (
EA

n − E
Ac

0

)|χn〉. (7)

Results. We next present first applications of the IM-SRG to
two open-shell nuclei, 6Li and 18O, consisting of two valence
nucleons on top of the closed-shell nuclei 4He and 16O. All
results are based on the SRG-evolved N3LO NN potential
of Ref. [13] with a resolution scale of λ = 2.0 fm−1. We
begin with 6Li, which is a sufficiently light nucleus to allow
a direct comparison of our IM-SRG(2) results with exact
diagonalizations of the six-body problem using the no-core
shell model (NCSM). For the IM-SRG calculations, the flow
equations are solved in the Hartree-Fock (HF) basis of the
initial Hamiltonian truncated to emax = max(2n + l) single-
particle excitations. The resulting Heff is then diagonalized in
the p shell to obtain the 6Li energy levels with respect to the

FIG. 2. (Color online) The ground-state energy of 6Li versus
harmonic-oscillator parameter h̄ω obtained by a diagonalization of the
IM-SRG(2) Heff in the p shell, using generators H od

1 and H od
2 (left and

center panels). The flow equations are solved in the HF basis truncated
to emax = max(2n + l) single-particle excitations. For comparison we
show in the right panel the convergence with increasing Nmax of the
NCSM energy [15], where the dot-dashed band is the extrapolated
result.

ground-state energy of the 4He core. There is a subtlety that
arises due to the self-bound nature of atomic nuclei. As we
wish to minimize spurious center-of-mass motion, we work
with the intrinsic Hamiltonian Hint = H − P2/(2mA), where
P = ∑

i pi and A = 6 for 6Li. Therefore, the eigenvalues of
Heff correspond to the excitation energies of 6Li with respect to
the ground state of the unphysical 4He nucleus obtained using
Hint with A = 6. Consequently, to get the absolute ground-state
energy of 6Li, we do a separate IM-SRG(2) calculation of
the ground state of the unphysical 4He core and add this to
the eigenvalues of Heff . We have checked that for large emax

spaces, the center of mass factorizes as in Ref. [14].
Figure 2 shows the convergence of the ground-state energy

of 6Li with increasing emax excitations. The left panels give
the IM-SRG(2) results using the two different generators H od

1
and H od

2 , while the right panel shows NCSM energies [15]
for comparison. Since the single-particle emax truncation is
different than the NCSM Nmax, the convergence pattern of the
two methods is expected to be different (an emax space for the
same value is substantially larger). The IM-SRG(2) ground-
state energy converges to −32.7(3) MeV, where contributions
from normal ordered three-body interactions are expected to
be repulsive (similar to triples correction in coupled-cluster
calculations) [5], in very good agreement with the extrapolated
NCSM value −32.0(2) MeV [15]. The generator dependence
in Fig. 2 is found to be very weak, indicating that the error
from truncating the IM-SRG equations to two-body operators
is indeed small.

Next, we study the convergence properties of the low-lying
excited states of 6Li. The left panel of Fig. 3 shows the
convergence of the IM-SRG(2) spectrum as a function of
emax at a fixed value of h̄ω = 24 MeV. However, the h̄ω

dependence is very weak in the HF basis for large emax. The
right panel shows the convergence of the NCSM spectrum
with Nmax. The low-lying states converge rather well and are in
reasonable agreement with the NCSM results. The high-lying

061304-2



RAPID COMMUNICATIONS

In-MEDIUM SIMILARITY RENORMALIZATION GROUP . . . PHYSICAL REVIEW C 85, 061304(R) (2012)

FIG. 3. (Color online) Convergence as a function of emax of the
excitation energies of 6Li obtained by diagonalizing the IM-SRG(2)
Heff in the p shell using the H od

1 generator. The HF basis at a
fixed h̄ω = 24 MeV is used for the IM-SRG(2) calculations. For
comparison we show the convergence with Nmax of the NCSM
energies at the same h̄ω value [15].

1+ state is not yet converged even at the largest space for both
methods. As the convergence is very poor in the NCSM with
a harmonic-oscillator basis, this could indicate that this state
has an extended structure.

Our results for 6Li are very encouraging and show that the
IM-SRG provides a new method to derive effective valence-
shell Hamiltonians that accurately reproduce the low-lying
spectrum obtained with ab initio methods, but at a polynomial
scaling ∼N4

h N2
p with the number of hole and particle orbits.

Recently, other methods have been explored for open-shell
nuclei, including two-particle attached coupled-cluster theory
[16], which leads to non-Hermitian effective Hamiltonians,
and the NCSM with a core [17], which requires a NCSM
solution of the full problem and is therefore limited to lighter
nuclei.

Turning to 18O, where an exact diagonalization of the
18-body problem is out of reach, we compare our IM-SRG(2)
results for the spectrum in Fig. 4 to calculations based

on diagrammatic expansions (called the Q-box expansion)
commonly used to derive effective shell-model Hamiltonians
[9]. In this context, one can also understand our choices for
H od

1,2 as follows. When one derives effective interactions among
valence nucleons using perturbation theory, the many-body
diagrams contain at least one vertex of �pp′hh′ , �pp′(vh or hv),
or �(pq or qp)vv′ . These interaction vertices are precisely the
off-diagonal part driven to zero under the IM-SRG evolution.
Therefore, the effective interactions among valence nucleons
are directly given by PH d

1,2(∞)P (only at finite s, there
would be perturbative corrections). For a clear comparison
to shell-model calculations for 18O, we use the same empirical
single-particle energies for the one-body part of Heff in both
IM-SRG and Q-box calculations; that is, we replace the
calculated one-body part in the IM-SRG by the empirical
USDb [19] single-particle energies.

The left panel of Fig. 4 compares the low-lying 18O
excitation energies obtained by diagonalizing the sd-shell
Heff derived from the IM-SRG(2) and the Q-box expansion.
We also give the experimental energies [18], although good
agreement with experiment is not required since three-nucleon
(3N) forces are not included in the initial Hamiltonian and
we do not fine-tune the single-particle basis to reproduce
the experimental root-mean-square radius (see below). All
calculations are performed in the HF basis. For the perturbative
Q-box results, the open symbols correspond to an Heff that is
calculated at first, second, and third order, while the solid
symbols include higher-order folded-diagram contributions
to remove the energy dependence of induced interaction
vertices [9]. For the IM-SRG(2) results, as for 6Li, we observe
negligible differences in the calculated spectra for the two
generators H od

1 and H od
2 . This implies that the truncation

of the flow equations to two-body operators is a very good
approximation. The IM-SRG(2) energies are similar to the
results based on the perturbative Q-box expansion, where
some differences from the “best” results (Q(3) plus folded-
diagram contributions) are expected because the IM-SRG is
a nonperturbative method that includes many higher-order
terms.

FIG. 4. (Color online) Left panel: Excitation energies of 18O obtained by diagonalizing the IM-SRG(2) Heff in the sd shell, compared with
results obtained at first (Q(1)), second (Q(2)), and third (Q(3)) order in the Q-box expansion [9] for effective valence-shell interactions (the filled
symbols include higher-order folded-diagram contributions). All results are for h̄ω = 24 MeV, but a HF basis is used. For comparison, we also
show the experimental energies [18]. Right panel: Excitation energies of 18O vs h̄ω calculated at the second-order Q-box level (plus folding) in
harmonic-oscillator and HF bases. For the results of both panels, an emax = 8 space was used, and to simplify the comparison, the calculations
used single-particle energies from the USDb interaction [19] for the diagonalization in the sd shell.
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Conventional shell-model calculations are in better agree-
ment with the experiment than in Fig. 4 [9]. This is because
conventional calculations include additional phenomenology
that improves agreement with experiment but weakens the
connection with the underlying Hamiltonian and microscopic
many-body theory. This can be understood from the right
panel of Fig. 4, which displays the h̄ω dependence of the
18O excitation energies for second-order Q-box calculations
performed in the harmonic-oscillator (HO) and the HF basis.
The HO-based spectrum exhibits a very strong h̄ω dependence,
while calculations in the HF basis are nearly independent
of h̄ω. Conventional calculations of Heff work in the HO
basis with h̄ω ≈ 45A−1/3 − 25A−2/3 chosen to give the same
root-mean-square radius as a sphere of uniform density.
The fine-tuning of h̄ω can therefore be understood as a
phenomenological means to build in the correct saturation
properties of nuclei, which are known to be deficient in
ab initio calculations starting from Hamiltonians without
three-nucleon forces [11]. Our IM-SRG calculations present
a microscopically derived Heff , but the incorrect saturation
properties of the initial NN-only Hamiltonian translate into a
poor description of the 18O spectrum compared to empirical
calculations carried out in a HO basis (at h̄ω ≈ 14 MeV
for 18O).

Conclusions. We have shown that the IM-SRG can be
successfully generalized to open-shell systems and to a
nonperturbative derivation of effective valence-shell Hamil-
tonians. The IM-SRG evolution decouples the physics of
valence nucleons from the full Hilbert space, enabling exact
diagonalizations in the valence space that are impossible in
the full problem where all nucleons are active. First results
were presented for 6Li, with ground-state and excited-state
energies in very good agreement with ab initio methods. We
then applied the IM-SRG to 18O and compared our results to
those obtained from conventional perturbative calculations of
Heff , demonstrating that the IM-SRG provides a first viable
nonperturbative approach to derive effective interactions for
the shell model from nuclear forces. Work is in progress to
extend the IM-SRG to extended valence spaces, to effective
operators, and to the inclusion of three-nucleon forces.
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