
PHYSICAL REVIEW C 85, 055205 (2012)

Baryon fields with UL(3)×UR(3) chiral symmetry. IV. Interactions with chiral (8, 1) ⊕ (1, 8)
vector and axial-vector mesons and anomalous magnetic moments
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We construct all SUL(3) × SUR(3) chirally invariant anomalous magnetic, i.e., involving a Pauli tensor and
one-derivative, interactions of one chiral [(8, 1) ⊕ (1, 8)] meson field with chiral [(6, 3) ⊕ (3, 6)], [(3, 3) ⊕ (3, 3)],
and [(8, 1) ⊕ (1, 8)] baryon fields and their “mirror” images. We find strong chiral selection rules; e.g., there
is only one off-diagonal chirally symmetric anomalous magnetic interaction between J = 1

2 fields belonging
to the [(6, 3) ⊕ (3, 6)] and the [(3, 3) ⊕ (3, 3)] chiral multiplets. We also study the chiral selection rules for
the anomalous magnetic interactions of the [(3, 3) ⊕ (3, 3)] and the [(8, 1) ⊕ (1, 8)] baryon fields. Again, no
diagonal and only one off-diagonal chiral SUL(3) × SUR(3) interaction of this type is allowed, that turns out also
to conserve the UA(1) symmetry. We calculate the F/D ratios for the baryons’ anomalous magnetic moments
predicted by these interactions in the SU(3) symmetry limit and find that only the [(6, 3) ⊕ (3, 6)]-[(3, 3) ⊕ (3, 3)]
one reproduces F/D = 1/3, in close proximity to the value extracted from experiment.
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I. INTRODUCTION

Our basic assumption is that baryons are linear combina-
tions of three basic chiral representations ([(6, 3) ⊕ (3, 6)],
[(3, 3) ⊕ (3, and 3)], [(8, 1) ⊕ (1, 8)])1 formed by three-quark
interpolating fields. Recent studies [1,2] point towards baryon
chiral mixing of [(6, 3) ⊕ (3, 6)] with either [(3, 3) ⊕ (3, 3)]
or [(8, 1) ⊕ (1, 8)] chiral multiplets as a possible mechanism
underlying the baryons’ axial couplings. This finding is in line
with the old current algebra results of Gerstein and Lee [3,4]
and of Harari [5,6], updated to include the (most recent) F and
D values extracted from experiment Ref. [7], and extended to
include the flavor-singlet coupling g

(0)
A of the nucleon [8,9],

that was not considered in the mid-1960s at all, presumably
due to the lack of data. Our own starting point were the
QCD interpolating fields’ UA(1) chiral properties [10–12]. In
Ref. [13] it has been shown that both the Gerstein-Lee [3,4]
and the Harari [5,6]) scenario survive in chiral Lagrangian
models that constrain the baryon masses.

Having thus made the first step, viz. to reproduce the
phenomenological mixing starting from a chiral effective
model interaction, we turn to the next step, which is to
look for chirally symmetric dynamics that produce anomalous
magnetic moments. One such mechanism is the simplest chi-
rally symmetric one-derivative one-(ρ, a)-meson interaction
Lagrangian; one-derivative because only thus can one couple
the baryon magnetic moment (the Pauli current) to the ρ
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1These chiral multiplets are not limited to three-quark interpolators:

for a discussion of the validity of our assumptions, see Sec. II D.

field. Here we study vector meson couplings because photon
couplings follow them under the vector meson dominance
(VMD) hypothesis which has been shown to work in the low
energy region. We note, however, that the VMD hypothesis is
merely a convenient, but not necessary device, as Gerstein and
Lee [4] have shown that the anomalous magnetic moments
of the nucleons can be obtained using the current algebra,
under the assumption that the photon transforms as a member
of the (broken chiral symmetry) [(8, 1) ⊕ (1, 8)] multiplet,
which amounts to VMD hypothesis with vector mesons
belonging to the [(8, 1) ⊕ (1, 8)] chiral representation.

In this paper we construct all SUL(3) × SUR(3) chirally
invariant one-derivative one-vector-meson-baryon interactions
and then use them to calculate the baryons’ magnetic moments.
We derive the nonderivative Dirac terms, as well. Another,
perhaps equally important and difficult problem, viz. that
of the flavor-singlet anomalous magnetic moment of the
nucleon, is also addressed. Thus our present paper serves
to provide a dynamical model of chiral mixing that is an
optimal approximation to the phenomenological solution of
both the (F,D) and the flavor-singlet axial couplings, and of
the anomalous magnetic moments.

In our previous publication [13] we found two solutions
that fit the axial coupling data2: one that conserves the UA(1)
symmetry (the Harari scenario) and another one that does not
(the Gerstein-Lee scenario). Here we show that only the former
scenario leads to nucleon anomalous magnetic moments that
are in agreement with experiment extrapolated to the SU(3)
symmetry limit. The latter (“Gerstein-Lee”) scenario requires
vanishing nucleon anomalous magnetic moments, in serious
disagreement with experimental result extrapolated to the
SU(3) symmetry limit.

2This does not preclude the existence of more complicated solutions.
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Here we have, for the sake of clarity, temporarily ignored
the chiral mixing in the vector meson sector (that must violate
the UA(1) symmetry, see Ref. [14]). This does not affect the
validity of our conclusions, as in Sec. III A we show that
the chiral interactions of vector mesons belonging to the
[(3, 3) ⊕ (3, 3)] chiral multiplet with the above baryon fields
lead to phenomenologically incorrect values of the anomalous
magnetic moment F/D. We also emphasize the fact that our
results (“selection rules”) hold for arbitrary chiral mixing
angles, thus making the renormalization of axial couplings
due to the axial-vector mesons irrelevant for this purpose.

All this goes to show that the “QCD UA(1) anomaly”
probably does not play a role in the “nucleon spin problem”
[8,9], as was once widely thought [15]. Rather, in all likelihood
the UA(1) anomaly provides only a (relatively) small part of the
solution, associated with the higher Fock space components,
whereas the largest part comes from the UA(1)-symmetric
chiral structure of the nucleon.

In this paper we use the baryon interpolating fields to
construct chirally invariant interactions. These fields have been
often used in the QCD sum rule analyses [19–21] and lattice
QCD calculations [22]. Most of QCD sum rule studies used
the “Ioffe current” which leads to baryon masses consistent
with those of the ground state baryons. In particular, Espriu,
Pascual, and Tarrach [21] have studied the dependence on the
field mixing parameter t of local interpolating operators and
found an optimal value around t ≈ −1, which corresponds to
the “Ioffe current”. The Ioffe interpolating field is the same as
N− in our notation, which belongs to the [(3, 3̄) ⊕ (3̄, 3)] chiral
representation [23]. This is the only local interpolating field
that appears in our chiral admixture results, which is consistent
with the optimal choice in the QCD sum rule analyses.

This paper consists of four parts: after the present section
as Introduction. In Sec. II we construct the SUL(3) × SUR(3)
chirally invariant interactions of nonderivative Dirac type. In
Sec. III we apply chiral mixing formalism to the hyperons’
vector-current form factors. Finally, in Sec. IV we discuss the
results and present a summary and an outlook on the future
developments.

II. NONDERIVATIVE DIRAC TYPE INTERACTION

In this section we propose a method for the construction
of Nf = 3 chiral invariant vector meson-baryon interactions
with [(8, 1) ⊕ (1, 8)] meson fields. Both the diagonal and
off-diagonal terms are possible, which we shall study in the
following.

We have classified the baryon interpolating fields in our
previous paper [10]. Our conventions for them are the same as
in Refs. [1,13]. Next we shall briefly define the conventions
for the vector and axial-vector mesons.

A. Preliminaries: Chiral transformations of vector
and axial-vector mesons

We define the vector and axial-vector mesons in the SU(3)
space:

ρa
μ = q̄Aλa

ABγμqB, aa
1μ = q̄Aλa

ABγμγ5qB, (1)

where the index a goes from 1 to 8. They belong to the
chiral representation (8, 1) ⊕ (1, 8). Their linear combinations,
Mb

μ = ρb
μ + γ5a

b
1μ and M [mir]b

μ = γ0M
+b
μ γ0 = ρb

μ − γ5a
b
1μ, are

the right-handed spin-one-meson vector current and the
left-handed vector current, respectively. They transform as
(8, 1) ⊕ (1, 8) and (1, 8) ⊕ (8, 1), respectively:

δ
�b
5M

b
μ = γ5b

afabcM
c
μ, δ

�b
5M

[mir]b
μ = −γ5b

afabcM
[mir]c
μ . (2)

To proceed our calculations sometimes we use the “physi-
cal” basis, of which the definitions are⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

M1
μ

M2
μ

M3
μ

M4
μ

M5
μ

M6
μ

M7
μ

M8
μ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
2

− i√
2

0 0 0 0 0 0

1√
2

i√
2

0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1√
2

− i√
2

0 0 0

0 0 0 1√
2

i√
2

0 0 0

0 0 0 0 0 1√
2

− i√
2

0

0 0 0 0 0 1√
2

i√
2

0

0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ1
μ + a1

1μ

ρ2
μ + a2

1μ

ρ3
μ + a3

1μ

ρ4
μ + a4

1μ

ρ5
μ + a5

1μ

ρ6
μ + a6

1μ

ρ7
μ + a7

1μ

ρ8
μ + a8

1μ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3)

We can define another type of (8, 1) ⊕ (1, 8) chiral repre-
sentation: Rb

μ = ρb
μ + ab

1μ as the right-handed vector meson,
and Lb

μ = ρb
μ − ab

1μ as the left-handed vector meson. They
transform as

δ
�b
5R

b
μ = bafabcR

c
μ, δ

�b
5L

b
μ = −bafabcL

c
μ. (4)

We can use these two fields to write interactions that can be
used in other calculations. We note here that these two fields
contain both the positive- and the negative-parity components,
however.

B. Diagonal interactions

1. Chiral [(6, 3) ⊕ (3, 6)] baryons diagonal interactions

To start with, it is useful to look at the chiral group structure
of the vector meson-baryon interaction N̄MN ′, where N and
N ′ denote two baryon fields and M denotes the vector meson
fields with the Lorentz index μ contracted either with the Dirac
matrix γμ or with the Pauli tensor σμν .
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The Dirac current N̄γμN contains two γ matrices, γμ and
γ0, the latter of which comes from the Dirac conjugate of the
baryon field. Therefore, it is diagonal in the chiral base, in
other words, it takes the form

N̄MN ′ ∼ N̄LMN ′
L + N̄RMN ′

R

∼ (N̄LMLN ′
L + N̄RMRN ′

R) and

× (
N̄LM

[mir]
L N ′

L + N̄RM
[mir]
R N ′

R

)
, (5)

when decomposed into the left and right helicity components.
Then the diagonal interaction has the structure in group
representation notation

N̄L(6̄, 3̄) × ML(8, 1) × NL(6, 3) + N̄R(3̄, 6̄)

×MR(1, 8) × NR(3, 6),

and

N̄L(6̄, 3̄) × M
[mir]
L (1, 8) × NL(6, 3) + N̄R(3̄, 6̄)

×M
[mir]
R (8, 1) × NR(3, 6),

where in the second structure the mirror field M
[mir]
L,R transforms

as MR,L.

In the first term the product N̄LMLNL is decomposed as

(6̄, 3̄) ⊗ (8, 1) ⊗ (6, 3) ∼ [(6̄, 3̄) ⊗ (6, 3)] ⊗ (8, 1)

	 (8, 1) ⊗ (8, 1) 	 (1, 1), (6)

and the one of N̄LM
[mir]
L NL is decomposed as

(6̄, 3̄) ⊗ (1, 8) ⊗ (6, 3) ∼ [(6̄, 3̄) ⊗ (6, 3)] ⊗ (1, 8)

	 (1, 8) ⊗ (1, 8) 	 (1, 1). (7)

Therefore, there are two chiral invariant combinations for the
left chirality. The situation is the same for the right chirality.
We also do this for other diagonal and off-diagonal interactions
in the following subsections.

Now we shall construct their explicit forms as

N
a

(18)γ
μMc

μNb
(18)C

abc
(18),

and/or

N
a

(18)γ
μM [mir]c

μ Nb
(18)C

abc
(18),

where the indices a and b run from 1 to 18, and the index c

just runs from 1 to 8. By applying the chiral transformation
to this Lagrangian and demanding that this variation vanishes,
we obtain hundreds of equations, such as

δ3
5

(
N

a

(18)γ
μMc

μNb
(18)C

abc
(18)

) =
(

− C1,1,1
(18) − 2

√
2

3
C1,10,1

(18) + 2
√

2

3
C10,1,1

(18)

)
p̄(iγ5b3)γ μM1

μp

+
(

2
√

2

3
C10,1,3

(18) − 2
√

2

3
C1,10,3

(18)

)
p̄(iγ5b3)γ μM3

μp + · · · = 0. (8)

Solving these equations together with the Hermiticity condi-
tion, we find that there are two solutions:

(1) One solution can be written out using Ac
(18) in the following

form (N̄a
(18)γ

μMc
μNb

(18)C
abc
(18)):

LA
(18) = gA

(18)N̄
a
(18)γ

μ
(
ρc

μ + γ5a
c
1μ

)
(Ac

(18)

)
ab

Nb
(18), (9)

where gA
(18) is the coupling constant, and the solution is

Ac
(18) =

( √
3

2 Dc
(8) + 5

2
√

3
Fc

(8) Tc
(8/10)

T†c
(8/10)

2√
3
Fc

(10)

)

=
√

3

2

(
Vc

(18) + Fc
(18)

)
. (10)

The chiral group structure for this interaction is shown in
Eq. (6). The matrices Vc

(18) and Fc
(18) has been defined by

Vc
(18) =

(
Fc

(8) 0

0 Fc
(10)

)
,

(11)

Fc
(18) =

(
Dc

(8) + 2
3 Fc

(8)
2√
3
Tc

(8/10)
2√
3
T†c

(8/10)
1
3 Fc

(10)

)

with Dc
(8), Fc

(8), Tc
(8/10) given in Ref. [1]

(2) The other solution can be written out using Bc
(18) in the

following form (N̄a
(18)γ

μM [mir]c
μ Nb

(18)C
abc
(18)):

LB
(18) = gB

(18)N̄
a
(18)γ

μ
(
ρc

μ − γ5a
c
1μ

)(
Bc

(18)

)
ab

Nb
(18), (12)

where gB
(18) is the coupling constant, and the solution is

Bc
(18) =

⎛
⎝

√
3

2 Dc
(8) − 1

2
√

3
Fc

(8) Tc
(8/10)

T†c
(8/10) − 1√

3
Fc

(10)

⎞
⎠

= −
√

3

2

(
Vc

(18) − Fc
(18)

)
. (13)

The chiral group structure for this interaction is shown in
Eq. (7).

Besides the Lagrangians (9) and (12), their mirror parts

gA
(18m)N̄

a
(18m)γ

μ
(
ρc

μ − γ5a
c
1μ

)(
Ac

(18)

)
ab

Nb
(18m), and

gB
(18m)N̄

a
(18m)γ

μ
(
ρc

μ + γ5a
c
1μ

)(
Bc

(18)

)
ab

Nb
(18m),

are also chiral invariant. Using these solutions, and perform-
ing the chiral transformation, we can obtain the following
relations:

−Fa†
(18)A

b
(18) + Ab

(18)F
a
(18) + ifabcAc

(18) = 0,
(14)

−Fa†
(18)B

b
(18) + Bb

(18)F
a
(18) − ifabcBc

(18) = 0.
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Note that the generators Fa
(18) in Eq. (11) are Hermitian

matrices, i.e., Fa†
(18) = Fa

(18). Therefore, Eqs. (14) turn into the
familiar SU(3) × SU(3) Lie algebra commutators that have
already been proven in Ref. [1]. This confirms the consistency
of our present calculation with that in Ref. [1], as expected.

The solution in the physical basis (N̄a
(18)γ

μMc
μNb

(18)C
abc
(18))

can be obtained by the following relations:

Cab3
(18) = (

A3
(18)

)
ab

, Cab8
(18) = (

A8
(18)

)
ab

,

1√
2

(
Cab1

(18) + Cab2
(18)

) = (
A1

(18)

)
ab

,

i√
2

( − Cab1
(18) + Cab2

(18)

) = (
A2

(18)

)
ab

,

1√
2

(
Cab4

(18) + Cab5
(18)

) = (
A4

(18)

)
ab

, (15)

i√
2

( − Cab4
(18) + Cab5

(18)

) = (
A5

(18)

)
ab

,

1√
2

(
Cab6

(18) + Cab7
(18)

) = (
A6

(18)

)
ab

,

i√
2

( − Cab6
(18) + Cab7

(18)

) = (
A7

(18)

)
ab

.

Another strategy for finding the two chiral interactions
(“solutions”) is to study the two parity-violating baryon
currents interacting with the left- and right-handed vector
mesons and then to combine them to obtain the parity
conserving and parity violating Lagrangians. The explicit
forms of interactions that we obtained by using this strategy
appear to be the most convenient ones for practical use.

To get the first solution, we use the following right-handed
and left-handed currents:

(1) The right-handed current solution can be written in the
following form:

LR
(18) = gR

(18)R
c
μRc

μ(18)

= gR
(18)

(
ρc

μ + ac
1μ

)
N

a

(18)γ
μ
(
Rc

(18)

)
ab

Nb
(18), (16)

where gR
(18) is the right-handed current coupling constant

and we have used

Rc
(18) = (

Vc
(18) + γ5Fc

(18)

)
=

(
γ5Dc

(8) + (
1 + 2

3γ5
)
Fc

(8)
2√
3
γ5Tc

(8/10)

2√
3
γ5T†c

(8/10)

(
1 + 1

3γ5
)
Fc

(10)

)
,

and

Rc
μ(18)

= (
Jc

μ(18) + Jc
μ5(18)

)
= N

a

(18)γ
μγ5

(
Dc

(8)+
(

2
3+γ5

)
Fc

(8)
2√
3
Tc

(8/10)

2√
3
T†c

(8/10)

(
1
3+γ5

)
Fc

(10)

)
ab

Nb
(18),

where

Jc
μ(18) = N

a

(18)γ
μ
(
Vc

(18)

)
ab

Nb
(18),

(17)
Jc

μ5(18) = N
a

(18)γ
μγ5

(
Fc

(18)

)
ab

Nb
(18).

(2) The left-handed current solution can be written in the
following form:

LL
(18) = gL

(18)L
c
μLc

μ(18)

= gL
(18)

(
ρc

μ − ac
1μ

)
N

a

(18)γ
μ(Lc

(18))abN
b
(18), (18)

where gL
(18) is the left-handed current coupling constant and

we have used

Lc
(18) = (

Vc
(18) − γ5Fc

(18)

)
=

(−γ5Dc
(8) + (

1 − 2
3γ5

)
Fc

(8) − 2√
3
γ5Tc

(8/10)

− 2√
3
γ5T†c

(8/10)

(
1 − 1

3γ5
)
Fc

(10)

)
,

and

Lc
μ(18)

= (
Jc

μ(18) − Jc
μ5(18)

)
= −N

a

(18)γ
μγ5

(
Dc

(8)+
(

2
3−γ5

)
Fc

(8)
2√
3
Tc

(8/10)

2√
3
T†c

(8/10)

(
1
3−γ5

)
Fc

(10)

)
ab

Nb
(18).

These two chiral interactions generally contain both the
parity-violating and the parity-conserving parts. Their sum
also contains both of these terms, unless gL

(18) = ±gR
(18), when

it is either purely parity-conserving, in the case of plus sign,

LPC
(18) = gPC

(18)
1

2
N

a

(18)

[(
ρc

μ − ac
1μ

)(
Lμc

(18)

)
+ (

ρc
μ + ac

1μ

)(
Rμc

(18)

)]
Nb

(18)

= gPC
(18)

[
ρμ · Jμ(18) + aμ

1 · Jμ5(18)
]
, (19)

or purely parity-violating, in the case of the minus sign.

LPV
(18) = gPV

(18)
1

2
N

a

(18)

[ − (
ρc

μ − ac
1μ

)(
Lμc

(18)

)
+ (

ρc
μ + ac

1μ

)(
Rμc

(18)

)]
Nb

(18)

= gPV
(18)

[
ρμ · Jμ5(18) + aμ

1 · Jμ(18)
]
. (20)

Thus we have obtained the first solution, Eq. (19).
To get the second solution, we can simply multiply an extra

γ5 in front of Rc
(18) and Lc

(18), and rewrite Eqs. (16) and (18)
to be

L′R
(18) = g′R

(18)R
c
μR′c

μ(18)

= g′R
(18)

(
ρc

μ + ac
1μ

)
N

a

(18)γ
μγ5

(
Rc

(18)

)
ab

Nb
(18),

(21)
L′L

(18) = g′L
(18)L

c
μL′c

μ(18)

= g′L
(18)

(
ρc

μ − ac
1μ

)
N

a

(18)γ
μγ5

(
Lc

(18)

)
ab

Nb
(18).

They are also chiral invariant. Similarly, we can use them to
construct the parity-conserving and parity-violating parts:

L′PC
(18) = g′PC

(18)

[
ρμ · J′

μ(18) + aμ

1 · J′
μ5(18)

]
,

(22)
L′PV

(18) = g′PV
(18)

[
ρμ · J′

μ5(18) + aμ

1 · J′
μ(18)

]
,

where

J′c
μ(18) = N

a

(18)γ
μ
(
Fc

(18)

)
ab

Nb
(18),

(23)
J′c

μ5(18) = N
a

(18)γ
μγ5

(
Vc

(18)

)
ab

Nb
(18).

Thus we have obtained the second solution, Eq. (22).
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Using these solutions, and performing the chiral transfor-
mation, we can obtain the following relations:

−Fa†
(18)γ5Lb

(18) + Lb
(18)F

a
(18)γ5 − ifabcLc

(18) = 0,
(24)

−Fa†
(18)γ5Rb

(18) + Rb
(18)F

a
(18)γ5 + ifabcRc

(18) = 0.

We can check the equivalence of these two sets of solutions,
and verify the following relations:

LPC
(18)

gPC
(18)

= 1√
3

(LA
(18)

gA
(18)

− LB
(18)

gB
(18)

)
,

(25)
L′PC

(18)

g′PC
(18)

= 1√
3

(LA
(18)

gA
(18)

+ LB
(18)

gB
(18)

)
.

2. Chiral [(3, 3) ⊕ (3, 3)] baryons diagonal interactions

The product of the first term inside the structure
(N̄LMLNL + N̄RMRNR) is decomposed as

(3̄, 3) ⊗ (8, 1) ⊗ (3, 3̄) ∼ [(3̄, 3) ⊗ (3, 3̄)] ⊗ (8, 1)

	 (8, 1) ⊗ (8, 1) 	 (1, 1), (26)

while the one of (N̄LM
[mir]
L NL + N̄RM

[mir]
R NR) is decomposed

as

(3̄, 3) ⊗ (1, 8) ⊗ (3, 3̄) ∼ [(3̄, 3) ⊗ (3, 3̄)] ⊗ (1, 8)

	 (1, 8) ⊗ (1, 8) 	 (1, 1). (27)

Therefore, there are two chiral invariant combinations. Con-
sequently, following the same procedures as in the previous
section, we find that there are two solutions:

(1) One solution can be written out using Ac
(9) in the following

form (N̄a
(9)γ

μMc
μNb

(9)C
abc
(9) ):

LA
(9) = gA

(9)N̄
a
(9)γ

μ
(
ρc

μ + γ5a
c
1μ

)
(Ac

(9))abN
b
(9), (28)

where the solution is

Ac
(9) =

(
0 1√

6
Tc

(1/8)

1√
6
T†c

(1/8)
1
2 Dc

(8) + 1
2 Fc

(8)

)
= 1

2

(
Vc

(9) + Fc
(9)

)
.

(29)

The chiral group structure for this interaction is shown in
Eq. (26). The matrices Fc

(9) have been defined in Eq. (30)
and

Vc
(9) =

(
0 0
0 Fc

(8)

)
. (30)

(2) The other solution can be written out using Bc
(9) in the

following form (N̄a
(9)γ

μM [mir]c
μ Nb

(9)C
abc
(9) ):

LB
(9) = gB

(9)N̄
a
(9)γ

μ
(
ρc

μ − γ5a
c
1μ

)
(Bc

(9))abN
b
(9), (31)

where the solution is

Bc
(9) =

(
0 1√

6
Tc

(1/8)

1√
6
T†c

(1/8)
1
2 Dc

(8) − 1
2 Fc

(8)

)
= −1

2

(
Vc

(9) − Fc
(9)

)
.

(32)

The chiral group structure of this interaction is shown in
Eq. (27).

Besides the Lagrangians (28) and (31), their mirror parts,

gA
(9m)N̄

a
(9m)γ

μ
(
ρc

μ − γ5a
c
1μ

)(
Ac

(9)

)
ab

Nb
(9m), and

gB
(9m)N̄

a
(9m)γ

μ
(
ρc

μ + γ5a
c
1μ

)(
Bc

(9)

)
ab

Nb
(9m),

are also chiral invariant. Using these solutions, and perform-
ing the chiral transformation, we can obtain the following
relations:

−Fa†
(9)A

b
(9) + Ab

(9)F
a
(9) + ifabcAc

(9) = 0,
(33)

−Fa†
(9)B

b
(9) + Bb

(9)F
a
(9) − ifabcBc

(9) = 0.

Note that the generators Fa
(9) defined in Ref. [1] are hermitian

matrices, i.e., Fa†
(9) = Fa

(9). Therefore, Eqs. (33) turn into the fa-
miliar SU(3) × SU(3) Lie commutators that have already been
proven in Ref. [1]. This, once again, proves the consistency of
our present calculation with that in Ref. [1].

We can use the other strategy which has been discussed
in the previous section to obtain these two interactions. One
solution is

LPC
(9) = gPC

(9)

[
ρμ · Jμ(9) + aμ

1 · Jμ5(9)
]
, (34)

where

Jc
μ(9) =N

a

(9)γ
μ
(
Vc

(9)

)
ab

Nb
(9), Jc

μ5(9) =N
a

(9)γ
μγ5

(
Fc

(9)

)
ab

Nb
(9),

(35)

and the other solution is (similarly obtained by adding an extra
γ5):

L′PC
(9) = g′PC

(9)

[
ρμ · J′

μ(9) + aμ

1 · J′
μ5(9)

]
, (36)

where

J′c
μ(9) = N

a

(9)γ
μ
(
Fc

(9)

)
ab

Nb
(9), J′c

μ5(9) = N
a

(9)γ
μγ5

(
Vc

(9)

)
ab

Nb
(9).

(37)

The relevant purely parity-violating partners are

LPV
(9) = gPV

(9)

[
ρμ · Jμ5(9) + aμ

1 · Jμ(9)
]
.

(38)
L′PV

(9) = g′PV
(9)

[
ρμ · J′

μ5(9) + aμ

1 · J′
μ(9)

]
,

We can check the equivalence of these two sets of solutions,
and verify the following relations:

LPC
(9)

gPC
(9)

= LA
(9)

gA
(9)

− LB
(9)

gB
(9)

,
L′PC

(9)

g′PC
(9)

= LA
(9)

gA
(9)

+ LB
(9)

gB
(9)

. (39)

3. Chiral [(8, 1) ⊕ (1, 8)] baryons diagonal interactions

The product of the first term inside the structure
(N̄LMLNL + N̄RMRNR) is decomposed as

(8, 1) ⊗ (8, 1) ⊗ (8, 1) 	 [(8, 1) ⊕ (8, 1)] ⊗ (8, 1)

	 (1, 1) ⊕ (1, 1). (40)

Therefore, there are two chiral invariant combinations. Con-
sequently, following the same procedure as in the previous
section(s), we find that there are two solutions. They can
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be written out using Fc
(8) and Dc

(8) in the following form
(N̄a

(8)γ
μMc

μNb
(8)C

abc
(8) ):

LF
(8) = gF

(8)N̄
a
(8)γ

μ
(
ρc

μ + γ5a
c
1μ

)(
Fc

(8)

)
ab

Nb
(8), (41)

LD
(8) = gD

(8)N̄
a
(8)γ

μ
(
ρc

μ + γ5a
c
1μ

)(
Dc

(8)

)
ab

Nb
(8). (42)

The chiral group structure for these two interactions is just
shown in Eq. (40).

Besides the Lagrangians (41) and (42), their mirror parts

gF
(8m)N̄

a
(8m)γ

μ
(
ρc

μ − γ5a
c
1μ

)(
Fc

(8)

)
ab

Nb
(8m) and

gD
(8m)N̄

a
(8m)γ

μ
(
ρc

μ − γ5a
c
1μ

)(
Dc

(8)

)
ab

Nb
(8m),

are also chiral invariant. Using these solutions, and perform-
ing the chiral transformation, we can obtain the following
relations:

−Fa†
(8)F

b
(8) + Fb

(8)F
a
(8) + ifabcFc

(8) = 0,
(43)

−Fa†
(8)D

b
(8) + Db

(8)F
a
(8) + ifabcDc

(8) = 0.

Note that the generators Fa
(8) defined in Ref. [1] are Hermitian

matrices, i.e., Fa†
(8) = Fa

(8). Therefore, Eqs. (43) turn into the fa-
miliar SU(3) × SU(3) Lie commutators that have already been
proven in Ref. [1]. This, once again, proves the consistency of
our present calculation with that in Ref. [1].

We can use the other strategy which has been discussed in
the previous section(s) to obtain these two interactions. One
solution is

LPC
(8) = gPC

(8)

[
ρμ · Jμ(8) + aμ

1 · Jμ5(8)
]
, (44)

where

Jc
μ(8) = N

a

(8)γ
μ
(
Fc

(8)

)
ab

Nb
(8), Jc

μ5(8) = N
a

(8)γ
μγ5

(
Fc

(8)

)
ab

Nb
(8).

(45)

Here, we might think that the other solution can be obtained
similarly by adding an extra γ5 which we have done in
the previous section(s). However, we find that the solution
obtained in this way is same as the original solution. Therefore,
in order to get the second solution we need to find another
different set of J′c

μ(8) and J′c
μ5(8):

J′c
μ(8) = N

a

(8)γ
μ
(
Dc

(8)

)
ab

Nb
(8), J′c

μ5(8) = N
a

(8)γ
μγ5

(
Dc

(8)

)
ab

Nb
(8),

(46)

and the second solution is

L′PC
(8) = g′PC

(8)

[
ρμ · J′

μ(8) + aμ

1 · J′
μ5(8)

]
. (47)

The relevant parity-violating partners are

LPV
(8) = gPV

(8)

[
ρμ · Jμ5(8) + aμ

1 · Jμ(8)
]
, (48)

L′PV
(8) = g′PV

(8)

[
ρμ · J′

μ5(8) + aμ

1 · J′
μ(8)

]
. (49)

We can check the equivalence of these two sets of solutions,
and verify the following relations:

LPC
(8)

gPC
(8)

= LF
(8)

gF
(8)

,
L′PC

(8)

g′PC
(8)

= LD
(8)

gD
(8)

. (50)

4. Chiral [(10, 1) ⊕ (1, 10)] baryons diagonal interactions

The product of the first term inside the structure
(N̄LMLNL + N̄RMRNR) is decomposed as

(1̄0, 1) ⊗ (8, 1) ⊗ (10, 1) ∼ [(1̄0, 1) ⊗ (10, 1)] ⊗ (8, 1)

	 (8, 1) ⊗ (8, 1) 	 (1, 1). (51)

Therefore, there is only one chiral invariant combination.
Consequently, following the same procedure as in the pre-
vious section(s), we find that there is only one solution,
which can be written out using Fc

(10) in the following form
(�̄a

(10)γ
μMc

μ�b
(10)C

abc
(10)):

L(10) = g(10)�̄
a
(10)γ

μ
(
ρc

μ + γ5a
c
1μ

)(
Fc

(10)

)
ab

�b
(10). (52)

The chiral group structure for these two interactions is just
shown in Eq. (51).

Besides the Lagrangian Eq. (52), its mirror part,

g(10m)�̄
a
(10m)γ

μ
(
ρc

μ − γ5a
c
1μ

)(
Fc

(10)

)
ab

�b
(10m),

is also chiral invariant. Using these solutions, and performing
the chiral transformation, we can obtain the following rela-
tions:

−Fa†
(10)F

b
(10) + Fb

(10)F
a
(10) + ifabcFc

(10) = 0. (53)

Note that the generators Fa
(10) defined in Ref. [1] are Hermitian

matrices, i.e., Fa†
(10) = Fa

(10). Therefore, Eq. (53) turns into the
familiar SU(3) × SU(3) Lie commutators that have already
been proven in Ref. [1]. This, once again, proves the consis-
tency of our present calculation with that in Ref. [1].

We can also use the other strategy which has been discussed
in the previous section(s) to obtain this interaction:

LPC
(10) = gPC

(10)

[
ρμ · Jμ(10) + aμ

1 · Jμ5(10)
]
, (54)

where

Jc
μ(10) = N

a

(10)γ
μ
(
Fc

(10)

)
ab

Nb
(10),

(55)
Jc

μ5(10) = N
a

(10)γ
μγ5

(
Fc

(10)

)
ab

Nb
(10).

The relevant parity-violating partner is

LPV
(10) = gPV

(10)

[
ρμ · Jμ5(10) + aμ

1 · Jμ(10)
]
. (56)

C. Chiral mixing interactions

To construct chiral invariant off-diagonal interactions, we
need to consider the following off-diagonal terms in the chiral
base, in other words, it can also take the form

N̄MN ′ ∼ N̄LMN ′
R + N̄RMN ′

L

= (N̄LMLN ′
R + N̄RMRN ′

L)

+ (N̄LMRN ′
R + N̄RMLN ′

L), (57)

when decomposed into the left and right components. How-
ever, to arrive at this form we need to use the mirror field N ′[mir]

to have the correct helicity structure:

N̄LMN ′
R + N̄RMN ′

L ∼ N̄LMN
′[mir]
L + N̄RMN

′[mir]
R . (58)
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TABLE I. Allowed chiral invariant Dirac type interaction terms with one (8, 1) ⊕ (1, 8) vector
meson field N̄γ μMμN . In the first column we show the chiral representation of N , and the first row
the chiral representation of N̄ . We use “[mir]” to denote the relevant mirror fields.

(8, 1) ⊕ (1, 8) (3, 3̄) ⊕ (3̄, 3) (6, 3) ⊕ (3, 6) (10, 1) ⊕ (1, 10)

(8, 1) ⊕ (1, 8) 2 ×Mμ Mμ

(3̄, 3) ⊕ (3, 3̄) Mμ, M†
μ

(6̄, 3̄) ⊕ (3̄, 6̄) Mμ, M†
μ

(10, 1) ⊕ (1, 10) Mμ Mμ

(3, 3̄) ⊕ (3̄, 3) (6, 3) ⊕ (3, 6)
(3, 3̄) ⊕ (3̄, 3)[mir] Mμ

(3̄, 6̄) ⊕ (6̄, 3̄)[mir] M†
μ

1. Chiral mixing interaction [(6, 3) ⊕ (3, 6)]-[(3, 3) ⊕ (3, 3)]

The product of the first term inside (N̄LMLN
′[mir]
L +

N̄RMRN
′[mir]
R ) is decomposed as

(6̄, 3̄) ⊗ (8, 1) ⊗ (3̄, 3) ∼ [(6̄, 3̄) ⊗ (3̄, 3)] ⊗ (8, 1)

	 (8, 1) ⊗ (8, 1) 	 (1, 1). (59)

Therefore, there is one chiral invariant combination, and
we find that the mixing of [(6, 3) ⊕ (3, 6)] with [(3, 3) ⊕
(3, 3)][mir] baryon fields together with an [(8, 1) ⊕ (1, 8)] chiral
multiplet of vector and axial-vector meson fields can form a
chiral singlet. We find the following form of the chiral invariant
interaction

N
a

(9m)γ
μMc

μNb
(18)C

abc
(9/18) + H.c. (60)

The coefficients Cabc
(9/18) can be similarly obtained as in Eq. (15),

and once again we find a parity-conserving interaction

LPC
(9/18) = gPC

(9/18)

[
N

a

(9m)γ
μ
(
ρc

μ + γ5a
c
1μ

)
× (

Tc
(9/18)

)
ab

Nb
(18) + H.c.

]
, (61)

and a parity-violating partner

LPV
(9/18) = gPV

(9/18)

[
N

a

(9m)γ
μγ5

(
ρc

μ + γ5a
c
1μ

)
× (

Tc
(9/18)

)
ab

Nb
(18) + H.c.

]
, (62)

with

Tc
(9/18) =

( 1
2 Tc

(1/8) 01×10

−
√

3
2
√

2
Dc

(8) − 1
2
√

6
Fc

(8)
1√
2
Tc

(8/10)

)
, (63)

that satisfies the following relation:

Fa†
(9)T

b
(9/18) + Tb

(9/18)F
a
(18) + ifabcTc

(9/18) = 0. (64)

2. Chiral mixing interaction [(10, 1) ⊕ (1, 10)] – [(8, 1) ⊕ (1, 8)]

The product of the first term inside (N̄LMLNL +
N̄RMRNR) is decomposed as

(1̄0, 1) ⊗ (8, 1) ⊗ (8, 1) ∼ [(1̄0, 1) ⊗ (8, 1)] ⊗ (8, 1)

	 (8, 1) ⊗ (8, 1) 	 (1, 1). (65)

Therefore, there is one chiral invariant combination, and we
find that the mixing of [(10, 1) ⊕ (1, 10)] with [(8, 1) ⊕ (1, 8)]
baryon fields together with an [(8, 1) ⊕ (1, 8)] chiral multiplet

of vector and axial-vector meson fields can form a chiral
singlet. We find the following form of the chiral invariant
interaction:

N
a

(8)γ
μMc

μNb
(10)C

abc
(8/18) + H.c. (66)

The coefficients Cabc
(8/18) can be similarly obtained as in Eq. (15),

and once again we find a parity-conserving interaction

LPC
(8/18) =gPC

(8/18)

[
N

a

(8)γ
μ
(
ρc

μ+γ5a
c
1μ

)(
Tc

(8/10)

)
ab

Nb
(10)+H.c.

]
,

(67)

and a parity-violating partner

LPV
(8/18) = gPV

(8/10)

[
N

a

(8)γ
μγ5

(
ρc

μ + γ5a
c
1μ

)
× (

Tc
(8/10)

)
ab

Nb
(10) + H.c.

]
. (68)

We find that the only solution is formed by the Tc
(8/10) matrices

defined in Ref. [1] that satisfy the following relation:

−Fa†
(8)T

b
(8/10) + Tb

(8/10)F
a
(10) + ifabcTc

(8/10) = 0. (69)

D. Brief summary of the Dirac type interactions

Note that all of the diagonal Dirac type interactions that
were shown here also appear in a local SUL(3) × SUR(3) chiral
symmetry Yang-Mills interaction. We have found more, how-
ever: there are chiral off-diagonal interaction terms that cannot
be obtained by a minimal substitution in the kinetic energy, of
the Yang-Mills type because per definition the kinetic energies
are diagonal operators in the chiral representation space. These
off-diagonal terms show up in the flavor-decimet channel,
and therefore are physically less accessible than the diagonal
flavor-octet ones, which are easier to access by way of elastic
scattering. Here, as well, there are strong chiral selection rules.

III. ONE-DERIVATIVE PAULI TYPE INTERACTIONS

Now let us look at one-derivative Pauli type interactions.
They lead to the anomalous magnetic moments through vector
meson dominance. The interaction terms take in general the
following form:

N̄aσμν∂νM
c
μNbCabc, (70)

which has the helicity flip structure, i.e., N̄LONR . Due to this
structure, the chiral selection rules are far more restrictive than
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TABLE II. Allowed chiral invariant Pauli type interaction terms with one (8, 1) ⊕ (1, 8) vector
meson field N̄σμν∂νMμN . In the first column we show the chiral representation of N , and the first row
the chiral representation of N̄ . We use “[mir]” to denote the relevant mirror fields.

(8, 1) ⊕ (1, 8) (3, 3̄) ⊕ (3̄, 3) (6, 3) ⊕ (3, 6) (10, 1) ⊕ (1, 10)

(1, 8) ⊕ (8, 1)[mir] 2 ×Mμ Mμ

(3, 3̄) ⊕ (3̄, 3)[mir] Mμ, M†
μ

(3̄, 6̄) ⊕ (6̄, 3̄)[mir] Mμ, M†
μ

(1, 10) ⊕ (10, 1)[mir] Mμ Mμ

(3, 3̄) ⊕ (3̄, 3) (6, 3) ⊕ (3, 6)
(3̄, 3) ⊕ (3, 3̄) Mμ

(6̄, 3̄) ⊕ (3̄, 6̄) M†
μ

otherwise. As first noted by Dashen and Gell-Mann [16], all
of the diagonal anomalous magnetic interactions must vanish
due to such chiral symmetry restrictions.

All of the off-diagonal anomalous magnetic interactions can
be easily obtained from the off-diagonal and diagonal Dirac
type ones in Sec. II in many cases by simply substituting one
of the baryon fields with its mirror one. Mixing of various
combinations of chiral multiplets gives the following chiral
invariant interactions:

(1) For [(6, 3) ⊕ (3, 6)]-[(3, 6) ⊕ (6, 3)][mir] the chiral invariant
interactions are(

κA
(18)

2M

)
N

a

(18)σ
μν∂ν

(
ρc

μ − γ5a
c
1μ

)(
Vc

(18) + Fc
(18)

)
ab

Nb
(18m)

+ H.c.,(
κB

(18)

2M

)
N

a

(18)σ
μν∂ν

(
ρc

μ + γ5a
c
1μ

)(
Vc

(18) − Fc
(18)

)
ab

Nb
(18m)

+ H.c. (71)

(2) For [(3, 3) ⊕ (3, 3)]-[(3̄, 3) ⊕ (3, 3̄)][mir] the chiral invariant
interactions are(

κA
(9)

2M

)
N

a

(9)σ
μν∂ν

(
ρc

μ − γ5a
c
1μ

)(
Vc

(9) + Fc
(9)

)
ab

Nb
(9m)

+ H.c.,(
κB

(9)

2M

)
N

a

(9)σ
μν∂ν

(
ρc

μ + γ5a
c
1μ

)(
Vc

(9) − Fc
(9)

)
ab

Nb
(9m)

+ H.c. (72)

(3) For [(8, 1) ⊕ (1, 8)]-[(1, 8) ⊕ (8, 1)][mir] the chiral invariant
interactions are(

κA
(8)

2M

)
N

a

(8)σ
μν∂ν

(
ρc

μ − γ5a
c
1μ

)(
Fc

(8)

)
ab

Nb
(8m) + H.c.,

(73)(
κB

(8)

2M

)
N

a

(8)σ
μν∂ν

(
ρc

μ − γ5a
c
1μ

)(
Dc

(8)

)
ab

Nb
(8m) + H.c.

(4) For [(10, 1) ⊕ (1, 10)]-[(1, 10) ⊕ (10, 1)][mir] the chiral
invariant interactions are(

κ(10)

2M

)
�

a

(10)σ
μν∂ν

(
ρc

μ − γ5a
c
1μ

)(
Fc

(10)

)
ab

�b
(10m) + H.c.

(74)

(5) For [(6, 3) ⊕ (3, 6)]-[(3, 3) ⊕ (3, 3)] the chiral invariant
interactions are(

κ(9/18)

2M

)
N

a

(9)σ
μν∂ν

(
ρc

μ + γ5a
c
1μ

)(
Tc

(9/18)

)
ab

Nb
(18) + H.c.

(75)

(6) For [(8, 1) ⊕ (1, 8)]-[(1, 10) ⊕ (10, 1)][mir] the chiral
invariant interactions are(

κ(8/10)

2M

)
N

a

(8)σ
μν∂ν

(
ρc

μ − γ5a
c
1μ

)(
Tc

(8/10)

)
ab

Nb
(10m) + H.c.

(76)

From the above summary of the interactions, we note
that for the normal-normal (also known as the “naive-
naive”) combination, only [(6, 3) ⊕ (3, 6)]-[(3, 3̄) ⊕ (3̄, 3)]
survives, whereas the naive-mirror one [(6, 3) ⊕ (3, 6)]-
[(3̄, 3) ⊕ (3, 3̄)][mir] vanishes, which is a selection rule due
to SU(3) × SU(3) chiral symmetry. Furthermore, as the first
mixing term preserves the UA(1) symmetry, while the second
one does not, we are forced to conclude that the selection
rule leads to the Harari scenario where the UA(1) symmetry is
maintained as the only viable one in this three-quark baryon
field and no chiral mixing in vector mesons approximation,
whereas the Gerstein-Lee one is effectively ruled out by the
chiral selection rule [13].

In order to have a realistic anomalous magnetic moment it
may be necessary to include the flavor-singlet, chiral-singlet
vector meson φμ. Once again, there are chiral selection rules
that strongly prefer the Harari scenario.

A. The anomalous magnetic moment results: Comparison
with experiment in the SU(3) symmetry limit

Thus far we have studied the anomalous magnetic moments
of baryon fields and found specific constraints due to chiral
symmetry. The basic quantity that we address is the D/F

ratio for the baryon anomalous magnetic moments, whose
“experimental value” has been extrapolated to D/F 
3 in the
SU(3) symmetry limit. Note that that is precisely the value
that shows up in the [(6, 3) ⊕ (3, 6)]-[(3, 3) ⊕ (3, 3)] baryon
mixing interaction. Indeed, all of the other chiral interactions
have a vanishing D components.
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Of course, it is not one, but a linear combination (“ad-
mixture”) of three chiral representations that describe the
physical baryon states, as explained in the Introduction and
in Refs. [1,2,10,13] where we found two candidate chiral
mixing scenarios: a) the Harari one, i.e., [(6, 3) ⊕ (3, 6)]-
[(3, 3) ⊕ (3, 3)]-[(3, 3) ⊕ (3, 3)]; and b) the Lee-Gerstein one,
i.e., [(6, 3) ⊕ (3, 6)]-[(8, 1) ⊕ (1, 8)]-[(3, 3) ⊕ (3, 3)]. As the
[(3, 3) ⊕ (3, 3)] multiplet shows up only in the Harari scenario,
this is a “smoking gun” evidence supporting it, and overturning
the Gerstein-Lee one, subject to the no-chiral-mixing assump-
tion in the vector meson sector.

Next we may consider the chiral mixing for the [(8, 1) ⊕
(1, 8)] vector mesons with the [(3, 3) ⊕ (3, 3)] component.
One may use our old results, Refs. [13,14,17], to do so
and relax this last assumption: the [(3, 3) ⊕ (3, 3)] chiral
component of the vector mesons couples magnetically to the
baryons chiral multiplets in exactly the same fashion as the
spinless [(3, 3) ⊕ (3, 3)] mesons treated in Ref. [13]. So we
may use Eq. (35) in Ref. [13] to read off the F and D values
of the anomalous magnetic moments in such a scheme: they
are F = 1 and D = 0, thus leading to D/F = 0, again in
stark contrast to the “experimental” value D/F 
3 in the
SU(3) symmetry limit. This eliminates the chiral mixing
of vector meson as a viable explanation of the baryons’
magnetic moments. Indeed, it seems to imply certain limits
on the amount of such chiral mixing, that will be explored
elsewhere.

Note that these results hold even in the chiral limit and
have nothing to do with the value of the pion-nucleon �-term
as suggested in Ref. [18]. Moreover, the chiral/flavor-singlet
vector meson field couples with arbitrary strength to baryons,
which introduces arbitrary “strange” anomalous magnetic
moment, again even in the chiral limit.

IV. SUMMARY AND CONCLUSIONS

We have used the results of our previous papers [1,10] to
construct the SUL(3) × SUR(3) chiral invariant interactions of
baryon fields with vector mesons. This approach is based on
the chiral [(6, 3) ⊕ (3, 6)] multiplet mixing with the chiral
[(3, 3̄) ⊕ (3̄, 3)] and [(8, 1) ⊕ (1, 8)] multiplets and is con-
strained by the well known phenomenological facts regarding
the baryon axial currents.

The results of the three-field (“two-angle”) mixing were
ambiguous insofar as all phenomenologically permissible
combinations of interpolating fields lead to the same F ,D
values, in reasonable agreement with the result extrapolated
from experiment in the SU(3) symmetry limit. That led to
two permissible scenarios: a) the Gerstein-Lee [3] and b) the
Harari scenario [5,6], neither of which could be eliminated on
the basis of axial currents and baryon masses alone.

What was left unfinished were the magnetic moments of
the baryon octet. Here we attacked that problem by first
constructing all SUL(3) × SUR(3) chirally symmetric baryon-
one-vector-meson interactions that mix the three basic baryon
chiral multiplets (and their mirror counterparts). All of these
chiral interactions obey the UA(1) symmetry, as well.

We used the resulting interactions’ chiral selection rules
to select the only scenario that can reproduce the observed
anomalous magnetic moments: the Harari scenario. Moreover,
the magnetic moment F/D 
 1/3 predicted by the chiral
interaction, has the same value as in the SU(6FS) symmetry
limit, or as in the nonrelativistic quark model. This last fact is
curious and requires further investigation.

The next step, left for the future, is to investigate the
SUL(3) × SUR(3) → SUL(2) × SUR(2) symmetry breaking
and the study of the chiral SUL(2) × SUR(2) properties of
hyperons. Then one may consider explicit chiral symmetry
breaking corrections to the axial and the vector currents,
which are related to the SUL(3) × SUR(3) symmetry breaking
meson-nucleon derivative interactions, not just the explicit
SU(3) symmetry breaking ones that have been considered thus
far (see Ref. [7] and the previous subsection).

We finish on a historical note: even though chiral mixing
has been known for more than 40 years [24–27], the SUL(3) ×
SUR(3) chiral interactions necessary to describe the anomalous
magnetic moments have not been discussed in print, only the
problems associated with them [28]. Moreover, it ought to
be noted that Gerstein and Lee [4] had calculated anomalous
magnetic moments of the nucleons that were in agreement
with experiment in their chiral mixing scheme. These authors
apparently did not try to extend their scheme to hyperons,
however, nor did they construct a chiral Lagrangian that
reproduces such chiral mixing.
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