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Deep crustal heating in a multicomponent accreted neutron star crust
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A quasistatistical equilibrium model is constructed to simulate the multicomponent composition of the crust
of an accreting neutron star. The ashes of rp-process nucleosynthesis are driven by accretion through a series
of electron captures, neutron emissions, and pycnonuclear fusions up to densities near the transition between
the neutron star crust and core. A liquid droplet model which includes nuclear shell effects is used to provide
nuclear masses far from stability. Reaction pathways are determined consistently with the nuclear mass model.
The nuclear symmetry energy is an important uncertainty in the masses of the exotic nuclei in the inner crust and
varying the symmetry energy changes the amount of deep crustal heating by as much as a factor of two.
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I. INTRODUCTION

A large set of observational data from accreting neutron
stars, including x-ray bursts, superbursts, crust cooling, and
the quiescent luminosity of transiently accreting sources has
become available in recent years. This wealth of observational
data leads to opportunities to probe the properties of neutron
stars, reactions on exotic nuclei, and the nature of dense matter.
However, the composition of the deepest layers of the crust of
accreting neutron stars is still not yet well known. This work
presents one of the first multicomponent crust models which
computes the properties of the deepest regions of the crust.

In an accreting neutron star, as accreted matter (principally
hydrogen and helium) accumulates on the surface, nuclei in
the outer crust are pushed to deeper layers. At densities near
106 g/cm3, the fusion of hydrogen and helium can become
unstable and a thermonuclear explosion results, an x-ray
burst. These x-ray bursts generate heavier nuclei by burning
hydrogen, referred to as rp-process nucleosynthesis [1]. As
matter accretes, the burst ashes are pushed to higher densities
and undergo a series of nuclear reactions: electron captures,
neutron emissions, and pycnonuclear fusions. These reactions
drive the composition to nuclear statistical equilibrium, the
ground state in the neutron star crust. This stable burning
also generates heat of a few MeV per nucleon, which heats
the crust in addition to the unstable burning which occurs
in x-ray bursts. This is referred to as “deep crustal heating”
[2]. It is this deep crustal heating which is thought to
drive the quiescent luminosity of accreting neutron stars [3].
At around 1011–12 g/cm3 (the start of the inner crust) the
neutron separation energy becomes negative and some of the
neutrons form a quasifree degenerate superfluid neutron gas.
The neutron emissions dominate the deep crustal heating at
densities just above the density at which the inner crust begins.
Finally, near 1014 g/cm3, the crust ends when nuclei are no
longer energetically favorable.

One success in connecting the observations to theoretical
models is the work in Refs. [4,5], which used a theoretical

*steiner3@uw.edu

cooling model to describe the crust cooling of KS 1731 and
MXB 1659. The x-ray flux from these objects was observed
immediately after outburst, and this flux decreased according
to a broken power-law: the flux decreases more weakly with
time at early times before the photons from the inner crust
have reached the photosphere, and the flux decreases more
strongly with time at later times. This effect is due principally
to the larger thermal conductivity from superfluid quasifree
neutrons in the inner crust (it is the first definitive observation
of superfluidity in the crust). Ref. [5] showed that the crust
must have a relatively small impurity parameter to have a
thermal conductivity large enough to reproduce the data.

Another success is the observation of the crustal cooling
of SAX J1808 after an accretion outburst. SAX J1808 is
a neutron star with transiently accretes from a small main
sequence companion. These accretion events warm up the
neutron star crust relative to the core and the cooling of the
crust can be observed right after the end of an accretion event.
Reference [6] compared the observations to models developed
in Ref. [7] which required the composition and heating of the
accreted crust as an input. The result was that the cooling of
SAX J1808 was so rapid as to suggest that the minimal neutron
star cooling model [8,9] was insufficient to explain the strong
decrease in luminosity. This suggests that extra cooling beyond
the minimal model, such as direct Urca or the cooling from
pions or quarks, is present in SAX J1808.

Some observations have been difficult to reproduce with
current crust models. An instability to Carbon fusion at around
1010 g/cm3 may generate a superburst [10,11], an energetic
form of x-ray burst which is observed in some sources.
This instability is strongly temperature dependent. Current
models suggest that the crust is too cold do destabilize Carbon
fusion, thus suggesting superburst models require revisiting
[5,12–14]. While the carbon fusion cross section is not well
understood at these low energies, a severe enhancement in the
fusion rate would be required to explain many superbursts [15].
One important input parameter in these models is the amount of
heating in the inner crust. If the heating in the inner crust was
sufficiently strong, this could alleviate difficulties in current
superburst models.
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Theoretical models of x-ray bursts which couple reaction
networks to hydrodynamics and radiation transport have met
with considerable success [16]. These complicated com-
putational frameworks cannot yet follow the reactions all
the way the higher densities probed in superbursts, in part
because of the computational cost of the immense nuclear
reaction networks which are required. An alternative was
employed in Refs. [14,17], which uses a full reaction network
with simplified hydrodynamics. These authors found extra
heating from electron captures into excited states which
partially, but not fully, alleviated the problem with superburst
models. These simplified models become difficult in the inner
crust, where nuclear reactions in the medium of quasi-free
neutrons are not well known. Thus, these models cannot
yet trace the evolution of accreted material as it sinks into
the inner crust. A final difficulty is the requirement that
the nuclear reactions are consistent with the nuclear masses,
themselves subject to significant uncertainties at the relevant
densities.

On the other hand, multicomponent models of the accreted
crust are particularly important because crusts are at a
sufficiently low temperature and density to strongly limit
the possible nuclear reactions which might occur. Nuclear
structure effects also come into play, and some reactions which
would not have been possible in a one-component system open
up new reaction flows in a multicomponent system.

A simplification comes from the fact that, in the deepest
regions of the crust, most of the relevant nuclear reaction
rates are strongly density dependent. This means that as
soon as a reaction channel becomes energetically allowed,
its rate rises and quickly becomes much faster than the
local accretion timescale. A quasistatistical equilibrium (QSE)
ensues where, to a good approximation, electron captures
and neutron emissions always proceed so long as they are
exothermic. This QSE state is almost independent of the
details of the nuclear reactions and depends more strongly
on the masses of the nuclei which are present at any
particular density (i.e., the Q values). Pycnonuclear fusion
reactions are allowed when their fusion timescale is much
faster than the local accretion timescale and can be handled
separately.

In this work, a one-zone multicomponent QSE model is
used to describe the composition and heating in the crust of an
accreting neutron star. When a particular nuclear reaction is
energetically disfavored, its rate is presumed to be zero. When
non-fusion reactions are energetically favored, their rate is
taken to be infinite, proceeding until they become energetically
disfavored again. Pycnonuclear fusion is handled by taking
advantage of recent work on the relevant nuclear S factors.
Nuclear masses are described with a modern liquid droplet
model which contains corrections for nuclear shell effects and
matches available experimental data with an accuracy near that
of more microscopic approaches. In-medium corrections are
also included, i.e., the masses of each nuclei depend on the
temperature, the potential presence of quasifree neutrons, and
also on the ambient electron density. The use of a liquid droplet
model allows the inclusion of almost all of the relevant physics,
but avoids the large computational time of more microscopic
models.

II. CRUST MODEL

This work assumes that the multicomponent crust is
uniformly mixed, that nuclei are randomly distributed and
uncorrelated, except for the lattice correlations which naturally
occur in the Coulomb solid. The Wigner-Seitz approximation
is used, and each nucleus occupies one and only one Wigner-
Seitz cell, filled with electrons and quasifree neutrons. Each
cell is fixed in size by requiring it have no overall electric
charge.

The assumption of uniform mixing may be a poor one,
especially at lower densities. Recent molecular dynamics
calculations [18–20] suggest that lighter and heavier nuclei
separate. This will not affect the bulk energetics of the system
but may have a significant impact on the pycnonuclear reaction
rates described below. However, these microscopic simulations
are computationally difficult, and cannot yet be performed for a
wide range of density regimes, nuclear mass models, and initial
compositions. These simulations also employ very simplified
models of the nucleon-nucleon interaction and do not handle
all of the potential finite-size effects.

A. In-medium nuclear mass formula

The binding energy of the nucleus in medium with index i

can be written as a sum of terms,

Enuc(Ni, Zi, nn,out, np,out, ne, T )

= Ebulk + Esurf + ECoul + Epair + Eshell . (1)

For simplicity, h̄ = kB = c = 1 in the following. The quan-
tities nn,out and np,out denote the average quasifree neutron
and proton densities outside of nuclei. The demarcation of
nucleons inside and outside of nuclei is clearly artificial,
but has proven to be a good approximation for the bulk
thermodynamic properties of matter except at the highest
densities in the crust. The dependence of the mass formula on
the nn,out and np,out, and on the ambient electron density, ne, is
required to reflect the fact that the masses of nuclei depend on
the surrounding medium. While the physical properties (radii,
internal neutron and proton densities, etc.) of each nucleus
in the distribution are different for each nucleus and should
thus be given a subscript i, this subscript is omitted in this
section to simplify the notation. The eleven nuclear mass
model parameters described below are all identical for each
nucleus, and the distinction between model parameters and
nuclear properties will be made clear.

The bulk part of the nuclear energy is constructed from a
given equation of state (EOS) of bulk nuclear matter, denoted
ε∞(nn, np, T ). Let ε̃∞(nn, np, T ) denote the energy density of
bulk matter defined without the rest mass energy density, and
similarly for the Helmholtz free energy density, f̃ , e.g.,

ε̃∞(nn, np, T ) = ε∞(nn, np, T ) − mnnn − mpnp

f̃∞(nn, np, T ) = f∞(nn, np, T ) − mnnn − mpnp

= ε̃∞(nn, np, T ) − T s(nn, np, T ). (2)

The function ε∞(nn, np, T ) is given either by a Skyrme [21]
model or by the model of Akmal et al. [22] (hereafter APR).
Skyrme models SLy4 [23], Gs, and Rs [24] are used, motivated
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by the fact that they provide a variation in the symmetry energy
while still giving reasonable saturation properties and neutron
star masses and radii. Finite temperature corrections in the bulk
part of the nuclear energy are negligible at the temperatures
of interest (<109 K), so s(nn, np, T ) will be taken to be zero.
In effect, the mass model described below is actually an entire
class of mass models with different functions, ε∞, all of which
have a comparable quality as evaluated by the root-mean-
square (RMS) deviation of the mass excess, yet with different
compressibilities and symmetry energies. This allows one to
estimate the uncertainties in the property of the crust due to the
uncertainties in the nature of the nucleon-nucleon interaction
[25–27].

An approximate expression for the volume of the nucleus
is Vnuc = A/nB,in, where nB,in ≡ nn,in + np,in, the sum of the
average neutron and proton densities inside the nucleus. Then
the bulk energy is (c.f. [26]),

Ebulk = ε̃∞(nn,in, np,in, T )

(
A

nB,in

)
, (3)

where nn,in and np,in are the internal neutron and proton
densities inside the nucleus. In the present model, the internal
baryon density is chosen to be

nB,in = n0 + n1I
2 , (4)

where n0 and n1 are parameters of the model and I ≡ 1 −
2Z/A. The individual average neutron and proton number
densities are given by

nn,in = nB,in(1 + δ)/2 + g(χ )
(5)

np,in = nB,in(1 − δ)/2 − g(χ )

and the density asymmetry δ = ζ I where ζ is an additional
parameter of the model. Other models choose to treat nn,in

and np,in as nucleus shape parameters to be minimized over
for each nucleus, but this does not typically improve the fit to
experimentally measured masses. If ζ = 1, nuclei in vacuum
have no neutron skin and ζ < 1 indicates the presence of a
neutron skin. The fraction of the Wigner-Seitz cell volume
occupied by the nucleus, χ , is described below. Without the
additional correction, g(χ ), the energy of ultra-neutron rich
matter the densities implied by nn,in and np,in fail to give a
physical value of the core-crust transition density as computed
in, e.g., Ref. [25]. The function g(χ ) is defined by

g(χ ) ≡ fnC

(
1 − efnEχ

1 − efnE

)
, (6)

where fnE ≡ 5 and fnC ≡ 1/2 alleviates this difficulty. This
choice of this functional form for g(χ ) is purely phenomeno-
logical; the exponential in χ ensures that nuclei are only
affected at the deepest regions of the crust. Nuclear radii are
defined by the relations 4πR3

nnn,in = 3N and 4πR3
pnp,in =

3Z.
The radius of the Wigner-Seitz cell, RWS for each nucleus

is determined by assuming that each cell contains the same
number of protons and electrons, i.e.,

4
3πR3

WSne = Z, (7)

where the electron density ne is taken to be the same in the
WS cells of all nuclear species. This choice approximately
ensures that the edges of every Wigner-Seitz cell is at a fixed
electrostatic potential. Furthermore, this choice ensures that
the WS cells for each nucleus in the multicomponent mixture
occupy the entire volume and that each neutron in the quasifree
neutron gas is associated with one and only one WS cell. The
volume fraction of the cell which is occupied by the neutrons
in the nucleus is χ ≡ (Rn/RWS)3 and the volume fraction
occupied by protons is χp ≡ (Rp/RWS)3. Because the size of
the cell depends on the ambient electron density, and because
the Coulomb energy in each nucleus depends on the size
of the cell, the mass of every nucleus depends (albeit weakly)
on the number density of every other species in the system.
This is expected, since the Coulomb energy has longer range
than the nuclear forces and couples each nucleus to the others.
Defining volume of each cell, Vi = 4πR3

WS,i/3 ensures that
the identity

∑
i niVi = 1 exactly holds.

The surface energy is given as

Esurf = 4πR2
surfσB(nn, np), (8)

where Rsurf is defined by the relation

4
3πR3

surfnB,in = A , (9)

the quantity B is defined by

B(nn, np) ≡ 16 + b

[1/x3 + b + 1/(1 − x)3]
, (10)

and σδ = 96/(b + 16). This is equivalent to Eq. (5) in Ref. [26],
and ensures that the surface energy properly obeys the x3

dependence shown in Ref. [28] to match Thomas-Fermi
calculations of very neutron-rich nuclei. It has the consequence
that nuclei at large densities have small surface energies
because the vanishing proton fraction requires the neutron
density distribution to be quite diffuse (even though the current
model contains no explicit diffusiveness).

The Coulomb energy is

ECoul = 2Cπe2R2
p(np,in − np,out)

2fd (χp)

(
A

nB,in

)
, (11)

where the function fc(χp) is given by

fd (χp) = 1

d + 2

{(
2

d − 2

) [
1 − 1

2
χ (1−2/d)

p

]
+ χp

}
, (12)

where d is the dimensionality (shape) of the nucleus. All nu-
clear are assumed to be spherical, i.e., d = 3. The coefficient,
C, is an arbitrary parameter which decreases the Coulomb
energy slightly, in order to model the diffusiveness of the
proton distribution in laboratory nuclei. This formula can
include pasta by allowing d to be different from 3, but this
possibility is left to future work. This differs slightly from the
original expression in Ref. [29]: the factor (np,in − np,out)2

ensures that the Coulomb energy vanishes if the proton
densities internal and external to nuclei are equal. In practice,
however, this correction will not affect our results.
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The pairing energy is

Epair =
⎧⎨
⎩

−A−1/3E� N and Z even
A−1/3E� N and Z odd

0 otherwise
. (13)

The exponent 1/3 is known to be not well constrained by
fitting to laboratory nuclei, and varying this exponent as a
model parameter does not substantially improve the fit.

For the shell energy, the corrections described in Ref. [30]
are used, modified to correct for the medium. Shell corrections
can be particularly difficult to evaluate in quantum mechanical
models of nuclei at these densities because of spurious shell
effects which are generated by the boundary of the Wigner-
Seitz cell [31]. It is also unclear how to properly modify these
shell effects for the medium. One expects that, as the number
density of neutrons outside of nuclei increases relative to the
number density of neutrons inside nuclei, the shell effects
become less pronounced. This is treated phenomenologically
by applying quenching functions

	n =
(

nn,in − nn,out

nn,in

)2

,

(14)

	p =
(

np,in − np,out

np,in

)2

to the shell correction energy, i.e.,

S2 = nvn̄v

Dn

	n + zvz̄v

Dz

	p,

S3 = nvn̄v (nv − n̄v)

Dn

	n + zvz̄v (zv − z̄v)

Dz

	p, (15)

Snp = nvn̄vzvz̄v

DnDz

	n	p.

Then the final shell correction is

Eshell = a1S2 + a2S
2
2 + a3S3 + anpSnp. (16)

The neutron magic numbers are set to 2, 8, 14, 28, 50, 82,
126, 184, 228, 308, and 406, as suggested by Ref. [32], and
the proton magic numbers are all within the range accessible
by experiment.

In summary, the 11 free parameters in this model (outside
of the input equation of state of bulk nuclear matter which is a
kind of parameter in itself) are the surface tension in MeV/fm2,
σ , the surface symmetry energy σδ , the correction factor to the
Coulomb energy, C, the asymmetry parameter ζ , the central
density parameters, n0 and n1 which are expressed in units of
fm−3, the pairing energy E�, and the four parameters for the
shell effects, a1, a2, a3, anp.

The results of the fit to the experimental mass data from
Ref. [33] are given in Table I. Note that, because of the
inclusion of shell effects, the quality of the mass formula is
about 1.2 MeV, much closer to the 0.7 MeV deviation observed
for FRDM, and much improved from a typical liquid droplet
model which has a deviation of 2.6 MeV or more. It is also
instructive to see how the parameters depend with the density
dependence of the symmetry energy: APR and SLy4 have
symmetry energies which depend rather more weakly with
density and Gs and Rs have symmetry energies which depend

TABLE I. The model parameters and RMS deviation in the mass
excess for the homogeneous equations of state used in this work.

Quantity (Units) APR SLy4 Gs Rs

n0 (fm−3) 0.1786 0.1789 0.1479 0.1504
n1 (fm−3) − 0.1057 − 0.08760 0.03355 0.02920
η 0.8804 0.8798 0.8642 0.8696
σ (MeV/fm2) 1.155 1.154 0.9772 0.9906
σδ 1.382 1.251 0.4446 0.4597
C 0.8957 0.8933 0.9246 0.9227
E� (MeV) 5.224 5.226 5.213 5.218
a1 (MeV) − 1.390 − 1.390 − 1.378 − 1.373
a2 (MeV) 0.008931 0.01001 0.01300 0.01264
103 a3 (MeV) 2.380 2.360 1.865 1.920
anp (MeV) 0.1133 0.1137 0.09897 0.09944
δmRMS (MeV) 1.132 1.124 1.228 1.200

more strongly with density. It is clear that the surface symmetry
energy σδ is correlated with the symmetry energy, as is the
parameter n1, but the pairing and shell parameters are only
weakly correlated to the symmetry energy.

B. Free energy of multicomponent matter

The free energy density of matter (without the rest mass
energy density) is

f̃ ({ni}, nn,out, np,out, T )

=
∑

i

[Enuc(Zi,Ni, nn,out, np,out, ne, T )ni + fC(ni, T )]

+ (1 − φ)f̃∞(nn,out, np,out, T ) + f̃elec(ne, T ), (17)

where fC is the classical expression for the free energy density
of nucleus i with density ni at temperature T and felec is
the free energy density of electrons without the electron rest
mass energy density. One can also in principle include finite
temperature corrections to fC appropriate to dense matter as
described in Ref. [34]. The contribution from fC is small
and will be omitted here. Other thermodynamic quantities,
such as the Gibbs energy density (see the Appendix), can
be trivially obtained from the free energy density in the usual
way. Hereafter, the proton drip is assumed to be negligible, i.e.,
np,out = 0. The electron density is not independent, ne must
be self-consistently determined from the nuclear densities, i.e.,
ne = ∑

i niZi . The partial volume fraction

φ ≡
∑

i

φi ≡
∑

i

4

3
πR3

n,ini (18)

is also not independent and is a function of {ni}. In this
formulation, nn,out is the local number density of the quasifree
neutron gas in between nuclei, while nn,out(1 − φ) is the
number of neutron per unit volume inside a large volume of
many Wigner-Seitz cells. In a one-component system, φ = χ .

The rest mass part of the energy density (not included
above) is

ρ ≡ εrest =
∑

i

(Nimnni + Zimpni)

+ (1 − φ) nn,outmn + mene . (19)
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Note that the rest mass energy density is defined in terms
of neutron and proton degrees of freedom, even though the
protons are typically bound in nuclei, which is convenient since
nuclear binding energies are being modified by the medium.

The excluded volume correction can be written

fexc = −
∑

i

φi f̃∞(nn,out, 0, T ). (20)

One can think about this either as a correction to the total
energy density as is written in Eq. (17) or as a correction to
the bulk energy of each nucleus

Eexc,i = −
(

φi

ni

)
f̃∞(nn,out, 0, T ) . (21)

When written this way, one is effectively defining the mass of
the nucleus in the medium relative to energy of pure neutron
matter in an WS cell of equivalent volume, rather than defining
the nuclear mass relative to the vacuum. (This is similar to
what has been historically done in some Hartree-Fock and
Thomas-Fermi calculations in order to remove spurious shell
effects [35,36].) If one defines

N ′
i = Ni − φi

nn,out

ni

= Ni − 4

3
πR3

n,inn,out (22)

and definesEnuc,i = Enuc,i + Eexc,i then the free energy density
of matter can be rewritten

f ({ni}, nn,out, 0, T ) =
∑

i

ni(Enuc,i + Zimp + N ′
imn)

+ f∞(nn,out, 0, T ) + felec(ne, T ) .

(23)

This form now explicitly includes the rest mass part of
the energy density and also makes computing analytical
derivatives of the free energy a bit simpler. The factor of
(1 − φ) from the neutron free energy in Eq. (17) is no longer
present, because the excluded volume correction has been
absorbed into the definition of Enuc,i . Note that some authors
also refer to finite-volume corrections to fC(ni, T ) as excluded
volume corrections, but these corrections are negligible here.
The total baryon density is

nB =
∑

i

Aini + (1 − φ)nn,out. (24)

This formulation (with some minor additional finite-
temperature effects) of the properties of dense matter is rich
enough to express the properties of stellar matter in thermo-
dynamic equilibrium at higher densities, conditions relevant
for Type II supernovae. In this case, the multicomponent
nature has a small impact on the overall thermodynamic prop-
erties [28] thus justifying a “single nucleus approximation”
pioneered in Ref. [37] where matter was assumed to consist
only of neutrons, protons, α particles, and representative heavy
nuclei. Multicomponent calculations of an EOS for supernova
simulations have been performed in several works [34,38–42]
but these works have not addressed the matter in the accreted
neutron star crust.

C. Quasistatistical equilibrium

In lieu of a full reaction network, nuclear reactions proceed
in “chunks”; a small chunk of the nuclei present in the
current distribution are assumed to instantaneously undergo a
particular reaction at constant pressure and constant entropy. In
the case that the Helmholtz free energy (enthalpy) per particle
is lowered, then the reaction proceeds and the composition
is modified accordingly. At the temperatures of interest,
finite-temperature effects are negligible so the enthalpy is
replaced with the Gibbs energy. Minimizing the Gibbs energy
per particle at fixed pressure rather than the free energy density
has the additional benefit that prevents the system from using
nuclear reactions to unphysically lower the pressure as the
baryon density is increased. As the chunk size approaches zero,
this procedure is equivalent to choosing a quasiequilibrium
state at each density. The chunk size is chosen to be 1/100th
of the total number density of all nuclei, and this size is
sufficiently small to ensure that the results approximate the
correct quasiequilibrium. This process does not represent
true statistical equilibrium because the pycnonuclear fusion
reactions are not reversible, i.e., fission is not allowed.

In order to match an old and new configuration at constant
pressure, the nuclear densities and the global quasifree neutron
density, nn,out(1 − φ) in the new configuration are scaled by
the same factor (denoted α below) until the pressure matches
that of the original configuration. Neutron emissions and
neutron captures require an additional constraint to ensure
that the neutrons are counted correctly. Denoting δn as the
decrease in the number density of parent nuclei due to neutron
emission, the number density of parent nuclei after neutron
emission is α(nP − δn) and the number density of daughter
nuclei after neutron emission is α(nD + δn). Denoting the
new configuration with apostrophes, The number density of
quasifree neutrons is given by

n′
n,out(1 − φ′) = α[nn,out(1 − φ) + δn] , (25)

where α is the volume scaling factor and φ′ is implicitly a
function of n′

n,out. The variable n′
n,out must be varied to ensure

that this equation holds. In combination with the requirement
that the pressures are equal, this gives two equations which
must be solved for the variables α and n′

n,out to compute
the proper new configuration after any proposed nuclear
reaction. This procedure applies the neutron emission before
the compression, but is equivalent to the opposite choice, i.e.,
n′

P = αnP − δn, in the limit that δn is small.
The simulation of a crust begins with an initial composition

at a density near 106 g/cm3 and proceeds in a series of
quasiequilibrium configurations to higher densities. Electron
captures, β decays, neutron emissions, and neutron captures
are always allowed if they lower the Gibbs energy per particle.
In practice, since matter is becoming more neutron-rich as
the density increases, electron captures and neutron emission
dominate over β decays and neutron captures. Nuclei with
number densities less than 1010 times the total number density
of nuclei are automatically pruned from the distribution. The
heating rate is determined by computing the change in Gibbs
free energy per baryon as the system proceeds from one
configuration to another. In order to estimate the reduction in
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heating from neutrino emission in electron captures, heating
from electron captures is multiplied by 1/4 as in Ref. [43].
Because the liquid droplet model is not very accurate for very
light nuclei, all reactions which result in nuclei with Z < 4 are
not permitted, but this is a good approximation throughout the
crust, as shown below. Nuclei whose neutron or proton radii
are larger than the size of the WS cell are unphysical and thus
also disallowed.

D. Pycnonuclear fusion reaction rates

Pycnonuclear fusion reaction rates are the most uncertain
rates involved in the accreted crust, in particular the effect
of large neutron skins on rates is not clear [19]. Previously,
detailed fusion rates have not been widely available, for
example, in Ref. [2], a simplified fusion rates were based
on approximate S factors obtained from the parametrization
in [44]. This situation has been improved twofold: (i) fusion
S factors for light neutron-rich nuclei were computed in
Ref. [45], and (ii) a detailed formalism for fusion rates
in a multicomponent plasma has been described in Ref. [46].

Reference [45] computes S factors for Z = 6, 8, 10, and
12 isotopes with even neutron numbers. In the work below,
it is assumed that Z = 4 nuclei always fuse, though this
assumption does not significantly affect our calculations.
Nuclei Z = 14 are assumed to fuse whenever Z = 12 nuclei
fuse, and this assumption does not affect our results. In order to
compute S factors involving odd proton or neutron numbers,
the proton number is always increased by one and the neutron
number is decreased by one, which slightly decreases the
fusion rates. Reference [45] does not compute S factors for
nuclei which are sufficiently neutron-rich for our study, so
it is assumed that the S factors for all Z = 6 nuclei with
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)3 (g/cmρ

Z
, N

FIG. 1. (Color online) The composition of the equilibrium neu-
tron star crust as a function of density. Deviations originate primarily
because of the symmetry energy: models where the symmetry energy
depends more steeply with density have larger Z and smaller N , i.e.,
a composition closer to the valley of stability. The smoother curves
labeled “no shell” do not include shell effects.

A � Amax(Z) are the same as that for A = Amax(Z), where
Amax(Z) ≡ 24, 28, 40, and 46, for Z = 6, 8, 10, and 12,
respectively. This choice slightly increases the potential for
fusion.

To compute the rates, the formalism in Ref. [46] is used,
which assumes that the multicomponent plasma is uniformly
mixed. To compute the reaction rates, the parameter λ is
defined with

λij = Ai + Aj

AiAjZiZj

(
Z

1/3
i + Z

1/3
j

)
×

[
ρ (1 − Xn) 〈Z〉

〈A〉1.3574 × 1011gcm−3

]1/3

(26)

and the plasma temperature

T ij
p =

(
4πZiZje

2nij

2μij

)1/2

, (27)

where

nij ≡ 6

π [(4πni/3)−1/3 + (4πnj/3)−1/3]3
(28)

for nuclei i and j with number densities ni and nj , and the re-
duced mass μij ≡ muAiAj/(Ai + Aj ). With these definitions
the rate is given by

Rpyc = 1046Cpyc

8ρ(1 − Xn)xixjAiAj 〈A〉Z2
i Z

2
j

(1 + δij )(Ai + Aj )2

× S(Epk)λ
3−Cpl

ij exp

(
− Cexp√

λij

)
cm−3s−1. (29)

In order to test if a particular fusion reaction is allowed, the
the fusion timescale ni/Rpyc is compared with the accretion
timescale y/Ṁ . If the accretion rate timescale is larger, than

1210 1310 1410

0

5

)3 (g/cmρ

APR

Gs

Rs

SLy4

 (
M

eV
)

B
f/

n

FIG. 2. The energy per baryon of matter in the cold neutron star
crust in full equilibrium. The distinction between the APR and SLy4
models and the Gs and Rs models is primarily due to the difference
in the density dependence of the nuclear symmetry energy.
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the pycnonuclear reaction is allowed if the fusion will lower
the free energy, otherwise, the fusion is prohibited.

III. RESULTS

It is useful to compare the accreted crust to the much simpler
case of an isolated neutron star crust in full equilibrium (all
possible nuclear reactions are allowed) at zero temperature.
The composition in the equilibrium crust is given in Fig. 1.
Except for the shell effects, the qualitative features agree with
recent work in Ref. [27]. The neutron magic numbers are
indicated by dashed lines, and it is clear that shell effects
dominate the choice of the neutron number over all densities,
while the proton number steadily decreases to select the proper
equilibrium electron fraction as it decreases with density. The
proton number is most often even because of pairing. Note that
at these small temperatures, the single nucleus approximation
is very good because the energy difference between nuclear

masses is typically much larger than the temperature and
because the system is in equilibrium.

The free energy per baryon of matter in the full equi-
librium is given in Fig. 2. Note that the uncertainty in the
homogenous matter EOS affects the free energy per baryon at
higher densities even though the composition is not strongly
affected.

Figure 3 summarizes the properties of the accreted crust for
the four EOSs used in this work. The entire crust is fixed at a
temperature of T = 108 K, and thermal effects do not strongly
affect the composition. The initial composition is taken from
Table 1 in Ref. [18]. The lower panel for each model shows the
average neutron and proton numbers in the crust as a function
of density along with an impurity parameter, 〈Q〉. Given the
average proton number,

〈Z〉 =
(∑

i

niZi

) (∑
i

ni

)−1

, (30)
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FIG. 3. (Color online) The accreted crust properties for the four models used in this work: (a) SLy4, (b) APR, (c) Gs, and (d) Rs. x-ray burst
ashes were used as the initial composition in each case. Each panel gives the total integrated heat generated by nuclear reactions throughout
the crust.
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the impurity parameter is defined as

〈Q〉 =
[∑

i

ni (Zi − 〈Z〉)2

] [∑
i

ni

]−1

. (31)

Generally, neutron numbers increase with density and proton
numbers decrease with density, but a large amount of variation
is present in the deepest regions in the crust. The dotted line
in the upper panel is the chemical potential of the quasifree
neutrons in homogeneous matter at the same number density.
The dashed line is the baryon chemical potential of the full
equilibrium crust. The solid line is the full baryon chemical
potential of matter in the accreted crust. The total amount of
heating in the crust is equal to the baryon chemical potential
(the Gibbs free energy per baryon). because a significant
amount of heating occurs at densities slightly larger than the
neutron drip density, the baryon chemical potential tends to
form a valley at that density where heating overcomes the
natural increase in baryon chemical potential from increasing
pressure.

The dashed-dotted line is the sum of this baryon chemical
potential with the total integrated heat from all the layers above
the current one. This quantity from Fig. 5 of Ref. [43] was
defined to help explain the deep crustal heating phenomenon.
The total amount of deep crustal heating is limited to the
energy difference between this value and the baryon chemical
potential in the full equilibrium crust. In models SLy4 and
APR, the amount of deep crustal heat is limited by the rise of
the baryon chemical potential in the full equilibrium crust. In
models Gs and Rs, where the symmetry energy depends less
strongly with density, the baryon chemical potential of the full
equilibrium crust is smaller and thus the deep crustal heating
is more significant.

Variations in the initial composition of matter are explored
in the top part of Fig. 4. The left panel has an initial composition
of pure 106Pd and the right panel has an initial composition of
pure 56Ni. The final compositions in these models are not

strikingly different from the x-ray burst ashes used in Fig. 3.
The impurity parameters are much lower, except for a peak
near 4 × 1012 g/cm3 in the 106Pd case where the composition is
recovering from the larger number of neutrons stored in nuclei
in that case. Increasing the temperature to 109 K, or varying
the mass accretion rate (important for computing the relevant
accretion timescale to compare with the fusion timescale) by
an order of magnitude did not significantly change the results.

The majority of the heating occurs through the emission
of neutrons near neutron drip. This heating often occurs in
large chains which effectively convert some nuclei entirely into
neutrons, leaving the relative composition of the remaining
nuclei unaltered. A sample chain of this form begins with two
40Mg nuclei, both of which undergo six electron captures and
enough neutron emissions to form 22C. These two nuclei fuse
to form one 44Mg nucleus, which then may emit four neutrons
to return to the original 40Mg. This cycle effectively converts
one nucleus entirely into neutrons. Only a fraction of nuclei
can undergo such a cycle at any depth, and thus such cycles
are difficult to resolve in single-nucleus models. While shell
closures in this region are partially softened by the presence
of the quasifree neutron gas, resolving the nature of shell
effects for neutron-rich nuclei in this region may be helpful
in understanding the reaction pathway details at densities just
higher than neutron drip.

IV. DISCUSSION

This work is an important tool to calibrate more sophis-
ticated network calculations which follow the evolution of
nuclei in the crust as they begin at the surface and evolve
to lower depths. If the physical nucleon-nucleon interaction
leads to a symmetry energy which depends more weakly with
density, then this may result in more heating and will help
alleviate the current difficulties that superburst models have
in reproducing superburst data. Some of this additional heat,
however, will be transmitted to the core rather than the crust,
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FIG. 4. (Color online) The accreted crust properties for model SLy4 but using an initial composition of either pure 106Pd (a) or pure 56Ni
(b). Each panel gives the total integrated heat generated by nuclear reactions throughout the crust.
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and a full simulation of the thermal profile which includes
possible variation in the nuclear masses due to the symmetry
energy is not yet available.

Compositional nonuniformity may also drive novel heating
processes in the crust [47,48]. While these heating processes
are not included in the current model, they are also fundamen-
tally limited by the difference in the baryon chemical potential
between the accreted and equilibrium crusts.

The model outlined in this work ignores proton and
light-fragment emission in accreting neutron stars, and may
be incorrect near the crust-core phase transition. Near this
density, protons may tunnel between nuclei and this will also
affect the composition. Finally, the presence of pasta structures
and nuclear structure uncertainties in the masses of nuclei are
important in the deepest layers of the crust. The amount of
heat generated at this depth is small, and the composition
at the deepest regions in an accreting neutron star may be
difficult to observe. The composition of the cold crust in
equilibrium might be observable in the giant flares emitted
by magnetars [49].

A one-zone model may not properly estimate the properties
of matter just near neutron drip. To demonstrate this, consider
Fig. 5 of Ref. [43]. In the single-nucleus approximation, the
baryon chemical potential, μB , drops discontinuously as a
function of the pressure at locations where the composition of
the crust changes. This is clearly unphysical, as this means
that the system can lower its energy by a finite amount
by taking a neutron from pressures slightly lower than the
drop in μB to pressures slightly larger than the drop. This
means that neutrons might sink as they are emitted, and the
crust will reconfigure itself to ensure that there are no strong
discontinuities in μB . (The electron chemical potential may
also exhibit discontinuities in regions where multiple electron
captures occur.) The multicomponent models in this work
soften these discontinuities considerably, but a flow of neutrons
cannot be ruled out in this one-zone model. A multizone
generalization of this work is in progress.
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APPENDIX: GIBBS FREE ENERGY DENSITY

To compute the Gibbs free energy density, it is useful to
compute the chemical potentials and entropies analytically
from Eq. (17). An advantage of the liquid droplet model
formalism is that these expressions are simple to compute
accurately.

The global quasifree neutron density is defined with n̂n ≡
nn,out(1 − φ), and this (not nn,out is the quantity directly
connected to baryon number conservation. Thus, to compute

the Gibbs energy the derivatives

ν̂n ≡
(

∂f

∂n̂n

)
{ni },T

(A1)

and

νi ≡
(

∂f

∂ni

)
n̂n,{nj ∀j �=i},T

(A2)

are required. The symbol ν is used rather than μ which is
reserved for the chemical potentials in infinite matter

μn ≡
[
f∞(nn,out, T )

∂nn,out

]
T

, and μe ≡
[
felec(ne, T )

∂ne

]
T

.

(A3)

Note that these chemical potentials are defined including the
rest mass energy. To be more concise, the subscripts will
sometimes be suppressed in the following. The Gibbs free
energy density is then

g = ν̂nn̂n +
∑

i

νini . (A4)

It is useful to note that nn,in,i = nn,in,i(χi) is distinct quantity
for each nuclear species i and is a function of χi . For simplicity,
this is denoted as nni below. Also note that no separate term in
the Gibbs free energy is required for the electrons since their
number density is not an independent variable. In this section,
it is also easier to think of the function Enuc as a set of functions
of the form Enuc,i(nn,out, χi). For each nucleus i,

Nine = Ni

( ∑
j

njZj

)
= Ziχinni (A5)

and this implies that χ and ne both depend only on the number
densities of nuclei and not separately on nn,out. From Eq. (A5),
one can obtain the relation ∂ne/∂ni = Zi and the derivative(

∂χj

∂ni

)
{nj }∀j �=i,n̂n

= NjZi

Zjnnj + Zjχjg′(χj )
. (A6)

This derivative is nonzero for i �= j because the nuclei are
all coupled by the Coulomb interaction through the electron
density. Some simplification is afforded by the relation φi =
Nini/nni , where nni depends only on χi , which shows that φi

is constant when all of the {ni} are held fixed. Thus,(
∂nn,out

∂n̂n

)
{ni }

= (1 − φ)−1 (A7)

and (
∂nn,out

∂ni

)
{nj }∀j �=i,n̂n

= n̂n

(1 − φ)2

∑
j

(
∂φj

∂ni

)
. (A8)

One can rewrite the derivative of φj in terms of the derivative
of χj determined above(

∂φj

∂ni

)
{nj }∀j �=i,n̂n

= Nj

nnj

[
δij − njg

′(χj )

nnj

(
∂χj

∂ni

)
n̂n

]
, (A9)
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where δij is 1 if i = j and zero otherwise. The last derivative
which is required is(

∂N ′
j

∂ni

)
{nj }∀j �=i,n̂n

= −4πR2
n,j

[
Rn,j

3

(
∂nn,out

∂ni

)

+ nn,out

(
∂Rn,j

∂χj

)(
∂χj

∂ni

)]
. (A10)

The derivative of f with respect to n̂n is

ν̂n =
(

∂nn,out

∂n̂n

) {
μn+

∑
i

ni

[ (
∂Enuc,i

∂nn,out

)
χi

−4π

3
R3

n,imn

]}
.

(A11)

Note that this implies

n̂nνn̂n
= nn,out

(
∂f

∂nn,out

)
{ni }

. (A12)

The derivative of f with respect to the number density of
nucleus i is

νi =
(

∂f

∂nn,out

)(
∂nn,out

∂ni

)
+ Ziμe + Enuc,i + Zimp

+N ′
imn +

∑
j

njhij , (A13)

where hij is defined by

hij ≡
(

∂Enuc,j

∂χj

)
nn,out

(
∂χj

∂ni

)

+
(

∂Enuc,j

∂nn,out

)
χj

(
∂nn,out

∂ni

)
+ mn

(
∂N ′

j

∂nj

)
nn,out

.

(A14)

[1] H. Schatz, A. Aprahamian, J. Görres, M. Wiescher, T. Rauscher,
J. F. Rembges, F.-K. Thielemann, B. Pfeiffer, P. Möller, K.-L.
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Astrophys. J. 662, 1188 (2007).
[15] R. L. Cooper, A. W. Steiner, and E. F. Brown, Astrophys. J. 702,

660 (2009).
[16] S. E. Woosley, A. Heger, A. Cumming, R. D. Hoffman,

J. Pruet, T. Rauscher, J. L. Fisker, H. Schatz, B. A. Brown,
and M. Wiescher, Astrophys. J. Supp. 151, 75 (2004).

[17] S. S. Gupta, T. Kawano, and P. Möller, Phys. Rev. Lett. 101,
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