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Nucleon electromagnetic form factors and electroexcitation of low-lying nucleon resonances in a
light-front relativistic quark model
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We utilize a light-front relativistic quark model (LF RQM) to predict the 3q core contribution to the
electroexcitation amplitudes for �(1232)P 33, N (1440)P 11, N (1520)D13, and N (1535)S11 up to Q2 = 12 GeV2.
The parameters of the model have been specified via description of the nucleon electromagnetic form factors in
the approach that combines 3q and pion-cloud contributions in the LF dynamics.
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I. INTRODUCTION

In the past decade, with the advent of a new generation
of electron beam facilities, there has been dramatic progress
in studies of the electroexcitation of nucleon resonances that
resulted in more reliable extractions of resonance electrocou-
plings and a significant extension of the Q2 range. The most
accurate and complete information has been obtained for the
four lowest excited states, which have been measured in a
range of Q2 up to 8 GeV2 for �(1232)P33 and N (1535)S11

and up to 4.5 GeV2 for N (1440)P11 and N (1520)D13 (see
reviews [1,2]).

At relatively small Q2, nearly massless pions generate pion-
loop contributions that may significantly alter quark model
predictions. It is expected that the corresponding hadronic
component, including contributions from other mesons, will
rapidly lose strength with increasing Q2. The Jefferson
Laboratory 12-GeV upgrade will open up a new era in
the exploration of excited nucleons when the quark core
of the nucleon and its excited states will be more fully exposed
to the electromagnetic probe.

The aim of this paper is to estimate the 3q core con-
tribution to the electrocoupling amplitudes of �(1232)P33,
N (1440)P11, N (1520)D13, and N (1535)S11. The approach we
use is based on light-front (LF) dynamics, which presents
the most suitable framework for describing the transitions
between relativistic bound systems [3–5]. In early works by
Berestetsky and Terent’ev [4], the approach was based on the
construction of the generators of the Poincaré group in the
LF. It was later formulated in the infinite momentum frame
(IMF) [6,7]. This allowed one to demonstrate more clearly
that diagrams which violate impulse approximation (i.e., the
diagrams containing vertices like γ ∗ → qq̄) do not contribute.
The interpretation of results for γ ∗N → N (N∗) in terms of
the vertices N (N∗) ↔ 3q and corresponding wave functions
became more evident. In Refs. [7–10], the LF RQM formulated
in IMF was utilized for the investigation of nucleon form
factors and the electroexcitation of nucleon resonances. These
observables were investigated also in the LF Hamiltonian
dynamics in Ref. [11]. In both cases a complete orthogonal
set of wave functions has been used that corresponds to the
classification of the nucleon and nucleon resonances within the
group SU (6) × O(3); the relativistic-covariant form of these

wave functions has been found in Ref. [7]. We specify the
parameters of the model for the 3q contribution via description
of the nucleon electromagnetic form factors by combining the
3q and pion-cloud contributions. The pion-cloud contribution
has been incorporated using the LF approach of Ref. [12].

In Sec. II we present briefly the formalism to compute
the 3q contribution to the γ ∗N → N (N∗) amplitudes. In
Sec. III we discuss the description of nucleon electromagnetic
form factors at 0 � Q2 < 16 GeV2. To achieve description
of experimental data at Q2 > 0, we incorporate the Q2

dependence of the constituent quark mass that is expected from
the lattice QCD and Dyson-Schwinger equations approach
[13–15]. With the LF RQM specified via description of the
nucleon electromagnetic form factors, we predict in Sec. IV the
quark core contribution to the electroexcitation amplitudes of
the aforementioned resonances at Q2 � 12 GeV2. The results
are summarized in Sec. V.

II. QUARK CORE CONTRIBUTION TO
TRANSITION AMPLITUDES

The 3q contribution to the γ ∗N → N (N∗) transitions has
been evaluated within the approach of Refs. [7,8] where the
LF RQM is formulated in the IMF. The IMF is chosen in such
a way that the initial hadron moves along the z axis with the
momentum Pz → ∞, the virtual photon momentum is kμ =
(m2

out−m2
in−Q2

⊥
4Pz

, Q⊥,−m2
out−m2

in−Q2
⊥

4Pz
), the final hadron momentum

is P′ = P + k, and Q2 ≡ −k2 = Q2
⊥; min and mout are masses

of the initial and final hadrons, respectively. The matrix
elements of the electromagnetic current are related to the
3q-wave functions in the following way:

1

2Pz

〈N (N∗), S ′
z

∣∣J 0,3
em |N, Sz〉

∣∣
Pz→∞

= 3e

∫
� ′+(p′

a, p′
b, p′

c)Qa�(pa, pb, pc)d�, (1)

where Sz and S ′
z are the projections of the hadron spins on the

z direction. In Eq. (1), it is supposed that the photon interacts
with quark a (the quarks in hadrons are denoted by a, b, c), Qa

is the charge of this quark in units of e (e2/4π = 1/137), � and
� ′ are wave functions in the vertices N (N∗) ↔ 3q, pi and p′

i
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(i = a, b, c) are the quark momenta in IMF, and d� is the phase
space volume. The relations between the matrix elements (1)
and the γ ∗N → N (N∗) form factors and transition helicity
amplitudes are given in the Appendix.

Let qi(i = a, b, c) be the three-momenta of initial quarks
in their center of mass system (c.m.s.): qa + qb + qc = 0. The
sets of three-momenta in the IMF and c.m.s. of the quarks are
related as follows:

pi = xiP + qi⊥,
∑

i

xi = 1. (2)

According to results of Ref. [7], obtained through
relativistic-covariant transformation, the wave function � is
related to the wave function in the c.m.s. of quarks through
Melosh matrices [16]:

� = U+(pa)U+(pb)U+(pc)�fss�(qa, qb, qc). (3)

Here we have separated the flavor-spin-space (�fss) and spatial
(�) parts of the c.m.s. wave function. The Melosh matrices are

U (pi) = mq + M0xi + iεlmσlqim√
(mq + M0xi)2 + q2

i⊥
, (4)

where mq is the quark mass and M0 is invariant mass of the
system of initial quarks:

M2
0 =

( ∑
i

pi

)2

=
∑

i

q2
i⊥ + m2

q

xi

. (5)

In the c.m.s. of quarks,

M0 =
∑

i

ωi, ωi =
√

m2
q + q2

i , qiz + ωi = M0xi. (6)

We construct the flavor-spin-space parts of the wave functions
by utilizing the rules [11,17] that correspond to the classifica-
tion of the nucleon and nucleon resonances within the group
SU (6) × O(3).

For the final-state quarks, the quantities defined by Eqs. (2)–
(6) are expressed through p′

i , q′
i , and M ′

0. The phase space
volume in Eq. (1) has the form

d� = (2π )−6 dqb⊥dqc⊥dxbdxc

4xaxbxc

. (7)

To study sensitivity to the form of the quark wave function,
we employ two forms of the spatial wave function,

�1 ∼ exp
(−M2

0 /6α2
1

)
, (8)

�2 ∼ exp
[−(

q2
a + q2

b + q2
c

)
/2α2

2

]
, (9)

that were used, respectively, in Refs. [4,7,8] and [11].

III. NUCLEON

The nucleon electromagnetic form factors were described
by combining the 3q and πN contributions to the nucleon
wave function. With the pion loops evaluated according to
Ref. [12], the nucleon wave function has the form

|N〉 = 0.95|3q〉 + 0.313|πN〉, (10)

where the portions of different contributions were found from
the condition that the charge of the proton is equal to unity:
F1p(0) = 1.

The values of the quark mass mq and of the parameters α1,2

for the wave functions (8, 9) were found from the description
of μp = GMp(0) and μn = GMn(0). The best results,

μp = 2.86
e

2mN

,μn = −1.86
e

2mN

, (11)

were obtained with mq(0) = 0.22 GeV and

α1 = 0.37 GeV, α2 = 0.41 GeV. (12)

The quark mass mq(0) = 0.22 GeV coincides with the value
obtained from the description of the spectrum of baryons and
mesons and their excited states in the relativized quark model
[18,19].

The parameters (12) that correspond to different forms of
wave functions (8) and (9) give very close magnitudes for
the mean values of invariant masses and momenta of quarks
at Q2 = 0: 〈M2

0 〉 ≈ 1.35 GeV2 and 〈q2
i 〉 ≈ 0.1 GeV2, i =

a, b, c.
A constant value of the quark mass gives rise to rapidly

decreasing form factors; for GMp(Q2) and GMn(Q2) this is
demonstrated in Fig. 1. The wave functions (8, 9) increase as
mq decreases. Therefore, to describe the experimental data we
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FIG. 1. Nucleon electromagnetic form factors. The curves present
the results obtained taking into account two contributions to the
nucleon [Eq. (10)]: the pion-cloud and the 3q core. The thick and thin
curves correspond, respectively, to the wave functions (8) and (9). The
solid curves are the results obtained with the running quark masses
(13, 14) and the dashed curves correspond to the constant quark
mass. Data are from the following sources: for GEp(Q2)/GMp(Q2),
Ref. [20], circles; Ref. [21], boxes; Ref. [22], triangles; for GMp(Q2),
Ref. [23], circles; Ref. [24], boxes; Ref. [22], triangles; for GEn(Q2),
Ref. [25], circles; Ref. [26], boxes; Ref. [27], triangles; and for
GMn(Q2), Ref. [28], circles; Ref. [29], boxes; Ref. [30], triangles.
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have assumed the Q2-dependent constituent quark mass. We
have used two different parameterizations of this mass:

m(1)
q (Q2) = 0.22 GeV

1 + Q2/56 GeV2 , (13)

m(2)
q (Q2) = 0.22 GeV

1 + Q2/18 GeV2 , (14)

for the wave functions �1 and �2, respectively. This resulted
in a good description of the nucleon electromagnetic form
factors for Q2 � 16 GeV2.

Let us mention that due to strong dependence of the wave
functions �1 and �2 on the quantities M2

0 and q2
a + q2

b + q2
c ,

a slight change in the magnitude of these quantities results
in a significant change in the magnitude of the predicted form
factors. For example, at Q2 = 10 GeV2, the predictions for the
nucleon form factors were increased by factors 2 and 1.5 for the
wave functions �1 and �2, respectively. In both cases, this has
been achieved by decreasing 〈M2

0 〉 at Q2 = 10 GeV2 from 3.1
to 2.9 GeV2, obtained via replacement mq(0) → m(1,2)

q (Q2).
In Fig. 2 we show separately the pion-cloud contributions.

Clearly, at Q2 > 2 GeV2, all form factors are dominated by
the 3q-core contribution.

The Q2 dependence of the constituent quark mass [Eqs. (13)
and (14)] is in qualitative agreement with the QCD lattice
calculations and Dyson-Schwinger equations [13–15], where
the running quark mass is generated dynamically. However,
we want to point out that there is no direct connection
between the functional forms of these masses. In QCD lattice
calculations and Dyson-Schwinger equations we deal with
quarks that do not possess a mass shell, and the running quark
mass is a function of its virtuality, that is, the quark four-
momentum square. In constituent quark models, including the
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FIG. 2. Nucleon electromagnetic form factors. The legend for
the solid curves is the same as for Fig. 1. The dotted curves are the
pion-cloud contributions [12]; for all form factors, except GEn(Q2),
the shown results for these contributions should be multiplied by 0.1.

LF approaches [4,7,8,11], the quarks are mass-shell objects
[see Eqs. (5) and (6)]. In LF RQM, the virtuality of quarks is
characterized by invariant masses of the three-quark system:
M2

0 and M ′2
0. Mean values of M2

0 and M ′2
0 are equal to each

other and are increasing with increasing Q2.
The mechanism that generates the running quark mass

can also generate quark anomalous magnetic moments and
form factors [31]. In our approach, we have obtained a
good description of the nucleon electromagnetic form factors
without introducing quark anomalous magnetic moments.
Introducing quark form factors results in a faster Q2 falloff
of form factors and forces mq(Q2) to drop faster with Q2 to
describe the data. We found that descriptions that are very
close to those for pointlike quarks and masses from Eqs. (13)
and (14) can be obtained by introducing quark form factors

Fq(Q2) = 1/(1 + Q2/aq)2 (15)

with a(1)
q > 18 GeV2 and a(2)

q > 70 GeV2 for the wave
functions �1 and �2, respectively. The corresponding quark
radii are r (1)

q < rN/5 and r (2)
q < rN/10, where rN is the mean

value of the radii corresponding to GEp(Q2), GMp(Q2), and
GMn(Q2). The Q2 dependencies of quark masses for minimal
values of aq are

m(1)
q (Q2) = 0.22 GeV

1 + Q2/20 GeV2 , (16)

m(2)
q (Q2) = 0.22 GeV

1 + Q2/6 GeV2 . (17)

Therefore, in our approach the quark mass can be in ranges
given by Eqs. (13) and (14) and Eqs. (16) and (17). As
mentioned above, the results for the nucleon electromagnetic
form factors obtained taking into account quark form factors
[Eq. (15)] and masses [Eqs. (16) and (17)] are very close to
those for pointlike quarks and masses [Eqs. (13) and (14)]. For
this reason, they are not shown separately in Figs. 1 and 2.

IV. NUCLEON RESONANCES �(1232)P33, N(1440)P11,
N(1520)D13, AND N(1535)S11

No investigations are available that allow for the separation
of the 3q and πN (or meson-nucleon) contributions to nucleon
resonances. Therefore, the weights of the 3q contributions to
the resonances

|N∗〉 = cN∗ |3q〉 + · · · , cN∗ < 1 (18)

are unknown. We estimate these weights by fitting to experi-
mental γ ∗N → N∗ amplitudes. The range of Q2 for the fit has
been chosen according to available information on the possible
meson-cloud contribution to the transition amplitudes. In
Ref. [32], the dynamical model has been applied to describe the
data on pion electroproduction on proton in the �(1232)P33

resonance region at Q2 � 4 GeV2. As a result, the contribution
that can be associated with the meson-cloud contribution to
γ ∗N → �(1232)P33 has been found. Unlike for the nucleon,
this contribution cannot be neglected at Q2 = 2 − 4GeV2 (see
Fig. 3). In Ref. [44], the coupled-channel approach has been
applied to the description of the pion photoproduction data, and
the meson-cloud contribution to the transverse amplitudes for
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FIG. 3. The γ ∗p → �(1232)P 33 transition form factors. The
solid curves correspond to the LF RQM predictions; the weight
factors for the 3q contributions to �(1232)P 33 are c

(1)
N∗ ≈ c

(2)
N∗ =

0.53 ± 0.04 for the wave functions of Eqs. (8) and (9). The dotted
curves correspond to the meson-cloud contributions obtained in the
dynamical model [32]. The dashed curves present the sum of the
3q and meson-cloud contributions. Solid circles are the amplitudes
extracted from the JLab/Hall B pion electroproduction data [33],
bands represent model uncertainties of these results. The results
from other experiments are denoted by open triangles [34–36], open
crosses [37–39], open rhombuses [40], open boxes [41], and open
circles [42,43].

the N (1440)P11, N (1520)D13, and N (1535)S11 has been found
at Q2 = 0. The predicted Q2 dependence of this contribution
for absolute values of the amplitudes has been presented.
According to these results, meson-cloud contributions to
γ ∗N → N (1440)P11, N (1520)D13, and N (1535)S11 are neg-
ligible at Q2 > 2 GeV2. Similar results are obtained for both
transverse and longitudinal γ ∗N → N (1440)P 11 amplitudes
via estimation of the σN contribution to this transition [45]
(see Fig. 4).

We therefore determine the 3q contribution to the reso-
nances by fitting the experimental amplitudes at Q2 > 4 GeV2

for �(1232)P33 and at Q2 = 2.5–4.5 GeV2 for N (1440)P11,
N (1520)D13, and N (1535)S11, assuming that at these Q2 the
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FIG. 4. The γ ∗p → N (1440)P 11 transition helicity amplitudes.
The solid curves are the LF RQM predictions obtained with the
weight factors c

(1)
N∗ = 0.73 ± 0.05 and c

(2)
N∗ = 0.77 ± 0.05 for the 3q

contribution to the N (1440)P 11. The dotted curves correspond to the
σN contribution [45]. The dashed curves present the sum of the 3q

and σN contributions. Solid circles are the amplitudes extracted from
the JLab/Hall B pion electroproduction data [33]; bands represent
model uncertainties of these results. The full box at Q2 = 0 is the
amplitude extracted from JLab/Hall B π photoproduction data [46].
The full triangle at Q2 = 0 is the RPP estimate [47].
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FIG. 5. The γ ∗p → N (1520)D13 transition form factors. c
(1)
N∗ =

0.78 ± 0.06, and c
(2)
N∗ = 0.82 ± 0.06. Other parts of the legend are the

same as for Fig. 4.

transition amplitudes are dominated by the 3q contribution.
The results are shown in Figs. 3–6. For �(1232)P33 and
N (1440)P11, we present also the results where the 3q core is
complemented, respectively, by the meson-cloud [32] and σN

[45] contributions. These contributions significantly improve
the agreement with experimental amplitudes at low Q2.

Here we comment on the amplitudes presented in Figs. 3–6.
As shown in Refs. [9,54], there are difficulties in the utilization
of the LF approaches [4,7,8,11] for hadrons with spins J � 1.
These difficulties are not present if Eq. (1) is used to calculate
only those matrix elements that correspond to S ′

z = J [9].
This restricts the number of transition form factors that can be
investigated for the resonances �(1232)P33 and N (1520)D13.
As can be seen from Eqs. (A15) and (A16), the matrix elements
with S ′

z = 3
2 relate to only two transition form factors: G1(Q2)

and G2(Q2). Consequently, we cannot present the results
in terms of transition helicity amplitudes for �(1232)P33

and N (1520)D13, while the resonances with J = 1
2 , that is,

N (1440)P11 and N (1535)S11, are presented in terms of these
amplitudes.

Using Eqs. (A22)–(A27), the transition form factors
G1,2(Q2) for �(1232)P33 and N (1520)D13 can be related to
the transition helicity amplitudes. For G1(Q2), the relation has
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FIG. 6. The γ ∗p → N (1535)S11 transition helicity amplitudes.
The open triangles [48], open boxes [49], and open rhombuses [50,51]
are the amplitudes extracted from the JLab/Hall B η electroproduction
data; the open circles [52] and open crosses [53] are the amplitudes
extracted from the JLab/Hall C η electroproduction data. c

(1)
N∗ =

0.88 ± 0.03, and c
(2)
N∗ = 0.94 ± 0.03. Other parts of the legend are

the same as for Fig. 4.

055202-4



NUCLEON ELECTROMAGNETIC FORM FACTORS AND . . . PHYSICAL REVIEW C 85, 055202 (2012)

a simple form,

G1(Q2) = ∓ mN∗

2XQ±

(
A1/2 ± 1√

3
A3/2

)
, (19)

where Q± and X are defined by Eqs. (A14) and (A24) and
the upper and lower symbols correspond, respectively, to
�(1232)P33 and N (1520)D13. For �(1232)P33, it is useful
to also present the following relation:

G1(Q2)=
√

3

2

mN∗ (mN∗ + mN )

mNQ+
[GM (Q2)−GE(Q2)], (20)

where GM (Q2) and GE(Q2) are the form factors defined in
Ref. [55].

We note that the predictions obtained with different
wave functions [Eqs. (8) and (9)] and corresponding masses
[Eqs. (13) and (14)], as well as the predictions found taking
into account quark form factors [Eq. (15)] and masses from
Eqs. (16) and (17) differ only in the weight factors cN∗ for
the wave functions (8) and (9); these factors are given in the
figure captions. The LF RQM predictions for resonances are
therefore presented by a single (thick solid) curve.

We also note that the nucleon and �(1232)P33 as well
as N (1440)P11 are considered as members of the [56, 0+]
and [56, 0+]R multiplets, respectively. N (1520)D13 is taken
as the state 283/2 of the multiplet [70, 1−] and N (1535)S11 as
a mixture of the states 281/2 and 481/2 in this mutiplet:

N (1535)S11 = cosθS|281/2〉 − sinθS|481/2〉. (21)

Here we use the notation 2S+1SU (3)J , which gives the
assignment according to the SU (3) group, J is the spin of the
resonance, and S is the total spin of quarks. The mixing angle is
taken equal to θS = −31◦ as found from the hadronic decays
[56,57]. The transition γ ∗p → 481/2, which is forbidden in
the single-quark transition model [58], turned out very small
compared to γ ∗p → 281/2 in the LF RQM too. Therefore, the
γ ∗p → N (1535)S11 amplitudes are determined mainly by the
first term in Eq. (21).

V. SUMMARY

We have described the nucleon electromagnetic form
factors in a wide range of Q2 by complementing the 3q-core
contribution with contribution of the pion cloud and assuming
the constituent quark mass to decrease with increasing Q2.
The pion-cloud contribution is negligible at Q2 > 2 GeV2,
but it is important to describe the neutron electric form factor
and the dip in the magnetic form factors at very small Q2.
The decreasing quark mass allowed us to compensate for
the rapidly falling form factors with increasing Q2. The
Q2-dependent quark mass is in qualitative agreement with
results from QCD lattice and Dyson-Schwinger equations. The
mechanism that generates the running quark mass within these
approaches can also produce quark form factors which result
in a faster falloff of the nucleon form factors. This, in turn,
forces mq(Q2) to drop faster with Q2 in order to describe
the data. From the description of the nucleon electromagnetic
form factors, we have found empirically the boundaries for

the quark form factors and the corresponding boundaries for
mq(Q2).

With the LF RQM specified via description of the nu-
cleon electromagnetic form factors, we have predicted the
quark core contribution to the electroexcitation amplitudes of
the resonances �(1232)P33, N (1440)P11, N (1520)D13, and
N (1535)S11 up to Q2 = 12 GeV2, where the weight factor
of the 3q contribution to the resonance occurs as the only
parameter. This parameter was found by fitting to experimental
amplitudes in a Q2 range, where the meson-cloud contribution
is expected to be negligible. The important feature of our
predictions is the fact that at these Q2 we describe both
amplitudes investigated for each resonance by fitting a single
parameter.

For �(1232)P33 and N (1440)P11, we also present the
results where the 3q core is complemented, respectively,
by the meson-cloud contribution found in the dynamical
model [32] and the σN contribution found in Ref. [45].
These contributions significantly improve the agreement with
experimental amplitudes at low Q2.

Both effects employed in our description of electromagnetic
transitions, meson-baryon contributions to N and N∗ and
running quark mass, will affect the masses of these states.
There are only studies of the pion-cloud contributions to the
nucleon mass using the cloudy bag model [59,60] and Dyson-
Schwinger equations [61]. They indicate that the nucleon mass
receives significant contributions from the pion loops, as much
as −(300 ÷ 400) and −(150 ÷ 300) MeV, respectively. The
investigation of the masses of N and N∗ in a scheme that
involves both effects is important for the development of a
realistic picture of these states. Such investigation also would
allow one to check the portions of the 3q contribution to
nucleon resonances obtained in our approach empirically from
the data on electroexcitation amplitudes in a Q2 range, where
this contribution is expected to be dominant.
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APPENDIX: THE RELATIONS BETWEEN THE MATRIX
ELEMENTS (1) AND THE γ ∗ N → N(N∗) FORM FACTORS

AND TRANSITION HELICITY AMPLITUDES

For the nucleon, the matrix elements (1) are related to the
form factors in the following way:

1

2Pz

〈
N,

1

2

∣∣∣∣J 0,3
em

∣∣∣∣N,
1

2

〉 ∣∣∣∣
Pz→∞

= F1, (A1)

1

2Pz

〈
N,

1

2

∣∣∣∣J 0,3
em

∣∣∣∣N,−1

2

〉 ∣∣∣∣
Pz→∞

= − Q

2mN

F2, (A2)
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where F1(Q2) and F2(Q2) are the Dirac and Pauli form factors:
F1p(0) = 1, F2N (0) = κN , the nucleon anomalous magnetic
moment. The Sachs form factors are

GM (Q2) = F1 + F2,GE(Q2) = F1 − Q2

4m2
N

F2. (A3)

For the resonances with JP = 1
2

±
,

1

2Pz

〈
N∗,

1

2

∣∣∣∣J 0,3
em

∣∣∣∣N,
1

2

〉∣∣∣∣
Pz→∞

= Q2G1, (A4)

1

2Pz

〈
N∗,

1

2

∣∣∣∣J 0,3
em

∣∣∣∣N,−1

2

〉∣∣∣∣
Pz→∞

(A5)

= ±mN∗ − mN

2
QG2, (A6)

where the upper and lower symbols correspond, respectively,
to JP = 1

2
+

and 1
2

−
resonances, and the form factors are

defined by [1,62]

〈N∗|Jμ
em|N〉 ≡ eū(P ′)

(
1
γ5

)
J̃ μu(P ), (A7)

J̃ μ = (k/ kμ − k2γ μ)G1 + [k/ Pμ − (Pk)γ μ]G2, (A8)

where P ≡ 1
2 (P ′ + P ), and u(P ), u(P ′) are the Dirac spinors.

The relations between the γ ∗N → N∗ helicity amplitudes and
the form factors G1(Q2),G2(Q2) are following:

A 1
2

= b
[
2Q2G1 − (

m2
N∗ − m2

N

)
G2

]
, (A9)

S 1
2

= ±b
|k|√

2
S̃ 1

2
, (A10)

S̃ 1
2

= 2(mN∗ ± mN )G1 + (mN∗ ∓ mN )G2, (A11)

b ≡ e

√
Q∓

8mN

(
m2

N∗ − m2
N

) , (A12)

|k| =
√

Q+Q−
2mN∗

, (A13)

Q± ≡ (mN∗ ± mN )2 + Q2. (A14)

For the resonances with JP = 3
2

±
,

1

2Pz

〈
N∗,

3

2

∣∣∣∣J 0,3
em

∣∣∣∣N,
1

2

〉∣∣∣∣
Pz→∞

= − Q√
2

[
G1(Q2) + ±mN∗ − mN

2
G2(Q2)

]
, (A15)

1

2Pz

〈
N∗,

3

2

∣∣∣∣J 0,3
em

∣∣∣∣N,−1

2

〉∣∣∣∣
Pz→∞

= Q2

2
√

2
G2(Q2), (A16)

and the form factors are defined by [1,62]

〈N∗|Jμ
em|N〉 ≡ eūν(P ′)

(
γ5

1

)
�νμu(P ), (A17)

�νμ(Q2) = G1Hνμ

1 + G2Hνμ

2 + G3Hνμ

3 , (A18)

Hνμ

1 = k/gνμ − kνγ μ, (A19)

Hνμ

2 = kνP ′μ − (kP ′)gνμ, (A20)

Hνμ

3 = kνkμ − k2gνμ, (A21)

where uν(P ′) is the generalized Rarita-Schwinger spinor. The
relations between the γ ∗N → N∗ helicity amplitudes and
form factors for the JP = 3

2
±

resonances are following:

A1/2 = h3X, A3/2 = ±
√

3h2X, (A22)

S1/2 = h1
|k|√
2mN∗

X, (A23)

X ≡ e

√
Q∓

48mN

(
m2

N∗ − m2
N

) , (A24)

where

h1(Q2) = ±4mN∗G1(Q2) + 4m2
N∗G2(Q2)

+ 2
(
m2

N∗ − m2
N − Q2

)
G3(Q2), (A25)

h2(Q2) = −2(±mN∗ + mN )G1(Q2)

− (
m2

N∗ − m2
N − Q2

)
G2(Q2) + 2Q2G3(Q2),

(A26)

h3(Q2) = ∓ 2

mN∗
[Q2 + mN (±mN∗ + mN )]G1(Q2)

+ (
m2

N∗ − m2
N − Q2

)
G2(Q2) − 2Q2G3(Q2).

(A27)
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