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Imaginary-time method for the radiative capture reaction rate
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We propose a new computational method for astrophysical reaction rate of the radiative capture process. In the
method, an evolution of a wave function is calculated along the imaginary-time axis, which is identified as the
inverse temperature. It enables direct evaluation of reaction rate as a function of temperature without solving any
scattering problem. The method is tested for two-body radiative capture reaction, 16O(α, γ )20Ne, showing that it
gives identical results to those calculated by the ordinary procedure. This method will be suited for calculation
of triple-α radiative capture rate, for which an explicit construction of the scattering solution is difficult.
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I. INTRODUCTION

Radiative capture reaction rate far below the Coulomb
barrier is an essential input for quantitative understanding of
stellar evolution and nucleosynthesis [1]. However, direct ex-
perimental measurements of relevant cross sections far below
the Coulomb barrier often accompany difficulties because of
their exponentially small cross sections. There are also a few
three-body processes of significance for which experimental
measurements are not feasible. Theoretical evaluation of the
radiative capture reaction rate is thus important.

The radiative capture rate is composed of two distinct
contributions, resonant and nonresonant processes. A potential
model is often employed for the theoretical evaluation of
the nonresonant capture rate. For two-body radiative cap-
ture processes, it is a routine procedure once the model
potential is given. One first solves the radial Schrödinger
equation (coupled-channel equation if necessary) under an
appropriate scattering boundary condition to obtain scattering
cross section. One then calculates the capture reaction rate
as a function of temperature by integrating the cross section
over the collision energy with an appropriate Boltzmann
weight.

Theoretical evaluation of radiative capture reaction rate for
three-body processes is a much more difficult problem. It is
well recognized that the triple-α radiative capture reaction to
form 12C is a key process to produce heavy elements [2].
At a temperature above 0.1 GK, a resonance state of 0+

2 of
12C, which is known as the Hoyle state [3,4], contributes
dominantly. Below 0.1 GK, on the other hand, nonresonant
contribution is considered to be significant [5–7]. Recently,
Ogata et al. [8] conducted a serious evaluation of the rate with
the continuum-discretized coupled-channels (CDCC) method,
a three-body reaction theory that has been successful for
nuclear direct reactions [9,10]. The radiative capture rate
reported by Ogata et al. was surprisingly large below 0.1 GK
in comparison with the rate that has been employed in standard
stellar-evolution calculations [1].

Theoretical evaluation of three-body radiative capture rate
is accompanied by several difficulties. It is by no means
obvious how to define theoretically the cross section of

the triple-α radiative capture process, because an analytic
asymptotic form of the scattering wave function of three
charged particles is not known. One also needs to solve the
three-body problem in a huge spatial region for reactions far
below the Coulomb barrier, since the α particles pass through
a barrier for a long distance to penetrate it.

In Ref. [11], de Diego et al. proposed an alternative
procedure for the calculation of triple-α capture rate. They
consider an inverse process, a photo-absorption of 12C in the
excited 2+ state, and calculate the transition probability in
the bound-state approximation. This procedure allows one to
avoid the difficulty of calculating scattering solution for three
charged particles. However, a number of bound states need to
be calculated in their approach.

In this paper, we propose a new computational method
for the radiative capture rate. We show that the radiative
capture rate as a function of temperature may be calculated
directly by solving an equation that looks like a time-dependent
Schrödinger equation along the imaginary-time axis. This
method requires neither any solutions of scattering problem
nor any bound-state solutions except for a final bound-state
wave function after the capture. Since the method allows us
to avoid the difficulties mentioned above, we believe it will
be useful for the calculation of radiative capture rate of the
triple-α process. In this paper, we demonstrate the feasibility
of the method by applying it to two-body capture reaction,
16O(α, γ )20Ne, as an example. It is shown that the method gives
a result identical to that calculated by the ordinary method
using the two-body scattering solution.

The construction of this paper is as follows. In Sec. II A, we
present the imaginary-time formalism for the radiative capture
reaction rate. In Sec. II B, we discuss how the resonant and
nonresonant contributions are included in our formalism. In
Sec. III, our method is exemplified by applying it to the
two-body capture reaction, 16O(α,γ )20Ne. In Sec. III A, we
summarize radial equations to be employed in the practical
calculation. In Sec. III B, we show results of the ordinary
method’s solution of the two-body scattering problem. We then
compare the results of our method with those of the ordinary
method in Sec. III C. Section IV is devoted to a summary.
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II. THEORY

A. Imaginary-time method for radiative capture rate

We consider a radiative capture process of two or three
nuclei confined in a large spatial area of volume V . The
transition rate between nuclear states i and f accompanying
an emission of a photon of multipolarity λμ is given by [12]

T
(λμ)
f i = 8π (λ + 1)

h̄λ[(2λ + 1)!!]2

(
Eγ

h̄c

)2λ+1

|〈�f |Mλμ|�i〉|2, (1)

where Mλμ is a transition operator. The energy of emitted
photon Eγ is equal to the energy difference of two states,
Eγ = Ei − Ef . The initial and final wave functions, �i and
�f , are many-body wave functions. The initial state �i is a
scattering state in which i specifies the relative momentum of
colliding nuclei and other quantum numbers. The final state
�f is a bound-state wave function after emitting the photon.

For two-body collisions, the transition rate in a unit spatial
area and in a unit time under unit number densities of colliding
nuclei is given by V T

(λμ)
f i and is equal to vσf i , where v is the

relative velocity and σf i is the cross section. For three-body
collisions, the reaction rate in a unit spatial area and in a unit
time is given by V 2T

(λμ)
f i .

We denote the inverse temperature as β = 1/kBT and ex-
press the thermonuclear reaction rate at the inverse temperature
β as r(β). This is related to the transition rate T

(λμ)
f i by

r(β) =
∑

Mf μ

∑
i e

−βEi V N−1T
(λμ)
f i∑

i e
−βEi

, (2)

where N = 2 for two-body and N = 3 for three-body col-
lisions, respectively. Mf indicates the magnetic quantum
number of final state f . The denominator is evaluated to be

∑
i

e−βEi → ωi

V N−1μ3/2

(2πβh̄2)3(N−1)/2
, (3)

where μ is the reduced mass, μ = m1m2/(m1 + m2)
for the two-body case and μ = m1m2m3/(m1 + m2 + m3)
for the three-body case, and ωi accounts for the degeneracy of
the initial state.

An essential trick that brings us an imaginary-time evo-
lution formula for the reaction rate is employment of the
spectral representation of the Hamiltonian. Let f (Ĥ ) be a
certain function of the Hamiltonian operator Ĥ . We then have

f (Ĥ ) =
∑

n∈bound

f (En)|
n〉〈
n| +
∑

i∈scattering

f (Ei)|
i〉〈
i |,

(4)

where En and 
n are energy eigenvalues and eigenfunctions
of bound states and Ei and 
i are those of scattering states.
For a general many-body Hamiltonian Ĥ , the scattering
states 
i may include a variety of channels with different
decompositions into fragments. For a two-body scattering
state, the energy Ei is given by Ei = h̄2k2/2μ, where k
specifies the relative wave number of colliding nuclei. To take
into account collisions of nuclei in excited states, we need to
include the excitation energy in Ei .

Employing Eq. (4) with f (x) = e−βx(x − Ef )2λ+1, one
may rewrite Eq. (2) as

r(β) = 1

ωi

(
2πβh̄2

μ

)3/2 8π (λ + 1)

h̄λ[(2λ + 1)!!]2

×
∑
Mf μ

〈�f |Mλμe−βĤ

(
Ĥ − Ef

h̄c

)2λ+1

P̂M
†
λμ|�f 〉,

(5)

where P̂ is a projector to remove bound states,

P̂ = 1 −
∑

n∈bound

|
n〉〈
n|. (6)

Equation (5) is the principal result of this paper. We find that
the initial scattering states are removed in this expression.

For a practical calculation of Eq. (5), we introduce a wave
function �λμ,f (β) by

�λμ,f (β) = e−βĤ

(
Ĥ − Ef

h̄c

)2λ+1

P̂M
†
λμ�f . (7)

Then the reaction rate is expressed as

r(β) = 1

ωi

(
2πβh̄2

μ

)3/2
8π (λ + 1)

h̄λ[(2λ + 1)!!]2
(8)

×
∑
Mf μ

〈�f |Mλμ|�λμ,f (β)〉. (9)

The wave function �λμ,f (β) satisfies a time-dependent
Schrödinger equation along the imaginary-time axis,

− ∂

∂β
�λμ,f (β) = Ĥ�λμ,f (β), (10)

with the initial condition,

�λμ,f (0) =
(

Ĥ − Ef

h̄c

)2λ+1

P̂M
†
λμ�f . (11)

In practical calculations, we repeat evolutions with a small
imaginary-time step �β to achieve a finite evolution,

�λμ,f (n�β) = P̂ e−�βĤ P̂ . . . P̂ e−�βĤ �λμ,f (0). (12)

The operation of the evolution operator with a small imaginary-
time step, e−�βĤ , may be achieved with the Taylor expansion
method,

�λμ,f (β + �β) = P̂ e−�βĤ �λμ,f (β)

� P̂

N∑
k=0

(−�βĤ )k

k!
�λμ,f (β). (13)

In an analytic expression, the projector P̂ is necessary
only once in Eq. (5), since the Hamiltonian Ĥ commutes
with the projector P̂ . In practical calculations, however, it
is indispensable to apply the projector at each step of Eq. (13).
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B. Resonant and nonresonant contributions

In the ordinary treatment of radiative capture processes,
contributions of sharp resonances are treated separately from
the nonresonant contribution. For a two-body collision, a
contribution of the resonance of energy ER and width 
 to
the reaction rate is given by [1]

rR(β) =
(

2πβ

μ

)3/2

h̄2ωR


i
f



e−βER , (14)

where 
i and 
f are partial widths of the resonance to the
initial channel through barrier penetration and to the final state
through γ emission. ωR is the statistical factor given by

ωR = 2JR + 1

(2I1 + 1)(2I2 + 1)
, (15)

where JR is the spin of the resonance and I1(2) is the spin of
colliding nucleus 1 (2).

Equation (5) includes both resonant and nonresonant
contributions since all the final states are summed up. To
confirm that resonant contribution is included in Eq. (5), we
show that the resonant contribution rR(β) may be extracted
from it.

We assume that the partial decay width for γ emission,

f , is much smaller than the partial width for binary or
ternary decay through Coulomb barrier, 
i . Indeed, this is the
condition that we may start with the transition rate expression
of Eq. (2) in perturbation theory. We thus assume that the
partial width decaying into the initial channel, 
i , almost
exhausts the total width, 
 � 
i . For a sharp resonance, we
may express the resonant state by a normalized wave function

R . To calculate the resonant contribution, we replace the
projector P̂ in Eq. (5) with the projector of the resonant state,
|
R〉〈
R|. Then we find the contribution of the resonant state
may be expressed as

r(β; 
R) = 1

ωi

(
2πβh̄2

μ

)3/2
8π (λ + 1)

h̄λ[(2λ + 1)!!]2
e−βER

×
(

ER − Ef

h̄c

)2λ+1 ∑
Mf μMR

|〈�f |Mλμ|
R〉|2,

(16)

where MR specifies a magnetic substate of the resonance.
Noting that the perturbation theory gives an expression for
the radiative decay width of the resonant state 
R as


f

h̄
= 8π (λ + 1)

h̄λ[(2λ + 1)!!]2

(
ER − Ef

h̄c

)2λ+1

(17)

×
∑
Mf μ

|〈�f |Mλμ|
R〉|2, (18)

we arrive at the following result:

r(β; 
R) = ωR

(
2πβh̄2

μ

)3/2

e−βER

f

h̄
. (19)

This is equal to rR(β) if we assume 
 = 
i in Eq. (14).
In practical calculations, there are two options when a sharp

resonance exists. One is to treat the resonant contribution

separately, employing Eq. (14) and removing the resonant
contribution from the expression of Eq. (5) by adding the
projector of the resonant state to the projector P̂ . The other is
just to perform the imaginary-time calculation as it is, so that
the resonant contribution is automatically included in Eq. (14).

III. TEST CALCULATION: 16O(α, γ )20NE CAPTURE RATE

A. A potential model and radial equations

The formalism presented in Sec. II is applicable to gen-
eral many-body descriptions. In this section, we apply the
method to a radiative capture process of two-body collision,
16O(α, γ )20Ne, ignoring internal structure of the colliding
nuclei. This process has been investigated in the potential
model [13] and in microscopic cluster models [14,15]

We assume a simple potential model for the initial α-16O
scattering state and for the final excited state of 20Ne. This
potential model has been adopted in Ref. [13] and has been
shown to describe the process reasonably.

Numerical calculations will be achieved in the partial wave
expansion. We first summarize the formula in the partial
wave expansion for an α-16O collision. We introduce a radial
wave function for the relative motion in the ordinary way. For
bound states, we denote

�(r) = unl(r)

r
Ylm(r̂), (20)

where n is the nodal quantum number. We assume a nor-
malization relation

∫
dr|unl(r)|2 = 1 as usual. For scattering

states, we denote the radial wave function of energy E as
uEl(r), for which we assume the following normalization in
the asymptotic region:

uEl(r) →
(

2μ

πh̄2k

) 1
2

sin

(
kr − lπ

2
+ δl

)
, (21)

with E = h̄2k2/2μ. Then, there follows the following com-
pleteness relation for each l value,

∑
n

unl(r)unl(r
′) +

∫ ∞

0
dEuEl(r)uEl(r

′) = δ(r − r ′). (22)

In the ordinary method, we first calculate the cross section
and then calculate the reaction rate by integrating the cross
section with a Boltzmann weight and a photon phase space
factor. Denoting the radial wave function of initial state by
u

(i)
Eli

(r) and that of final state by u
(f )
nf lf

(r), the reaction rate is
given by

r(β) =
∑
lf liλ

2

h̄

(
2πh̄2β

μ

)3/2
(λ + 1)(2λ + 1)

λ[(2λ + 1)!!]2

× e2

{
2

(
16

20

)λ

+ 8

(
− 4

20

)λ
}2

× (2li + 1)〈li0λ0|lf 0〉2q
(λ)
lf li

(β), (23)
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where we introduced q
(λ)
lf li

(β) by

q
(λ)
lf li

(β) =
∫ ∞

0
dEe−βE

(
E − Ef

h̄c

)2λ+1

×
(∫ ∞

0
dru

(f )
nf lf

(r)rλu
(i)
Eli

(r)

)2

. (24)

In the imaginary-time method, we employ a spectral
representation of the Hamiltonian to remove the scattering
wave function u

(i)
Eli

(r). The final expression written in terms of
the radial wave function is given by

q
(λ)
lf li

(β) = 〈
u

(f )
nf lf

∣∣rλe−βĤli

(
Ĥli − Ef

h̄c

)2λ+1

P̂li r
λ
∣∣u(f )

nf lf

〉
,

(25)

where Ĥli is the radial Hamiltonian for the partial wave li . The
P̂li is the radial projector to remove bound states of the partial
wave li .

Introducing a radial wave function u
(λ)
lf li

(r, β) by

u
(λ)
lf li

(r, β) = e−βĤli

(
Ĥli − Ef

h̄c

)2λ+1

P̂li r
λu

(f )
nf lf

(r), (26)

the function q
(λ)
lf li

(β) is given by

q
(λ)
lf li

(β) = 〈
u

(f )
nf lf

∣∣rλ
∣∣u(λ)

lf li
(r, β)

〉
. (27)

The radiative capture reaction of 16O(α, γ )20Ne proceeds
dominantly from the initial α-16O scattering state with li = 0
relative angular momentum to the final 2+ state of 20Ne at
the excitation energy of 1.63 MeV after emission of the E2 γ

ray [13]. Since our purpose here is to show the applicability of
our method, we concentrate on the calculation of this transition
component. Namely, we consider the case of λ = 2, li = 0, and
lf = 2.

We assume a simple Woods-Saxon form for the α-16O
potential with a radius parameter R0 = 2.72 fm and a dif-
fuseness parameter a = 0.85 fm. The depth of the potential is
chosen so that the energies of bound states are reproduced
reasonably. The potential depth of l = 0 channel is set to
V0 = −150.23 MeV to reproduce the ground-state energy of
20Ne from the α-16O threshold, −4.63 MeV. The potential
depth of l = 2 channel is set to V0 = −147.95 MeV to
reproduce the excitation energy of first 2+ state of 20Ne,
1.63 MeV. As for the Coulomb potential, we use that of
a homogeneously charged sphere of radius 1.3 × 161/3 fm.
There appear many bound states in this potential besides the
physical states. They correspond to the Pauli-forbidden states
of many-body wave function. We include all the bound states,
both physical and Pauli-forbidden states, in the projection
operator P̂li . The calculations shown are achieved with a radial
grid of �r = 0.1 fm. The Runge-Kutta method is used to
solve the radial equation from the origin and a simple five-
point finite-difference formula is used in the imaginary-time
evolution for the second-order derivative operator in Ĥli .
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u(f) n f
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0(r
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1/
2 ]

r [fm]

(b)
E=0.1 MeV

FIG. 1. (Color online) (a) The radial wave function of the initial
scattering state, u

(i)
Eli=0(r), is shown for the incident relative energy

E = 0.1 MeV by the dotted curve, and the radial wave function of
the final state, u(f )

nf lf =2(r), is shown by the solid curve. (b) The overlap

function, u(f )
nf lf =2(r)r2u

(i)
Eli=0(r), appearing in the integrand of Eq. (24)

in the text.

B. Ordinary method

Before showing results with the imaginary-time method,
we first show calculations in the ordinary approach, solving
the radial Schrödinger equation for each incident energy.
Figure 1(a) shows the radial wave functions of initial and
final states. The initial scattering wave, u

(i)
Eli=0(r), is shown

by a dashed curve. The incident relative energy is set to E =
0.1 MeV, which approximately corresponds to the Gamow
window energy at T = 107 K. The final bound-state wave
function, u

(f )
nf lf =2(r), is shown by a solid curve.

Figure 1(b) shows the integrand of the radial matrix element
appearing in Eq. (24), u(f )

nf lf =2(r)r2u
(i)
Eli=0(r). As seen from the

figure, a dominant contribution comes from a spatial region
where the final wave function u

(f )
nf lf =2(r) decays exponentially.

We find the radial integration up to 30 fm in Eq. (24) is required
to obtain a fully converged result.

We show in Fig. 2 the reaction rate q
(λ=2)
lf =2,li=0(β) of Eq. (24)

as a function of inverse temperature β = 1/kBT by a solid line
(left scale). We also show the Gamow energy as a function of
inverse temperature by a dashed line (right scale). The inverse
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FIG. 2. (Color online) Solid curve and left scale: radiative capture
reaction rate, q

(λ=2)
lf =2,li=0(β), calculated with the ordinary method of

Eq. (24). Dashed curve and right scale: energy of Gamow window as
a function of inverse temperature β.

temperature β = 10 MeV−1 corresponds approximately to
T = 1.1 × 109 K and β = 1000 MeV−1 to T = 1.1 × 107 K.

C. Imaginary-time method

We show in Fig. 3 the reaction rates, q
(λ=2)
lf =2,li=0, calculated

with the imaginary-time method. We find the calculated
reaction rate depends on the radial region where the imaginary-
time evolution is calculated. In Fig. 3, reaction rates calculated
with different choices of radial cutoff distance Rmax are
compared. The reaction rate in the ordinary method, which
was shown in Fig. 2, is also shown for comparison.

As is seen in the figure, the reaction rate falls off too
rapidly if the radial cutoff distance is not sufficiently large.

1

10−20

10−40

10−60

10−80

10−100

0 100 200 300 400 500 600 700 800 900 1000

q
( λ

=
2)

l f=
2,

l i=
0( β

)

β [1/MeV]

Rmax=500 fm

Rmax=400fm
Rmax=300 fm

Rmax=200 fm

Rmax=100 fm

ordinary

FIG. 3. (Color online) The radiative capture reaction rate
q

(λ=2)
lf =2,li=0(β) calculated by the imaginary-time method of Eq. (25)

is shown for several choices of radial cutoff distance Rmax. For
comparison, the reaction rate calculated with the ordinary method
of Eq. (24) is also shown, which is denoted as “ordinary.”

0.9

0.95

1.0

1.05

1.1

0 100 200 300 400 500 600 700 800 900 1000

ra
tio

β [1/MeV]

FIG. 4. The ratio of the reaction rate q
(λ=2)
lf =2,li=0(β) calculated by

the imaginary-time method of Eq. (25) with Rmax = 500 fm to the
reaction rate calculated with the ordinary method of Eq. (24).

The reaction rate calculated with the radial cutoff distance
Rmax = 500 fm coincides almost completely with the reaction
rate calculated in the ordinary method for a whole temperature
region shown in the figure. In Fig. 4, we further show the
ratio of the reaction rate calculated with Rmax = 500 fm to the
reaction rate calculated in the ordinary method. One can again
see that the imaginary-time method very accurately reproduces
the result of the ordinary method. The discrepancy stays within
an error of 1.2% for the region 1 MeV−1 < β < 900 MeV−1.
We thus conclude that to obtain an accurate reaction rate
at low temperature with the imaginary-time method, one
needs to calculate the imaginary-time evolution of the wave
function in a sufficiently large radial space, up to 500 fm for
T ∼ 107 K.

Figure 3 indicates that the reaction rates by the imaginary-
time method decrease exponentially at large β when the
radial cutoff distance is not sufficiently large. We express
the asymptotic behavior as q

(λ=2)
lf =2,li=0(β) � e−βε , where the

slope constant ε depends on the radial cutoff distance, Rmax.
The ε increases as the radial cutoff distance decreases. In
the imaginary-time calculation, the wave function u

(λ)
lf li

(r, β)
is dominated by the eigenfunction of the lowest eigenvalue
when β is sufficiently large. Since all the bound states are
removed in the imaginary-time evolution by the projection
operator, the slope parameter ε should coincide with the
lowest positive energy eigenvalue of the Hamiltonian. Since
the Coulomb potential decreases monotonically as a function
of radial coordinate, the eigenfunction of the lowest positive
eigenvalue should localize in the region close to the radial
cutoff distance, if there is not a sharp resonant state below that
energy.

In Fig. 5, we show the α-16O potential and the eigenfunc-
tions belonging to several positive low-energy eigenvalues.
Calculation is achieved in the radial region up to Rmax =
500 fm. The α-16O potential is composed of nuclear (VN )
and Coulomb (VC) potentials, and the lowest positive-energy
eigenvalue is close to the minimum of the Coulomb potential
energy at the radial cutoff distance, Emin ∼ Z1Z2e

2/Rmax.
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FIG. 5. (Color online) The α-16O potential is denoted by a red
solid curve (left scale). Five low positive-energy eigenfunctions of
the potential are shown by dotted curves. Calculations are achieved
in the radial region up to 500 fm.

For Rmax = 500 fm, the energy is Emin ∼ 0.046 MeV. For
Rmax = 100 and 200 fm, the energies are Emin ∼ 0.23 and
0.115 MeV, respectively. These values explain the slope of the
reaction rate at large β seen in Fig. 3.

It is evident that the imaginary-time evolution in the radial
region inside a certain radial cutoff distance Rmax takes into
account only the tunneling process of energy higher than
e2Z1Z2/Rmax. As the temperature becomes lower, one needs
to calculate the reaction rates in a wider radial region. We
may estimate the radial cutoff distance Rmax to obtain a
reliable reaction rate for a given temperature β considering
the energy of the Gamow window. Employing a standard
formula for the peak energy of the Gamow window as a
function of temperature and equating the energy with the
Coulomb potential energy at the radial cutoff distance, we
obtain

Rmax ∼
(

2h̄2Z1Z2e
2β2

μπ2

) 1
3

. (28)

This gives Rmax = 85 fm for β = 102 MeV−1 and Rmax =
394 fm for β = 103 MeV−1. This estimation coincides with
the observation in Fig. 3 that the calculation up to Rmax =
100 fm describes the reaction rate for β < 100 MeV−1 and
the calculation up to Rmax = 500 fm describes the rate for
β < 1000 fm.

For a deeper understanding of the imaginary-time method,
we show in Figs. 6(a) and 6(b) the evolution of the radial
wave function u

(λ=2)
lf =2,li=0(r, β) in the imaginary time for several

values of β. The calculation is achieved with Rmax = 500 fm.
In the top four panels, the wave functions of β � 1 MeV−1

are shown in the linear scale. In the bottom panel, the absolute
values of the wave functions are shown for large β values in
the logarithmic scale.

To start the calculation, we prepare the radial wave function
of the final state u

(f )
nf lf =2(r) inside a region, R

(f )
max = 30 fm.

In the top panel of Fig. 6(a), the wave function at β =

10 20 30
r [fm]

(×10−9) β=1

(×10−4) β=0.01

(×10−3) β=0.001

(a)(×10−3) β=0

1

10−20

10−40

10−60

10−80

0 50 100 150 200 250 300 350 400 450 500

u( λ
=

2)
l f=

2,
l i=

0(r
,β

)

r [fm]

(b) β=100
β=500

β=1000

FIG. 6. (Color online) Imaginary-time evolution of the wave
function as a function of radial coordinate r , u

(λ=2)
lf =2,li=0(r, β) defined

by Eq. (26), (a) at β = 0, 0.001, 0.01, and 1 MeV−1 in the linear
scale and (b) at β = 100, 500, and 1000 MeV−1 in the logarithmic
scale.

0 is shown. We find a number of spikes in the initial
wave function u

(λ=2)
lf =2,li=0(r, β = 0). In particular, an intense

spike is seen at around r � R
(f )
max = 30 fm. These sharp

structures originate from the operation of (Ĥli − Ef )5 in
preparing the wave function at β = 0. It works to empha-
size components with high-energy eigenvalues of the radial
Hamiltonian.
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FIG. 7. (Color online) The dependence of the reaction rate
q

(λ=2)
lf =2,li=0(β) on the radial cutoff distance, R(f )

max, in preparing the

final-state wave function u
(f )
nf lf =2(r).

At first sight, the existence of such sharp structures looks
unfavorable and problematic. However, these spikes disappear
immediately after we start the imaginary-time evolution, and
they will not affect the reaction rate at low temperature. Even
at β = 0.001 MeV−1, these spikes are substantially reduced.
They disappear almost completely at β = 0.01.

As the inverse temperature β increases, the wave function
starts to shift outward. At β = 1 MeV−1, the amplitude
of the wave function shows a peak at around 6 fm. As
seen in Fig. 6(b), the dominant component of the wave
function gradually shifts toward a region of large radial
distance. Eventually, at β > 500 MeV−1, the radial wave
function is dominated in the region of large radial distance.
At β = 1000 MeV−1, the wave function of small radial region
(r < 30 fm), which contributes to the radiative capture rate, is
much smaller than that in the asymptotic region by an order of
magnitude of about 1020. Thus, the imaginary-time calculation
should be achieved with high accuracy to describe 1020

difference of magnitude of the wave function in different radial
regions.

To confirm that the result does not depend on the radial
region in which we prepare the final wave function, we com-
pare reaction rates employing final wave functions u

(f )
nf ,lf

(r)

prepared in the radial region with different cutoff radius, R(f )
max.

In Fig. 7, we compare reaction rates calculated by the
imaginary-time method employing final wave functions of
different radial cutoff distances, R

(f )
max. We find the calculated

reaction rate is quite insensitive to the radial cutoff distance.
We thus confirm that a number of sharp structures seen in
the top panel of Fig. 6(a), especially prominent at around the
radial cutoff distance, R

(f )
max, do not have any influence on the

reaction rate calculation. As seen in the inset, the reaction rate
is convergent if we choose R

(f )
max � 25 fm, which is consistent

with our observation in Sec. III A.
We finally present a note on the dependence of the reaction

rate on the choice of the nuclear potential in the imaginary-time

1
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10−100

0 100 200 300 400 500 600 700 800 900 1000

q
( λ

=
2)

l f=
2,

l i=
0( β

)

β [1/MeV]

V0= 0.0
V0= −30.23
V0= −70.23

V0= −110.23
V0= −150.231×10−77

1×10−76

950 1000

FIG. 8. (Color online) Reaction rates with different nuclear
potential in the initial scattering channel are shown. The depths of
the Woods-Saxon potential V0 is varied.

evolution. In Fig. 8, we compare the reaction rates changing
the depths of the nuclear potential V0 of the Woods-Saxon
potential in the initial scattering state with li = 0. All the other
parameters are set to be the same. As seen from the figure, the
reaction rate is quite insensitive to the choice of the parameter
V0. Even without the nuclear potential (i.e., with V0 = 0), the
reaction rate is given almost correctly. As the inset shows,
the difference is within a factor of 1.5 in 950 MeV−1 < β <

1000 MeV−1. We thus conclude that the nuclear potential in
the initial channel, which will be used in the imaginary-time
evolution, has very small effect on the reaction rate. Of course,
this conclusion applies only to the nonresonant contribution.
The resonance energy and width are sensitive to the nuclear
potential, and so is the resonant contribution to the reaction
rate.

IV. SUMMARY

In this paper, we proposed a new computational method
for radiative capture reaction rate. Employing a spectral
representation of the Hamiltonian, we have shown that the
reaction rate as a function of temperature may be calculated
without solving any scattering problem. Starting with an initial
wave function that includes the final bound-state wave function
after the emission of photon, the reaction rate as a function
of inverse temperature, β(=1/kBT ), can be obtained directly
by solving a time-dependent Schrödinger equation in the
imaginary-time axis.

To show the feasibility of the method, we show application
of the method to 16O(α, γ )20Ne reaction in a simple potential
model. We have confirmed that the new method gives an
accurate reaction rate if we solve the imaginary-time evolution
equation in a sufficiently large spatial area. Since the new
method does not require any solution of scattering equation, it
will be a promising approach for the reaction rate of triple-α
radiative capture process. The application to that process is
now in progress.
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