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Transition from subbarrier to deep-subbarrier regimes in heavy-ion fusion reactions
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We analyze recent experimental data of heavy-ion fusion cross sections available up to deep-subbarrier energies
in order to discuss the threshold incident energy for a deep-subbarrier fusion hindrance phenomenon. To this
end, we employ a one-dimensional potential model with a Woods-Saxon internuclear potential. Fitting the
experimental data in two different energy regions with different Woods-Saxon potentials, we define the threshold
energy as an intersection of the two fusion excitation functions. We show that the threshold energies so extracted
are in good agreement with the empirical systematics as well as with the values of the Krappe-Nix-Sierk (KNS)
potential at the touching point. We also discuss the asymptotic energy shift of fusion cross sections with respect
to the potential model calculations, and show that it decreases with decreasing energies in the deep-subbarrier
region, although it takes a constant value at subbarrier energies.
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Heavy-ion fusion reactions at low incident energies are
intimately related to the quantum tunneling phenomena of
many-body systems. Because of a strong cancellation between
the repulsive Coulomb interaction and an attractive short-range
nuclear interaction between the colliding nuclei, a potential
barrier, referred to as a Coulomb barrier, is formed, which
has to be surmounted in order for fusion to take place. In
heavy-ion reactions, because of a strong absorption inside the
Coulomb barrier, it has been usually assumed that a compound
nucleus is automatically formed once the Coulomb barrier has
been overcome. The simplest approach to heavy-ion fusion
reactions based on this idea, that is, a one-dimensional poten-
tial model, has been successful in reproducing experimental
fusion cross sections at energies above the Coulomb barrier [1].
A one-dimensional potential model fitted to reproduce fusion
cross sections above the Coulomb barrier, however, has been
found to underestimate fusion cross sections at lower energies.
It has been well recognized by now that subbarrier fusion
enhancement is caused by couplings of the relative motion
between the colliding nuclei with other degrees of freedom,
such as collective vibrational and rotational motions in the
colliding nuclei [2,3].

The behavior of fusion cross sections at extremely low
energies is a critical issue for estimating reaction rates of
astrophysical interest. One of the current interests in heavy-ion
fusion reactions is a steep fall-off phenomenon of fusion cross
sections at deep-subbarrier energies. Recently, fusion cross
sections for several colliding systems have been measured
down to extremely low cross sections, up to several nb [4–8].
These experimental data have shown that fusion cross sections
fall off much more steeply at deep-subbarrier energies with
decreasing energy, compared to the expectation of the energy
dependence of cross sections at subbarrier energies. That
is, experimental fusion cross sections appear to be hindered
at deep-subbarrier energies compared to standard coupled-
channels calculations, although fusion cross sections are still
enhanced with respect to a prediction of a single-channel
potential model. Although a few theoretical models have been

proposed [9,10], the origin of deep-subbarrier fusion hindrance
has not yet been fully understood.

In Refs. [4,5,11], deep-subbarrier fusion hindrance has
been analyzed using the astrophysical S factor. It has been
claimed [4,5,11] that deep-subbarrier fusion hindrance sets in
at the energy at which the astrophysical S factor reaches its
maximum. The authors of Refs. [4,5,11] even parametrized
the threshold energy as

Es = 0.356

(
Z1Z2

√
A1A2

A1 + A2

)2/3

(MeV). (1)

Notice that the S-factor representation provides a useful tool
only when the penetration of the Coulomb repulsive potential
is a dominant contribution, such as in fusion reactions of
light systems at low energies. In fact, the relation between the
threshold for deep-subbarrier hindrance and the maximum of
the S factor is not clear physically, and thus it is not trivial how
to justify theoretically the identification of the threshold energy
with the astrophysical S factor. Nevertheless, it has turned
out that the threshold energy so obtained closely follows the
values of phenomenological internucleus potentials, such as
the Krappe-Nix-Sierk (KNS) [12], the Bass [13], the proximity
[14], and the Akyüz-Winther [15] potentials, at the touching
configuration [16]. This clearly implies that the dynamics
which takes place after the colliding nuclei touch each other
is responsible for deep-subbarrier fusion hindrance, making
at the same time the astrophysical S factor decrease as the
incident energy decreases.

In this paper, we investigate the threshold energy for deep-
subbarrier fusion hindrance using an alternative method, which
is physically more transparent than the definition with the
maximum of the S factor. That is, we determine the threshold
energies by fitting the experimental fusion cross sections
in subbarrier and deep-subbarrier energy regions separately
using single-channel barrier penetration model calculations,
and compare them with the systematics given by Eq. (1) as well
as with the touching energy evaluated with the KNS potential.
We also discuss the energy dependence of fusion cross sections
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FIG. 1. (Color online) Fusion excitation functions for 64Ni + 64Ni
[Fig. 1(a)] and 16O + 208Pb [Fig. 1(b)]. The solid and the dashed
lines are results of single-channel potential model calculations which
fit the experimental data in the subbarrier and the deep-subbarier
energy regions, respectively. The experimental data are taken from
Refs. [4,8].

at deep-subbarrier energies in terms of an asymptotic energy
shift proposed by Aguiar et al. [17].

In order to illustrate our procedure, Figs. 1(a) and 1(b)
show fusion cross sections for 64Ni + 64Ni and 16O + 208Pb
systems, respectively. We first define the subbarrier energy
region as the one in which fusion cross sections are between
10−2 and 100 mb. We fit the experimental data in this energy
region with a potential model with a Woods-Saxon potential
treating the three parameters of the potential, that is, the depth

V0, the radius R0, and the surface diffuseness a, as adjustable
parameters. To this end, we numerically solve the Schrödinger
equation without resorting to the parabolic approximation [18].
The fusion cross sections calculated in this way are shown by
the solid lines in the figure. Of course, these calculations do not
account for the fusion cross sections at higher energies as the
channel-coupling effects are completely ignored. However,
it is sufficient for our purpose, as we are interested only in
the energy dependence of fusion cross sections at subbarrier
energies, that is, the slope of fusion excitation functions. These
calculations do not reproduce the experimental data at lower
energies, either. In order to obtain a better fit in the lower-
energy region, the surface diffuseness parameter has to be
increased, as has been noticed in Refs. [8,18]. We then define
the deep-subbarrier region as the one in which fusion cross
sections are below 10−3 mb. The dashed lines in the figure show
the fusion cross sections obtained by fitting to the experimental
data in this energy region. See Table I for the actual values of
the surface diffuseness parameter. From the two curves, we
finally define the threshold energy for deep-subbarrier fusion
hindrance as the energy at which the two fusion excitation
functions intersect with each other.

Figure 2 shows the threshold energies thus obtained as a
function of Z1Z2

√
A1A2/(A1 + A1). The figure also shows

the threshold energy for 28Si + 64Ni [19], 64Ni + 64Ni [4],
16O + 208Pb [8], 60Ni + 89Y [4], 90Zr + 90Zr [20], 90Zr + 92Zr
[20], and 90Zr + 89Y [20] systems. For comparison, the figure
also shows the empirical systematics given by Eq. (1) with the
solid line, and the “experimental” data defined as the maximum
energy of the S factor [11] by the stars. These values are
summarized in Table I, together with the potential energy at
the touching point [16] estimated with the KNS potential. One
can see that the values of the threshold energy defined in our
way are in good agreement with those defined as the maximum
of the astrophysical S factor as well as with the potential energy
at the touching configuration.

Let us next discuss briefly the asymptotic energy shift for
deep-subbarrier fusion reactions. This quantity was introduced
by Aguiar et al. [17] as a measure of subbarrier enhancement
of fusion cross sections. It was defined as the extra energy
needed to fit the experimental fusion cross sections with
respect to a single-channel potential model calculation. It has

TABLE I. The threshold energy Es for deep-subbarrier fusion hindrance for several systems, obtained with the two-slope fit to the
experimental fusion cross sections. a> and a< are the diffuseness parameters in the Woods-Saxon potential used to fit the subbarrier and the
deep-subbarrier regions of fusion cross sections. ζ is defined as ζ = Z1Z2

√
A1A2/(A1 + A2), in which Zi and Ai (i = 1, 2) are the charge and

the mass numbers of the nucleus i. E(exp)
s and E(emp)

s are the “experimental” threshold energy [11] and the empirical energies given by Eq. (1),
respectively. VKNS is the potential energy at the touching configuration [16] estimated with the KNS potential. All the energies are shown in
units of MeV, while the lengths are in units of fm.

Systems ζ a> a< Es E(exp)
s E(emp)

s VKNS

28Si + 64Ni 1730.05 0.71 0.99 46.2 47.3 ± 0.9 51.3 43.9
16O + 208Pb 2528.55 0.87 0.94 71.1 69.6 66.1 70.5
64Ni + 64Ni 4434.97 0.76 0.9 88.92 87.3 ± 0.9 96.1 89.0
60Ni + 89Y 6537.33 0.74 0.815 124.5 123 ± 1.2 124.5 125.4
90Zr + 89Y 10435.5 0.76 0.87 171.8 171 ± 1.7 170.3 175.2
90Zr + 90Zr 10733.1 0.56 0.76 176.1 175 ± 1.8 173.2 179.9
90Zr + 92Zr 10791.9 0.53 0.78 171.7 171 ± 1.7 173.9 179.1
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FIG. 2. (Color online) The threshold energy Es for deep-
subbarrier hindrance for several systems, determined with the two-
slope fit to the experimental fusion cross sections, as a function of the
parameter Z1Z2

√
A1A2/(A1 + A2). The solid curve is the empirical

function given by Eq. (1), while the stars denote the “experimental”
values defined as the maximum energy of the astrophysical S

factors [11].

been argued that the calculated fusion cross sections have
approximately the same exponential energy dependence as
the experimental data in the subbarrier energy region, but are
shifted in energy by a constant amount [17]. In connection
to deep-subbarrier fusion hindrance, it may be interesting to
revisit this representation.

In order to define the asymptotic energy shift, we first adjust
the value of V0 and R0 in the Woods-Saxon potential, keeping
the same value for the diffuseness parameter a as the one which
has been obtained to fit to the subbarrier fusion cross sections
(see a> in Table I), so that the experimental fusion cross
sections at high energies, that is, those above σ > 100 mb, can
be approximately reproduced (see Fig. 3). We then define the
asymptotic energy shift as a difference between the solid line
in Fig. 3 and the experimental data for a fixed value of fusion
cross section. Figure 4 shows the asymptotic energy shift so
extracted for several systems as a function of corresponding
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FIG. 3. (Color online) Fusion excitation functions for the
64Ni + 64Ni system. The dashed and the solid lines are results of
single-channel potential model calculations which fit the experimen-
tal data in the subbarrier region and at energies above the Coulomb
barrier, respectively. The experimental data are taken from Ref. [4].
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FIG. 4. (Color online) The asymptotic energy shift as a function
of fusion cross section for 28Si + 64Ni (filled squares), 16O + 208Pb
(filled triangles), and 64Ni + 64Ni (filled circles) systems.

fusion cross section. As one can see, the asymptotic energy
shift is nearly constant in the range of 0.1 � σ � 1 mb, in
accordance to the previous conclusion by Aguiar et al. [17].
However, in the deep-subbarrier region, the asymptotic energy
shift starts decreasing as the fusion cross sections decrease,
reflecting the fact that the fusion cross sections have a different
exponential slope than that in the subbarrier region, as shown
in Fig. 1.

In summary, we have studied the energy dependence of
heavy-ion fusion cross sections at deep-subbarrier energies
using recent experimental data. To this end, we employed
a one-dimensional potential model. We have shown that the
asymptotic energy shift is almost a constant in the subbarrier
region, but it decreases with decreasing energies in the deep-
subbarrier region. This is a clear manifestation of the hindrance
phenomenon of deep-subbarrier fusion. In order to see at which
energy the deep-subbarrier hindrance takes place, we estimated
the threshold energy with a two-slope fit procedure. That is, we
defined the threshold energy as an intersection of two fusion
excitation functions, which fit the experimental fusion cross
sections either in the subbarrier energy region or in the deep-
subbarrier energy region. We have shown that the threshold
energies so defined are in good agreement with those estimated
from the maximum of the astrophysical S factor.

The definition for the threshold energy proposed in this
paper is complementary to the one using the maximum of the
astrophysical S factor. As we have shown in this paper, both
the definitions provide a similar value of threshold energy
as the potential energies at the touching configuration. This
strongly suggests that the dynamics after touching plays an
important role in deep-subbarrier fusion reactions, changing
the exponential slope of fusion cross sections and at the same
time making the astrophysical S factor reach its maximum,
although it is an open question why and how the dynamics
after touching leads to the maximum of the astrophysical S

factor.
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