
PHYSICAL REVIEW C 85, 055204 (2012)

Quantized linear σ model at finite temperature, and nucleon properties
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The nucleon properties due to the restoration of the chiral symmetry at nonzero temperature T are investigated
within the framework of the linear σ model. The field equations are solved using the coherent-pair approximation.
In this approach, the quantum fields are treated in a nonperturbative fashion. We minimize the expectation value
of the chiral Hamiltonian using the ansatz of the coherent-pair ground-state configuration. The obtained results
show that the nucleon mass and mean-square radius of the proton and the neutron increase monotonically with the
temperature T and that the pion-nucleon coupling constant gπNN decreases with temperature values that are near
the value of the critical temperature Tc. The nucleon mass and mean-square radius of the proton are examined in
the (x, T ) plane, showing a sensitive dependence on the coherence parameter x. This means that an increase of
both the coherence parameter x and the temperature T leads to an increase in the values of the nucleon mass and
the mean-square radius of the proton. This is evidence for the quark-gluon deconfinement phase transition.
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I. INTRODUCTION

In recent years, the behavior of strongly interacting matter
under extreme conditions of temperature has become an
issue of great interest because of its relevance to particle
physics and astrophysics. In particular, it is important to study
how hadron properties (masses, magnetic moments, decay
constants, etc.) can be modified when hadrons propagate in
a hot medium [1]. The study of hadron properties at finite
temperature and density is essential for understanding the
behavior of quarks and gluons in the hot QCD medium, which
is called quark gluon plasma (QGP). This phase is under
investigation in RHIC [2], BNL, and CERN experiments [3]
and there is strong evidence that it has been observed. The low
critical values of the temperature mean that one has to deal
with nonperturbative phenomena. However, the analytical as
well as the numerical (lattice QCD) methods have not been
developed enough to fully allow for the solution of low-energy
nonperturbative cases, especially if the baryons are involved.
Therefore one may apply effective quark models, which satisfy
chiral symmetry and spontaneous symmetry breaking.

Chiral symmetry breaking is an important phenomenon
in hadron physics and is of fundamental importance for
hadron properties. The difficulties involved in obtaining low-
energy properties directly from QCD, the fundamental theory
of strong interactions, have motivated the construction of
effective models due to their simplicity and effectiveness
in describing hadrons at low energies [4]. The linear σ

model has been proposed as a model for strong nuclear
interactions [5]. The model was first proposed as a model
for pion-nucleon interactions. Today it serves as an effective
model for the low-energy phase (zero temperature) of quantum
chromodynamics [6–9] and its modification is suggested as in
Refs. [10–15] to provide a good description of the baryon
properties. The model exhibits the spontaneous breaking of
chiral symmetry and its restoration at finite temperatures. This

model has been extensively studied recently [16–22]. The
Hartree approximation of the O(N ) linear σ model of two
or four quarks flavors has been studied at finite temperature
by various authors [16,19–21]. The model with spontaneous
symmetry breaking is found to have a first-order phase
transition towards the symmetric phase at high temperatures.
In contrast to the case of large N , the mass of the pion quantum
fluctuations does not vanish in the broken phase [16–18,22].
The order of phase transitions depends on the loops, which are
taken into account in the effective potential [23]. Moreover,
the isospin chemical potential is investigated in this model
using the Cornwall-Jackiw-Tombolis (CJT) formalism [24] as
in Refs. [25–27]. Lenaghan and Rischke [28] used the CJT
formalism to study the σ and pion masses and obtained the
meson masses at a given nonzero temperature, which generally
depends on the choice of the cutoff or renormalization. Chiku
and Hatsuda [29] applied the optimized perturbation theory at
finite temperature T in the linear σ model and the higher-order
terms are considered in their approach.

The quark σ model is successfully applied to the description
of static and dynamic baryon properties at finite temperature
and density as in Refs. [30,31]. The description is in quan-
titative agreement in comparison with other approaches. On
the same lines, Dominguez et al. [32] studied the behaviors
of the pion-nucleon coupling constant and the mean-square
radius of the nucleon as functions of the temperature in the
framework of the thermal σ model and the thermal QCD
finite energy sum rules without considering the quantization
of the fields. Zakout [33] introduced another approach to
investigate the nucleon mass at finite temperature using the
Bethe-Salpeter equation (BSE) and compared his results with
those of the MIT bag model. Caldas et al. [34] studied the
linear σ model at finite temperature, in which a modified
self-consistent resummation (MSCR) was applied.

The aim of this work is to investigate the nucleon properties
in the framework of the linear σ model at finite temperature
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considering the quantization of fields. In Refs. [8,9], the
nucleon properties are calculated at zero temperature,
taking the quantized fields into account. Many recent works
have not considered the quantization of the fields at finite
temperatures [19].

In Sec. II, the quark σ model with the effective mesonic
potential is explained. The Fock state in the coherent-pair
approximation and the variational principle are presented in
Secs. III and IV, respectively. The derived nucleon properties
are calculated at finite temperature in Sec. V. The numerical
calculations and the results are presented in Sec. VI. We discuss
and summarize the results in Sec. VII.

II. QUARK σ MODEL WITH EFFECTIVE
MESONIC POTENTIAL

The Lagrangian density of the quark σ model that describes
the interactions between quarks via the σ and π mesons with
the effective mesonic potential of one loop takes the following
form [35]

L (r) = i�∂μγ μ�̂ + 1
2 (∂μσ̂ ∂μσ̂ + ∂μπ̂ · ∂μπ̂ )

+ g�̂(σ̂ + iγ5τ̂ · π̂ )�̂ − U eff(σ̂ , π̂ ), (1)

with

U eff(σ̂ , π̂ ) = λ2

4
(σ̂ 2 + π̂2 − ν2)2 − fπm2

π σ̂ − π2

45
T 4

+ T 2

24f 2
π

(
3m2

σ − 5m2
π

)
(σ̂ 2 + π̂2), (2)

where

λ2 = m2
σ − m2

π

2f 2
π

, ν2 = f 2
π − m2

π

λ2
, (3)

where fπ is the pion decay constant, mπ is the pion mass, and
mσ and g are constants to be determined. The quark, σ , and
π mesons are quantum fields denoted by (ˆ). In Eq. (2), the
first and second terms on the right side represent a contribution
from the meson at the tree level of the usual mesonic potential
with explicit symmetry breaking term at zero temperature. The
third term arises from the quark loop, and the final term is from
the meson loop (for details, see Ref. [35])

Now one can rewrite the Hamiltonian density [9]

Ĥ (r) = 1
2 {P̂σ (r)2 + [∇σ̂ (r)]2 + P̂π (r)2 + [∇π (r)]2}
+U eff(σ̂ , π̂ ) + �̂† (r) (−iα∇)�̂ (r)

− g (r) �̂†(r)[βσ̂ (r) + iβγ5τ̂ · π̂ ]�̂ (r) , (4)

where α and β are the usual Dirac matrices. In the above

expression, �̂, σ̂ and π̂ are quantized field operators with the
appropriate static angular momentum expansion [8, 9],

σ̂ (r) =
∫ ∞

0

dkk2

[2 (2π )3 Wσ (k)]
1
2

[ĉ† (k) e−ik.r + ĉ (k) e+ik.r ],

(5)

π̂ (r) =
[

2

π

] 1
2
∫ ∞

0
dkk2

[
1

2Wπ (k)

] 1
2 ∑

lmw

jl (kr) Y ∗
lm (�r )

× [
â

1w†
lm (k) + (−)m+w â1−w

l−m (k)
]
, (6)

�̂ (r) =
∑
njmw

(〈r � njmw〉 d̂
1
2 w

njm + 〈r � njmw〉 d̂
1
2 w†
njm

)
, (7)

where the |njmw〉 and |njmw〉 form a complete set of
quark and antiquark spinors with angular momentum quantum
numbers and spin-isospin quantum numbers j,m, and w,

respectively. The corresponding conjugate momentum fields
have the expansion [8,9],

P̂σ (r) = i

∫ ∞

0
dkk2

[
Wσ (k)

2 (2π )3

] 1
2

[ĉ† (k) e−k.r − ĉ (k) e
+k.r

],

(8)

P̂π (r) = i

[
2

π

] 1
2
∫ ∞

0
dkk2

[
Wπ (k)

2

] 1
2 ∑

lmw

jl (kr) Y ∗
lm (�r )

× [
â

1w†
lm (k) − (−)m+w â1−w

l−m (k)
]
. (9)

Here ĉ(k) destroys a σ quantum with momentum k and
frequency Wσ (k) = (k2 + m2

σ )
1
2 and â1w

lm (k) destroys a pion
with momentum k and corresponding frequency Wπ (k) =
(k2 + m2

π )
1
2 in the isospin-angular momentum state {lm; tw}.

III. FOCK STATE

For convenience, one constructs the configuration-space
pion field functions, which are needed for the subsequent vari-
ational treatment by defining the alternative basis operators,

b̂1w
lm =

∫
dkk2ζl (k) â1w

lm (k) , (10)

where â1w
lm (k) are basis operators, which create a free massive

pion with isospin component w and orbital angular momentum
(l, m), and ζl(k) is the variational function. Working in the
configuration space [9], the pion field function is defined as

�l = 1

2π

∫ ∞

0
dkk2 ζl (k)

Wπ (k)
1
2

jl(kr). (11)

In the following, only the l = 1 term is used and the angular
momentum label is dropped. The Fock state for the nucleon
has the form [9]

|NT3Jz〉 = [
α
( |n〉 ⊗ ∣∣P 0

0

〉 )
T3Jz

+ β
( |n〉 ⊗ ∣∣P 1

1

〉 )
T3Jz

+ γ
(
δ � ⊗∣∣P 1

1

〉
T3Jz

)|0〉]∣∣∣∑ 〉
, (12)

where |∑〉 is the coherent σ field state with the
property:〈∑|σ̂ (r)|∑〉 = σ̂ (r), and |P 00〉(|P 1w

1m 〉) are the pion
coherent-pair states to be determined. The normalization of the
nucleon state requires the condition α2 + β2 + γ 2 = 1.The
permutation symmetric form of the SU (2) × SU (2) × SU (2)
quark wave functions imply that the source terms in the pion
field equations will induce an angular momentum isospin
correlation for the pion field. One can construct a coherent-pair
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state with the quantum numbers of the vacuum from l = 1
partial waves in the following form:

∣∣P 0
0

〉 =
∑ fn

2n!

[
b

1†
1 : b

1†
1

] |0〉 , (13)

where the double-dot notation refers to spin-isospin. Hence
we can define the coherence parameter x with the following
form:

b
1†
1 : b

1†
1 |P 〉 = x |P 〉, (14)

where |P 〉 can be either |P 0
0 〉 or |P 1

1 〉. The x is the eigenvalue
of the eigenstates |P 0

0 〉 or |P 1
1 〉 of a scalar operator b

1†
1 : b

1†
1 .

The coherence parameter is related to the angular momentum
l by the relation x = (2l + 1)ab where a and b are coefficients
that were calculated in a previous work [9].

Equation (12) allows us to calculate the expectation value
of π4 and therefore the Fock state of the pion should have
components involving the excitations of many bosons, one
pion, two pions, excitations that are coupled to the proper
angular momentum (l) and isospin quantum number (w). The
coherence parameter x relates the pionic contributions of the
observables. In the following section, we show that equations
of motion depend on the coherence parameter x as well as the
observables of the nucleon (for details, see Ref. [8]).

IV. VARIATIONAL PRINCIPLE

The objective of this section is to seek a minimum of the
total baryon energy, which is given by

EN = 〈NT3Jz|
∫ ∞

0
d3r : H (r) : |NT3Jz〉. (15)

The field equations are obtained by minimizing the total energy
of the nucleon with respect to the variation of the fields,
{u(r), v(r), σ (r),�(r)}, as well as the Fock-space parameters,
{α, β, γ }, subjected to the normalization conditions. The total
energy of the system is written as

EN = 4π

∫ ∞

0
drr2εN (r) . (16)

Writing the quark Dirac spinor as

�
1
2 w
1
2 m

(r) =
(

u (r)

v (r) σ · r̂

)
χ 1

2 mζ
1
2 w, (17)

the energy density is given by

εN (r) = 1

2

(
dσ

dr

)2

+ λ2

4
[σ 2 (r) − ν2]2 − m2

πfπσ (r)

+ 3

{
u (r)

(
dv

dr
+ 2

r
υ (r)

)
− υ (r)

du

dr

+ gσ (r) [u2 (r) − υ2 (r)]

}
+ (Nπ + x)

×
((

d�

dr

)2

+ 2

r2
�2 (r)

)
+ (Nπ − x) �2

p (r)

−αδg (a + b) u (r) v (r) � (r) + λ2{x2 + 2xNπ

+ 81[α2a2c2 + (β2 + γ 2)d2]}�4 (r)

+ λ2 (Nπ + x) [σ 2 (r) − v2]�2 (r)

− π2

45
T 4 + T 2

24f 2
π

(
3m2

σ − 5m2
π

)
σ̂ 2

+ T 2

12f 2
π

(
3m2

σ − 5m2
π

)
�(r)2 (Nπ + x) (18)

where Nπ is the average pion number

Nπ = 9(α2a2 + (β2 + γ 2)c2), (19)

and δ takes the following values for the nucleon quantum
numbers:

δN = (5β + 4
√

2γ )/
√

3. (20)

The function �p (r) is obtained from �(r) by double folding

�p (r) =
∫ ∞

0
w (r, ŕ) � (r) r2dŕ, (21)

w (r, ŕ) = 2

π

∫ ∞

0
dkk2w (k) j1 (kr) j1(kr ′). (22)

For fixed α, β, and γ, the stationary functional variations are
expressed by

δ

(∫ ∞

0
drr2{εN (r) − 3ε[u2 (r) +v2(r)] − 2k��p (r)}

)
= 0,

(23)

where the parameter k enforces the pion normalization
condition,

8π

∫ ∞

0
� (r) �p (r) r2dr = 1, (24)

and ε fixes the quark normalization,

4π

∫ ∞

0
[u2 (r) + v2 (r)]r2dr = 1. (25)

Minimizing the Hamiltonian yields the four nonlinear
coupled differential equations,

du

dr
= −2(gσ + ε)v(r) − 1

3
αδ (a + b) g� (r) u (r) , (26)

dv

dr
= −2

r
v(r) − 2(gσ (r) − ε)u (r)

+ 1

3
αδ (a + b) g� (r) u (r) , (27)

d2σ

dr2
= −2

r

dσ

dr
− m2

πfπ + 3g[u2 (r) − v2 (r)]

+ λ2 (Nπ + x) [σ 2 (r) − v2]�2 (r) σ (r)

+ λ2[σ 2 (r) − ν2]σ (r) + T 2

12f 2
π

(
3m2

σ − 5m2
π

)
σ̂ ,

(28)
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d2�

dr2
= −2

r

d�

dr
+ 2

r2
� (r) + 1

2

(
1 − x

Nπ

)
m2

π�2

+ λ2

2

(
1 + x

Nπ

)
[σ 2 (r) − v2]� (r)

− α

Nπ

(a + b) gδu(r)v(r) + λ2

Nπ

{x2 + 2xNπ

+ 81[α2a2c2 + (β2 + γ 2)d2]}�3 (r)

− k

Nπ

�p(r) + T 2

24f 2
π

(
3m2

σ − 5m2
π

)
�(r)

(
1 + x

Nπ

)
,

(29)

with the eigenvalues ε and k. The above equations consist of
two quark equations for u and v where σ (r) and �(r) appear
as potentials and two Klein-Gordon equations with u(r)v(r)
and [(u2(r) − v2(r)] are source terms. The coefficients a, b,
and c are functions in the coherence parameter x and the
field equations are solved for the fixed coherence param-
eter x and the fixed Fock-space parameters (α, β, γ ) as in
Ref. [9].

V. NUCLEON PROPERTIES

The expectation value of the energy is minimized with
respect to (α, β, γ ) by diagonalizing the energy matrix⎡

⎢⎣
Hαα Hαβ Hαγ

Hαβ Hββ Hβγ

Hαγ Hβγ Hγγ

⎤
⎥⎦

⎡
⎢⎣

α

β

γ

⎤
⎥⎦ = E

⎡
⎢⎣

α

β

γ

⎤
⎥⎦ , (30)

where each H entry of the matrix is related to a corresponding
density as follows:

Hαβ = 4π

∫
r2Eαβ(r)dr, (31)

with similar definitions for the other entries. The functions for
a nucleon are

Eαα = E0(r) + 18a2�2
P + 9a2λ2(2x + 9c2)�4(r)

+ 9λ2a2[σ 2 (r) − ν2]�2(r)

+ T 2

12f 2
π

(
3m2

σ − 5m2
π

)
�2(r)a2, (32)

Eββ = E0(r) + 18c2�2
P + 9λ2(2xc2 + 9d2)�4(r)

+ 9λ2c2[σ 2 (r) − ν2]�2(r)

+ T 2

12f 2
π

(
3m2

σ − 5m2
π

)
�2(r)c2, (33)

Eγγ = E0(r) + 18c2�2
P + 9λ2(2xc2 + 9d2)�4(r)

+ 9λ2c2[σ 2 (r) − ν2]�2(r)

+ T 2

12f 2
π

(
3m2

σ − 5m2
π

)
�2(r)c2, (34)

Eαβ = −2g(a + b)�(r)u(r)v(r)
2
√

2√
3

, (35)

Eαγ = −2g(a + b)�(r)u(r)v(r)
5√
3
, (36)

where

E0 (r) = 1

2

(
dσ

dr

)2

+ λ2x2�4 (r)

+ 3gσ (r) [u2 (r) − υ2 (r)] − m2
πfπσ (r)

+ 3

{
u (r)

[
dv

dr
+ 2

r
υ (r) − υ (r)

]
du

dr

}

+ λ2

4
[σ 2 (r) − ν2]2 + λ2x[σ 2 (r) − v2]�2 (r)

− π2

45
T 4 + T 2

24f 2
π

(
3m2

σ − 5m2
π

)
[2x�2(r) + σ 2]

− λ2m2
π�2 (r) − U0, (37)

where U0 is the minimum of potential U at (σ = fπ, π = 0).

A. Mass of the nucleon

In this subsection, we calculate the total energy of the
nucleon, which consists of quark, σ , pion, quark-σ interaction,
quark-pion interaction, and meson static energy contributions.
The nucleon mass was derived as in Ref. [9]

(K.E)quark =
∫ ∞

0
[gσρs(r) + ερw(r) + gπρp(r)]r2dr, (38)

where ρs, ρp, and ρw are the quark scalar density, pseudoscalar
density, and vector density, respectively. Similarly, one can find
the meson kinetic contribution

(K.E.)sigma = 1

2

∫ ∞

0
σ (r)

(
− m2

πfπ + 3g(u2 (r) − v2 (r))

+ λ2 (Nπ + x) (σ 2 (r) − v2)�2 (r) σ (r)

+ λ2(σ 2 (r) − ν2)σ (r)

+ T 2

12f 2
π

(
3m2

σ − 5m2
π

)
σ̂

)
r2dr (39)

(K.E.)pion = 1

2

∫ ∞

0
� (r)

(
2

r2
� (r) + 1

2

(
1 − x

Nπ

)
m2

π�2

+ λ2

2

(
1 + x

Nπ

)
(σ 2 (r) − v2)� (r)

− α

4Nπ

(a + b) gδu(r)v(r) + λ2

Nπ

[x2 + 2xNπ

+ 81(α2a2c2 + (β2 + γ 2)d2)]�3 (r)

− k

Nπ

�p(r) + T 2

24f 2
π

(
3m2

σ − 5m2
π

)
�(r)

×
(

1 + x

Nπ

))
r2dr. (40)

The quark-meson interaction energy takes the form

Eq−sigma = −
∫ ∞

0
gσρs(r)r2dr (41)

Eq−pion = −
∫ ∞

0
gσρp(r)r2dr, (42)
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and the meson-meson interaction energy is

Emeson-meson

=
∫ ∞

0

(
λ2

4
(σ̂ 2 + π̂2 − ν2)2 − fπm2

π σ̂ − π2

45
T 4

+ T 2

24f 2
π

(
3m2

σ − 5m2
π

)
(σ̂ 2 + π̂2) + U0

)
r2dr. (43)

B. Magnetic moment, axial-vector coupling constant ( gA
gv

),
and pion-nucleon coupling constant gπ N N (0)

From the electromagnetic current operator [9]

jμ
em = �

(
1
6 + 1

2τ3
)
� + ε3αβφa∂

μφβ, (44)

one can derive the magnetic moments of the proton and the
neutron

μp(r)

4πe
= ruv

81
(54α2 + 2β2 + γ 2 + 32

√
2βγ )

+ x

729a2
(9a2 + x)(4β2 + γ 2)�2, (45)

μn(r)

4πe
= ruv

81
(−36α2 − 8β2 + γ 2 − 32

√
2βγ )

− x

729a2
(9a2 + x)(4β2 + γ 2)�2. (46)

The axial-vector coupling constant, measured in neutron β

decay, is a matrix element of the space part of the isovector-
axial vector current. Specifically, one is interested in gA

gv
, where

gv is the corresponding matrix element of the isovector-vector
current

JV
μ = 1

2�γ μ�̂ + π̂ × ∂μπ̂ . (47)

The values of gA and gv are taken from the z component in
space and the third component in isospace. Since the vector
part yields 1

2 , one obtains [9]

gA

gv

= 4π

∫ ∞

0
drr2

[(
5

3
α2 + 5

27
β2 + 25

27
γ 2 + 32

√
2

27
βγ

)

×
(

u2 (r) − υ2 (r)

3

)
+ 8

3
√

3
αβ(a + b)

dσ

dr
�

]
. (48)

The change in the magnetic moments, and coupling
constant ( gA

gv
) is induced by the dynamics of the fields in

Eqs. (26)–(29). At T = 0, the field equations are recovered
as in Ref. [9].

VI. RESULTS AND DISCUSSION

In the present approach, the nucleon appears as a self-
consistent localized stationary solution (soliton) in a suitable
modified Gell-Levy σ model using a variational procedure
with a spin and isospin projection [9]. In this model, the
SU(2)×SU(2) chiral symmetry corresponds to the real world
of one σ and three pions. We use the values at zero temperature
as the initial conditions of the numerical calculation. The initial
parameters are determined from the condition at T = 0. The

FIG. 1. σ , pion, and the components [u(r), v(r)] of the quark
fields are plotted as functions of the radial distance r, where the
continuous curves are for T = 0 and the dashed curves are for
T = 100 MeV.

mass of the σ particle in the data group ranges from 400
to 1200 MeV [36]. We took mσ = 450 MeV as a typical
value. The set of equations of motion has been solved in the
same iterative manner as in Ref. [9]. The iteration procedure is
implemented as follows. For fixed values of x, α, β, and γ , the
above differential equations with the corresponding boundary
conditions are solved by using the modified numerical package
COLSYS code. This process is repeated until self-consistency
is achieved.

A. Nucleon properties

In this subsection, we examine the nucleon observables
under the effect of finite temperature. First, we examine the
dependence of the quark components u(r), v(r), σ field and
pion fields on the temperature. In Fig. 1, we have plotted
the above fields as functions of the radial distance r at zero
and finite temperature (T = 100 MeV), respectively. At finite
temperature, the σ field starts at σ = −0.07 MeV and starts
increasing with increasing radial distance r . The pion field
π (r) has a P-wave form. It reaches its maximum at r = 0.57 fm
and then it decreases until it reaches again a zero value. The
function u(r) equals 0.46 MeV at r = 0 and then it decreases
until it reaches zero as r → ∞. The function v(r) takes the
same behavior as the pion field. We note that the behavior is
similar in the two cases where the fields are shifted to lower
values compared to the zero-temperature case. Hence the finite
temperature will have an effect on the mesonic and quark
contributions and therefore on the nucleon properties as will
be explained in the next paragraph.

In Fig. 2, the nucleon mass is plotted as a function of the
temperature. One can see that the nucleon mass monotonically
increases with increasing temperature and slightly decreases at
higher values of the temperature. The behavior is in agreement
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FIG. 2. The nucleon mass is plotted as a function of the
temperature T .

with Christov et al. [30]. They noticed that the nucleon mass
increases until a value of 3

4Tc (Tc is critical temperature). In the
present work, the critical temperature is taken as Tc = √

3fπ �
161MeV, which is in agreement with Ref. [35]. Bernard and
Meissner [37] deduced a similar behavior with the Skyrme
model with vector mesons. Berger and Christov [38] noticed
that the nucleon mass increases with increasing temperature
for different densities using the Nambu-Jona-Lasinio model up
to 150 MeV. In addition, Dominguez and Loewe [39] deduced
that the nucleon mass increases with increasing temperature.
They studied the nucleon propagator at finite temperature in
the framework of finite energy QCD sum rules. They also
interpreted their results as a phase deconfinement transition.
Our present work is in agreement with the Dominguez and
Loewe [39] calculation. In contrast, Zokaut [33] obtained
a nucleon mass that decreases with increasing temperature.
In his work, the nucleon mass is calculated by using the
Bethe-Salpeter equation where the nucleon is considered as
a scalar-diquark and a quark, in which the interaction between
the diquark and the quark is taken as an exchange of a
quark. In Fig. 3, we note that the mean-square radius of the
proton changes slightly with increasing temperature T up to
80 MeV and sharply increases in the range from 80 MeV to
120 MeV and then slightly decreases at higher values of the
temperature near the critical point temperature. Dominguez
et al. [32] obtained the radius of the nucleon, which increases
as T increases. This was interpreted as deconfinement of
the nucleon mass. A similar conclusion can be drawn in
the present work. In Fig. 4, we note that the mean-square
radius of the neutron changes slightly at lower values of
the temperature below 158 MeV and then starts increasing
sharply at higher temperature values near the critical point
temperature.

In Fig. 5, the proton and neutron magnetic moments
are calculated as functions of the temperature. The proton

FIG. 3. The mean charge radius of the proton is plotted as a
function of the temperature T .

and neutron magnetic moments have the same picture as
the nucleon mass, that is, they increase with temperature
up to 0.76 Tc then sharply decrease at higher temperature
values. This behavior is in agreement with Ref. [30]. At
zero temperature, we note that the values of the proton and
neutron magnetic moments μp = 2.0 and μn = −1.75 for
initial parameters mσ = 450 MeV, g = 4.5 are in agreement
with Ref. [9]. Figures 6 and 7 show the behavior of the
quantities for gA(0) and gπNN (0) as a function of T . The
behavior of gπNN (0) is in agreement with Dominguez et al.
[32] and Dey et al. [40]. They found that gπNN decreases

FIG. 4. The mean charge radius of the neutron is plotted as a
function of the temperature T .
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FIG. 5. The magnetic moments of a proton and a neutron are
plotted as a function of the temperature T .

at higher values of the temperature. In the present work, we
find that the nucleon mass and mean-square radius of proton
increases as a function of the temperature, whereas the pion-
nucleon coupling constant decreases at higher temperature
values, which is interpreted as a deconfinement phase [32].
In Ref. [41], the authors found that the σ -nucleon coupling

constant obtains gNNσ (0) = gσ
q

gπ
q
gNNπ (0) where gσ

q and gπ
q are

quark-σ coupling and quark-pion coupling, respectively. In
the linear σ model, where the gσ

q and gπ
q are equal then the

behavior of the σ -nucleon coupling constant takes the same

FIG. 6. The pion-nucleon coupling constant is plotted as a
function of the temperature T .

FIG. 7. The axial coupling constant is plotted as a function of
temperature T .

behavior of the pion-nucleon coupling constant in Fig. 6,
showing the deconfinement phase transition is satisfied with
respect to gNNσ (0) at higher values of the temperature.

It is important to examine the effect of the coherence
parameter x on the nucleon properties at finite temperature
and the reason why the results are sensitive to it. In Sec. II,
we note that the coherence parameter x is related to the
pionic contributions. This means that any increase in the
coherence parameter x will lead to an increase in the mesonic
contributions to the nucleon properties (see Table I). Table I
shows that the nucleon properties are sensitive to the change
of the coherence parameter x. The mesonic contributions
are sensitively affected by changing the coherence parameter
x at the critical point temperature where the mean-square
radius of the proton is increased by about 15%. Also, the
mean-square radius of the neutron is observed to strongly
change from a negative value to a positive value. We note that
the mesonic contributions in the charge radius of the proton and
neutron increase when the coherence parameter x is increased.
A similar situation is found for the magnetic moment of
the proton and neutron, in which the mesonic contributions
increase with increasing parameter x. In addition, the gA(0)
values are reduced by about 23% with increasing x. The
gπNN (0) strongly decreases with increasing x, since the
coupling constant is weakened by the increase of x. In Figs. 8
and 9, we examined the nucleon mass and mean-square radius
of the proton in the (T , x) plane, where the T axis is taken in
units of fπ to be dimensionless, as is the coherence parameter
x. In Fig. 8, we plotted the nucleon mass as a function of
x and T , and we note that the surface increases as both
T and x increase. In Fig. 9, the similar behavior is shown
for the mean-square radius of the proton, which slightly
increases up to (T , x) � (0.6, 1.2) and then sharply increases
with increasing coherence parameter x. Figures show that by
increasing the coherence parameter, the nucleon mass and the
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TABLE I. The observables of the nucleon calculated for two values of coherence parameter, x = 0.3 and x = 3 at Tc = 161 MeV,
mσ = 450 MeV, and g = 4.5.

x Quark x = 0.3 Total Quark x = 3 Total
Quantity Meson Meson

〈r2〉p 3.937 −2.370 × 10−5 3.937 4.655 4.75 × 10−3 4.660
〈r2〉n −6.171 × 10−5 2.370 × 10−5 −3.8 × 10−5 6.77×10−3 −4.753 × 10−3 2.01 × 10−3

μp 2.4928 1.099 × 10−5 2.492 1.541 1.358 × 10−2 1.555
μn −1.661 −1.099 × 10−5 −1.661 −1.031 −1.358 × 10−2 −1.0445
gA(0) 0.631 1.377 × 10−5 0.631 0.4696 1.448 × 10−2 0.484
gπNN 1.3898 7.6 × 10−4 1.390 0.864 −0.105 0.7596

mean-square radius of the proton values increase in a faster
way at higher temperature values.

VII. SUMMARY AND CONCLUSION

It is interesting to compare the nucleon Fock state in
the present approach with those used in other works. In
Refs. [8,9], the authors calculated the nucleon properties at
zero temperature where the mesonic potential was used in
the zero-order loop. This order is sufficient for calculating
the nucleon properties at zero temperature. Moreover, the
coherence parameter was fixed to the value x = 1, since the
increase of the coherence parameter x will increase the pionic
contributions, leading to an increase in the energy of nucleon
mass, which conflicts with the data. In the present work, we
extended the work of Ref. [9] by introducing the effective
mesonic potential at one loop to include the effect of finite
temperature on the nucleon properties. Chiku and Hatsuda [29]
examined the optimal perturbation theory (OPT) at finite
temperature in the linear σ model, in which the loopwise
expansion in (OPT) is shown to be a suitable scheme to
resume higher-order terms. They did not examine the nucleon

FIG. 8. The nucleon mass dependance on the coherence parame-
ter x and the temperature T. The T is in units of fπ , where the T and
x are in dimensionless units and the nucleon mass is in MeV.

properties such as the nucleon mass and mean-square radius
of proton in their work. Dominguez et al. [32] calculated
the pion-nucleon constant and mean square radius of the
proton as functions of the temperature. Thermal fluctuations
are only considered and they ignored quantum fluctuations
in their model. They found that the pion-nucleon constant
and the mean-square radius of the proton increase with
increasing temperature; therefore they interpreted it to be a
deconfinement phase transition. In the present work, we find
that the nucleon mass and mean-radius of the proton increase
with temperature, hence the deconfinement is satisfied in the
present work. Also, Dominguez and Loewe [39] studied the
nucleon propagator at finite temperature in the framework of
finite energy QCD sum rules. They found that the nucleon
mass increases with increasing temperature T . This result is in
agreement with our result, which indicates the deconfinement
phase. In Refs. [29,32,39], the authors did not calculate the
magnetic moment of the proton and neutron and also did
not consider the quantization of the fields. Caldas et al. [34]
calculated the fermion mass and they found that it increases

FIG. 9. The radius of the proton dependance on the coherence
parameter x and the temperature T. The T is in units of fπ , where
the T and x are in dimensionless units and the mean-square radius of
proton is in fm.
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with increasing temperature, which is in agreement with the
present result. Caldas et al. [34] did not calculate other nucleon
properties such as nucleon magnetic moments and the coupling
constant. Also, the quantization of fields is not considered
in their model. To conclude, we have investigated nucleon
properties such as the nucleon mass, mean-square radius of the
proton and neutron, coupling constant gA, and pion-nucleon
coupling constant gπNN as functions of the temperature T

using the linear σ model. We quantized the meson and quark
fields in the Hamiltonian density and then minimized the

Hamiltonian density to get the field equations. The field
equations have been solved by an iteration method using
modified COLSYS code. We found that the nucleon mass and
the mean-square radius of the proton and the neutron increase
with increasing temperature, and the pion-nucleon coupling
constant decreases sharply near the critical temperature. Also,
we examined the nucleon mass and mean-square radius of the
proton in the (T , x) plane. The results obtained are comparable
with other approaches and indicate a deconfinement phase
transition.
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