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The interpretation of the measured elliptic and higher order collective flows in heavy-ion collisions in terms of
viscous hydrodynamics depends sensitively on the ratio of shear viscosity to entropy density. Here we perform
a quantitative comparison between the results of shear viscosities from the Chapman-Enskog and relaxation
time methods for selected test cases with specified elastic differential cross sections: (i) the nonrelativistic,
relativistic and ultrarelativistic hard sphere gas with angle and energy independent differential cross section, (ii)
the Maxwell gas, (iii) chiral pions, and (iv) massive pions for which the differential elastic cross section is taken
from experiments. Our quantitative results (i) reveal that the extent of agreement (or disagreement) depends
sensitively on the energy dependence of the differential cross sections employed, and (ii) stress the need to
perform quantum molecular dynamical (URQMD) simulations that employ Green-Kubo techniques with similar
cross sections to validate the codes employed and to test the accuracy of other methods.
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I. INTRODUCTION

The study of relativistic heavy-ion collisions up to 200 GeV
per particle center-of-mass energy at the Brookhaven National
Laboratory (BNL), and up to 7 TeV per particle at the
Large Hadron Collider (LHC) at CERN, has required the
development of special theoretical tools to unravel the complex
space-time evolution of the matter created in these collisions.
In view of the large multiplicities of hadrons (predominantly
pions, kaons, etc.) observed in these collisions [1], there is
much interest in the description of these collisions from the
initial stages in which quark and gluon degrees of freedom are
liberated to the final stages in which hadrons materialize [2].
In a hydrodynamical description of the system’s evolution,
local thermal equilibrium is presumed to prevail in the quark-
gluon phase, the mixed phase, and the pure hadronic phase.
Thereafter, hadrons cease to interact (i.e., freeze-out) and
reach the detectors. Electromagnetic probes, such as photons
and dileptons, produced in matter are expected to reveal the
properties of the dense medium in which they are produced and
from which they escape without any interactions [3]. Highly
energetic probes such as jets shed light on the energy loss
of quarks in an interacting dense medium [4,5]. In addition,
spectral properties (i.e,. longitudinal and transverse momen-
tum distributions) of the produced hadrons have revealed
interesting collective effects in their flow patterns [3].

A theoretical understanding of the variety of phenomena
observed and expected in these very high energy collisions
is clearly a daunting task. As a first-pass attempt, however,
relativistic ideal hydrodynamics has been fruitfully employed
in the description of the basic facts [6–9]. Detailed compar-
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isons of the predictions of ideal hydrodynamics with data have
been made, and the merits and demerits of the theoretical
description identified [10–13]. As a result, much attention has
recently been focused on improved developments of viscous
relativistic hydrodynamics. In addition to the specification
of initial conditions and the knowledge of the equation of
state that are the central inputs to ideal hydrodynamics, the
knowledge of transport properties such as shear and bulk
viscosities, diffusion coefficients, etc. is crucial to viscous
hydrodynamics [14–16].

Our objective in this paper is to quantify the extent to which
results from different approximation schemes for shear vis-
cosities agree (or disagree) by choosing some classic examples
in which the elastic scattering cross sections are specified. The
two different approximation schemes chosen for this study are
the Chapman-Enskog and the relaxation time methods. These
test studies are performed for the following cases:

(1) a hard sphere gas (nonrelativistic, relativistic, and ultra-
relativistic) with angle and energy independent differential
cross section σ = a2/4, where a is the hard sphere radius,

(2) the Maxwell gas [σ (g, θ ) = m�(θ )/2g with m being the
mass of the heat bath particles, �(θ ) is an arbitrary function
of θ , and g is the relative velocity],

(3) chiral pions [for which the t-averaged cross section σ =
s/(64π2f 4

π )(3 + cos2 θ ), where s and t are the usual
Mandelstam variables and fπ is the pion-decay constant],
and

(4) massive pions (for which the differential elastic cross sec-
tion is taken from experiments). Where possible, analytical
results are obtained in either the nonrelativistic or extremely
relativistic cases.

The organization of this paper is as follows. In Sec. II,
the formalism and working formulas in the Chapman-Enskog
and relaxation time methods are summarized. Applications to
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the above mentioned test cases are considered in Sec. III. A
comparison of results from the two methods is performed on
Sec. IV. Our results are summarized in Sec. V, which also
contains our conclusions. The Appendix contains some details
regarding the collision frequency in the nonrelativistic limit.

A partial account of this work was given at the International
Conference on Critical Point and Onset of Deconfinement held
in Wuhan, China, November 10, 2011.

II. FORMALISM

In this section, formalisms used to calculate shear viscosity
using elastic cross sections are described. In the nonrelativistic
regime (such as encountered in atomic and molecular systems),
classic works can be found in Refs. [17,18]. Elementary
discussions can be found in Refs. [19,20]. In the relativistic
regime (as found in cosmology, many astrophysical settings,
and relativistic heavy-ion collisions), the book on relativistic
kinematics by de Groot [21] serves as a good reference.
For performing quantitative calculations, the original articles
referred to in this book are more useful. The relevant articles
will be referred to as and when necessary.

In heavy-ion physics, particles of varying masses are pro-
duced, the predominant ones being pions (of mass ∼140 MeV),
kaons (of mass ∼500 MeV), etc., the probabilities decreasing
with increasing mass due to energetic considerations. Heavier
mass mesons (and baryons and antibaryons with masses in
excess of the nucleon ∼940 MeV) up to 5 GeV are also
produced, albeit in relatively smaller abundances than pions
and kaons. The system is thus a mixture of varying masses
evolving in time from a high temperature (say in the range
200–500 MeV) at formation to 100–150 MeV at freeze-out.
Thus varying degrees of relativity (gauged in terms of the
individual relativity parameters zi = mi/T ) are encountered
in the mixture. This situation, of varying relativity, is special
to heavy-ion physics. Thus, a general formalism capable
of handling a mixture with varying relativity parameters in
time as the system expands is necessary. In this section,
formalisms that address a one-component system in which
particles undergo elastic processes only will be summarized.

It must be stressed that the formalisms used in this work
are not new, but the application of these formalisms to test
cases is new to the extent that a detailed comparison between
two commonly used methods is provided. For the sake of
clarity and completeness, the formalisms used in this work
are summarized below along with working formulas. This
section thus sets the stage for the ensuing sections in which
applications relevant for heavy-ion physics will be considered.

A. The Chapman-Enskog approximation

In this section, the formalism as developed in Ref. [22]
is followed and described to reveal the essentials. We begin
with the relativistic transport equation appropriate for a
nondegenerate system,

pα∂αf =
∫

(f ′f ′
1 − ff1)σF d�′dω1, (1)

using the following notation: xα and pα are the space-
time and energy-momentum four-vectors [metric: gαβ =
diag(−1, 1, 1, 1)]. The abbreviations f ≡ f (x, p), f ′ ≡
f ′(x, p′), f1 ≡ f (x, p1), and f ′

1 ≡ f ′(x, p′
1) denote Lorentz

invariant distribution functions. The differential cross section
σ ≡ σ (P,�) is defined in the center-of-mass (c.m.) frame
with P = [−(pα + pα

1 )(pα + p1α)]1/2 as the magnitude of
the total four-momentum. The invariant flux is denoted by
F = [(pαpα

1 )2 − (mc)4]1/2, d�′ refers to the angles of �p ′ in
the c.m. frame, and dω1 = d3p1/p

0
1.

For a situation not too far from equilibrium, one may write

f = f 0(1 + φ), (2)

where the deviation function |φ| � 1 and f 0 is the Boltzmann
distribution function for local equilibrium:1

f 0 = ρz exp(Uαpα/kT )/[4π (mc)3K2(z)], (3)

where ρ ≡ ρ(x) and T ≡ T (x) are the particle-number density
and temperature in a proper coordinate system, U ≡ U (x) is
the four-velocity of the hydrodynamic particle flux (UαUα =
−c2), and K2(z) is the modified Bessel function with z =
mc2/kT . In the first Chapman-Enskog approximation, the
function φ(x, p) satisfies the equation

pα∂αf 0 = −f 0L[φ], (4)

where L[φ] is the linearized collision integral and is given by

L[φ] =
∫

f 0
1 (φ + φ1 − φ′ − φ′

1)σF d�′dω1. (5)

The solution to Eq. (1) has the general structure

φ = A∂αUα − B�αβpβ�αβ(T −1∂βT + c−2DUβ)

+C〈pαpβ〉〈∂αUβ〉, (6)

where the notations D ≡ Uα∂α , �αβ = gαβ + c−2UαUβ ,
〈tαβ〉 = �αβγ δ tγ δ , and �αβγ δ = (�αγ �βδ + �αδ�βγ )/2 −
�αβ�γδ/3 have been used. The scalar functions A, B, and
C, which depend on pαUα(x), ρ(x), Uα(x), and T (x), obey
the integral equations

L[A] = (−1/kT )Q, (7)

L[B�αβ pβ] = (1/kT )(pγ Uγ + mh)�αβ pβ, (8)

L[C〈pαpβ〉] = (−1/kT )〈pαpβ〉, (9)

where

Q = −(mc)2/3 + c−2pαUα[(1 − γ )mh + γ kT ]

+ c−2[(4/3) − γ ](pαUα)2. (10)

Above, γ = cp/cv is the ratio of specific heats, and h =
c2K3(z)/K2(z) is the enthalpy at equilibrium. The energy-
momentum tensor

T αβ ≡ c

∫
pαpβf

d3p

po
(11)

1The generalization to Bose-Einstein and Fermi-Dirac statistics can
be found in Ref. [23].
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can now be calculated with f = f o(1 + φ). In addition to
the equilibrium energy-momentum tensor, the result features
terms involving energy flow and the viscous pressure tensor,
which are defined as

Iα
q ≡ −Uβ Tβγ �γα, �αβ ≡ P αβ − p �αβ, (12)

where P αβ is the pressure tensor defined as P αβ ≡
�αγ Tγ ε�

εβ . By employing Eq. (2) in Eqs. (11) and (12), one
can get

Iα
q = −λ�αβ(∂βT + c2T DUβ), (13)

�αβ = −2η〈∂αUβ〉 − ηv�
αβ∂γ Uγ . (14)

The shear viscosity (ηs) is given by

ηs = − 1

10
c

∫
C〈pαpβ〉〈pαpβ〉f 0 dω. (15)

The above inhomogeneous integral equations for the transport
coefficients can be reduced to sets of algebraic equations
by expanding the unknown scalar function C(τ ), where τ =
−(pαUα + mc2)/kT , in terms of orthogonal polynomials,
e.g., the Laguerre functions Lα

n(τ ) with appropriate values
of α [half integers (0) for massive (massless) particles].

1. Shear viscosity of a one-component gas

Beginning with Eq. (9),

L[C〈pαpβ〉] = (−1/kT )〈pαpβ〉, (16)

the first approximation to the shear viscosity can be obtained
explicitly by (i) multiplying both sides of the above equation
with

(
p(0) f (0) L5/2

n (τ )
)−1 〈pαpβ〉

and integrating over momentum, (ii) introducing the quantity
γn defined by

γn ≡ c

ρk2T 2

∫
f (0)L5/2

n (τ )〈pαpβ〉〈pαpβ〉d
3p

p0
(17)

and applying γn to Eq. (16), and writing the results in terms of
the bracket expression as

[
C〈pαpβ〉, L5/2

n (τ )〈pαpβ
] = m2kT

ρ
γn (n = 0, 1, . . . ).

(18)

We now write C as an expansion involving the generalized
Laguerre polynomial as

C(τ ) =
∞∑

m=0

cmL5/2
m (τ ) (19)

so that Eq. (18) can be written as

∞∑
m=0

cmcmn = 1

ρkT
γn (n = 0, 1, . . . ), (20)

where

cmn = 1

(mkT )2

[
L5/2

m (τ )〈pαpβ〉, L5/2
n (τ )〈pαpβ〉]

(m, n = 0, 1, . . . ). (21)

Note that cmn = cnm. The rth approximation to the coefficient
c(r)
m is obtained by truncating the sum in Eq. (20) to r terms;

that is,

r−1∑
m=0

c(r)
m cmn = 1

ρkT
γn (n = 0, 1, . . . , r − 1). (22)

Finally, the shear viscosity can be written as

η = 1

10
(kT )2

∞∑
m=0

cmγm. (23)

The first, second, and third approximations to shear viscosity
are

[ηs]1 = 1

10
kT

γ 2
0

c00
, (24)

[ηs]2 = 1

10
kT

γ 2
0 c00 − 2 γ0 γ1 c01 + γ 2

1 c00

c00c11 − c2
01

, (25)

[ηs]3 = ρ(kT )2

10
(c0 γ0 + c1 γ1 + c2 γ2), (26)

where

γ0 = −10ĥ, (27)

γ1 = −[ĥ(10z − 25) − 10z], (28)

c00 = 16

(
w

(2)
2 − 1

z
w

(2)
1 + 1

3z2
w

(2)
0

)
, (29)

c01 = 8

[
2z

(
w

(2)
2 − w

(2)
3

) + ( − 2w
(2)
1 + 3w

(2)
2

)

+ z−1

(
2

3
w

(2)
0 − 9w

(2)
1

)
− 11

3z2
w

(2)
0

]
, (30)

c11 = 4

[
4z2

(
w

(2)
2 − 2w

(2)
3 + w

(2)
4

)

+ 2z
( − 2w

(2)
1 + 6w

(2)
2 − 9w

(2)
3

)

+
(

4

3
w

(2)
0 − 36w

(2)
1 + 41w

(2)
2

)

+ z−1

(
−44

3
w

(2)
0 − 35w

(2)
1

)
+ 175

3z2
w

(2)
0

]
, (31)

with

z = mc2

kT
and ĥ = K3(z)

K2(z)
, (32)

and the quantity w
(s)
i is so-called the relativistic omega integral

which is defined as

w
(s)
i = 2πz3c

K2(z)2

∫ ∞

0
dψ sinh7 ψ coshi ψKj (2z cosh ψ)

×
∫ π

0
d� sin �σ (ψ,�)(1 − coss �). (33)
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In the third-order calculation, one more equation is needed to
get the relation between the coefficients cn and the coefficients
cmn which are shown in Eq. (22). The quantity σ (ψ,�) is
the transport cross section and j = 5

3 + 1
2 (−1)i ; the others

symbols are

g = 1
2 (p1 − p2) and P = (−pαpα)1/2, (34)

sinh ψ = g

mc
and cosh ψ = P

2mc
. (35)

2. Massless particles

For nearly massless particles such as neutrinos and light
quarks for which m/T → 0, the formalism described earlier
can be simplified as discussed in Ref. [24] and is summarized
below. The reason for addressing the ultrarelativistic case
is twofold: (1) For temperatures such that zi = mi/T → 0,
as is the case for light quarks in the context of heavy-ion
collisions, it serves as a first orientation toward the magitudes
of viscosities, and (2) test cases for validating Green-Kubo
calculations can be set up in this limit.

We start again with the relativistic transport equation for a
one-component system of nondegenerate particles:

pα ∂α f (x, P ) =
∫

(f f1 − f ′ f1
′)σ F d�′ dw1, (36)

where f = f (x, p), σ = σ (�,P ) is the scattering cross
section for p + p1 → p′ + p1

′ in the center-of-momentum
frame. Other symbols are

F ≡ [(pαp1α)2 − pαpαp1βp1β]1/2 = −pαp1α = 1
2P, (37)

d�′ ≡ sin θ ′ dθ ′ dφ′, (38)

dw1 ≡ d3p1

p0
1

, (39)

where θ ′ and φ′ are the polar angles of the three-momentum
�p ′ in the center-of-mass frame.

For massless particles, the equilibrium distribution function
can be written as

feq = nc3

8 π (kBT )3
exp[pαUα/(kBT )], (40)

where n is the number density of particles, c is the speed of
light, k is the Boltzman constant, T is the temperature, and
U is the flow velocity. In the first Enskog approximation, the
perturbed distribution function of the system can be written as

f (x, p) = f (0)(x, p)[1 + φ(x, p)], (41)

where f (0)(x, p) is the local equilibrium distribution function
and φ(x, p) is the deviation function. Using Eq. (41), one can
linearize Eq. (36) to get

(pαUα + 4kBT ) pβ �βγ (T −1∂γ T + c−2D Uγ )

+〈pαpβ〉 + 〈∂αUβ〉 = −kBTL[φ], (42)

where L is the linearized operator defined by

L ≡ 1

2

∫
f

(0)
1 δ(F ) σ P 2 d�′ dw1 (43)

with

δ(F ) ≡ F (p) + F (p1) − F (p′) − F (p1
′). (44)

In Eq. (42), the angular bracket 〈· · · 〉 is for the operation

〈Aαβ〉 ≡ 1
2 �β

α (Aγδ + Aδγ )�δ
β − 1

3 �αβ �γδ Aγδ. (45)

The general form of the deviation function (for elastic
collisions) is

φ(x, p) = −Bα�αβ(T −1∂βT + c−2DUβ) + Cαβ〈∂αUβ〉.
(46)

In the case of shear viscosity, one needs to solve for the
coefficients Cαβ which satisfy

L[Cαβ] = −(kT )−1 〈pαpβ〉. (47)

In order to get an expression for the shear viscosity, one can
use the distribution function in Eq. (41) in the viscous pressure
tensor which is defined as

παβ ≡ P αβ − p�αβ, where P αβ ≡ �αβTγ δ�
δβ. (48)

As a result,

παβ = −2 ηs〈∂αUβ〉, (49)

where

ηs ≡ 1

10
c

∫
Cαβ〈pαpβ〉 f (0) dw, (50)

with Cαβ = C 〈pαpβ〉. The coefficient C can be written in
terms of associated Laguerre polynomials:

C(τ ) =
∞∑

n=0

cn L5
n(τ ), (51)

where

Lα
n(τ ) ≡

n∑
i=1

(
n + α

i + α

)
(−τ )i

i!
, where τ ≡ −pαUα/kT .

(52)

These functions satisfy the relations∫ ∞

0
Lα

m(τ )Lα
n(τ ) τα exp(−τ ) dτ =

[
�(n + α + 1)

n!

]
δ0m.

(53)

Inserting Eq. (51) in Eq. (47), one gets

∞∑
0

cn L
[
L5

n(τ )〈pαpβ〉] = −(kT )−1L5
n(τ )〈pαpβ〉. (54)

We introduce the notation

cmn ≡ [
L5

m(τ )〈pαpβ〉, L5
n(τ )〈pαpβ〉], (55)
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where the bracket operation means

[F,G] ≡ 1

8
cn−2

∫
δ(F )δ(G)f (0)f

(0)
1 σ P 2 dw dw1 d�′.

(56)

Equation (54) can be written as

r−1∑
n=0

cmn cn = −40 n−1 c−2 (kT )2 δ0m. (57)

Hence, one can write the shear viscosity for massless particles
as

ηs = −40 nc−2 (kT )3 c0. (58)

In Eq. (57), the coefficients cmn are calculated from

cmn =
19∑
i=1

cmn,i (59)

with

cmn,i = γ

(2βc)2

m∑
r=0

n∑
s=0

(
m + 5

r + 5

) (
n + 5

s + 5

)
(−2)−r−s

×
r∑

p=0

′
s∑

q=0

′(−1)p+q t!

p!(r−p)!

u!

q!(s−q)!

[(t+u)/2]!

(t+u+1)!

×
[M/2]∑
k=0

2M−2k

k!(k + |t − u|/2)!(M − 2k)!

×
[w/2]∑
k=0

(
[w/2]

0

)
(2v + 2l − 1)!! w̃M−2k+ε

r+s−l−v+9,l+v+δ,

(60)

where w̃k
ij is the omega integral for massless particles :

w̃k
ij ≡ π

24β

∫ 1

−1
d cos �

∫ ∞

0
dP σ (�,P ) (1 − cosk �)

× (βcP )i Kj (βcP ). (61)

The quantity δ is given by δ ≡ (r + s) mod(2) and the
quantity M is given by M = min(t, u). The rest of the variables
needed are listed in Table I, which is reproduced from Ref. [24]
in which details of the derivation that leads to the form shown
in Eq. (60) for cmn,i are given.

In the first-order approximation, the required coefficients
are

c00 = (
1
3 w̃2

63 + 1
2 w̃2

72 + 1
4 w̃2

81

)/
(βc)2, (62)

c01 = (
2w̃2

63 + 3w̃2
72 − 1

2 w̃2
74 + 3

2 w̃2
81 − 1

2 w̃2
83 − 1

8 w̃2
92

)/
(βc)2,

(63)

c11 = (
12w̃2

63 + 18w̃2
72 − 3

4 w̃2
74 + 9w̃2

81 − 3w̃2
83

− 15
16 w̃2

92 + 1
16 w̃2

10,1

)/
(βc)2. (64)

The scheme outlined above has been utilized to calculate
the shear viscosity of neutrinos in Ref. [24] and of chiral pions

by Prakash et al. [25]. In the next section, an application of
this scheme to calculate ηs with a constant cross section will
be presented. This application will be utilized to validate the
Green-Kubo calculations.

3. Deviations from the uultrarelativistic limit

The ultrarelativistic limit corresponds to the relativity
parameter z = mc2/kT → 0, in situations when either the
mass tends to vanish or when the temperature is very large
compared to the mass. In the context of relativistic heavy-ion
collisions, low-mass quarks, such as the u and d quarks with
current quark masses �10 MeV in conditions of temperatures
above the phase transition temperature of kT ∼ 200 MeV, fall
into the category of z � 1. In the hadronic phase, pions of
masses ∼140 MeV in the temperature range of 100–200 MeV,
however, fall in the borderline regime of the intermediate
relativistic regime. It is therefore of some interest to gauge
how deviations from the ultrarelativistic regime affect the
transport coefficients. In this section, we summarize the work
of Ref. [26] in which effects of slight deviations from the
ultrarelativistic case were established in the case of hard
spheres. Thereafter, the formalism for arbitrary interactions is
developed. The case of the hard spheres will serve as a testbed
for calculations of transport coefficients from the Green-Kubo
formulas in which the mass of the particle is set to a small
value for computational ease. Our development for arbitrary
interactions will further aid the validation of such calculations
in the relativistic regime.

4. The hard sphere gas

Here the calculation of Ref. [26] for the hard sphere gas
with a constant differential cross section σ0 = a2/4, where a

is the radius of the particle, is summarized.
The first step is to rewrite the relativistic omega integral in

Eq. (33), with x = cosh ψ , as

w
(s)
i = πz3cf (s)a2

2K2
2 (z)

∫ ∞

1
dx (x2 − 1)3xi Kj (2zx), (65)

where

j = 5/2 + 1/2(−1)i and f (s) ≡ [2s + 1 + (−1)s+1]

(s + 1)
.

(66)

By changing the integration variable and by employing
binomial coefficients to express the third power, one can
rewrite the above equation as

w
(s)
i = [

π z−i−4 c f (s) a2/2K2
2 (z)

] 3∑
k=0

(
3

k

)
(−1)k z2k

×
∫ ∞

z

dx xi−2k+6 Kj (2x). (67)

In the limit of z � 1, the two modified Bessel functions have
the behaviors
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TABLE I. The values of γ, ε, t, u, v, and w as a function of i, p, q, r , and s for the case of shear viscosity.

i γ (−1)p (−1)q ε t − p u − q 2v − p − q − 2 w + p + q − r − s

1 1 + + 2 0 0 0 0
2 2 − − 1 0 0 2 0
3 2 + + 1 1 1 2 0
4 −2 + − 1 1 0 1 1
5 −2 − + 1 0 1 1 1
6 2/3 + + 0 0 0 0 4
7 −4/3 − + 0 1 0 1 3
8 −4/3 + − 0 0 1 1 3
9 2/3 + + 0 2 0 2 2
10 8/3 − − 0 1 1 2 2
11 2/3 + + 0 0 2 2 2
12 −2 + + 0 0 0 0 2
13 2 − + 0 1 0 1 1
14 2 + − 0 0 1 1 1
15 −4/3 + − 0 2 1 3 1
16 −4/3 − + 0 1 2 3 1
17 2/3 + + 0 2 2 4 0
18 −2 − − 0 1 2 2 0
19 1 + + 0 0 0 0 0

K2(z) = 2

z−2

[
1 − 1

4
z2 − 1

16
z4 ln z + 1.731863

32
z4 + · · ·

]
,

(68)

K3(z) = 8

z−3

[
1 − 1

8
z2 + 1

64
z4 + · · ·

]
. (69)

Also, in the limit of z → 0, the integral involving the modified
Bessel function can be written as∫ ∞

0
dx xμ Kν(2x) = 1

4
�[(μ + ν + 1)/2] �[(μ − ν + 1)/2].

(70)

The above relation is true for μ ± ν + 1 > 0. Using these
relations, the omega integral in Eq. (67) reads as

w
(s)
i = 1

32
πz−1cf (s)a2 �[(i + j + 7)/2] �[(i − j + 7)/2]

×
(

1 + (i2 − j 2 + 10i + 1)

(i2 − j 2 + 10i + 25)

z2

2
+ · · ·

)
. (71)

Thermodynamic quantities such as the enthalpy, h, and the
ratio of specific heats, γ , can be evaluated in the z → 0 limit by
applying the properties of modified Bessel function in Eqs. (68)
and (69) to read as

h = 4 c2 z−1
[
1 + 1

8z2 + 1
16z4 ln z

+ 1
32

(
3
2 − 1.731863

)
z4 + · · · ], (72)

γ = 4
3

[
1 + 1

24z2 + 1
64z4 ln z

+ 1
32

(
43
18 − 1.731863

)
z4 + · · · ]. (73)

Then the shear viscosities in this regime read as

[ηs]p = mc

π a2
z−1Fp(1 + F ′

p z2 + · · · ), (74)

where the subscript p refers to the pth approximation and the
values of the various coefficients in the above equations are
listed in Table II for p = 1, 2, and 3.

Note that, for massless particles,

[ηs]p = kBT

πa2

1

c
Fp. (75)

In the next section, calculations that attest to the rapid
convergence of the coefficient Fp are carried to much higher
order in p. These results will be of much utility in validating
ultrarelativistic molecular dynamical simulations of shear
viscosity.

B. Reduction to the nonrelativistic case

In the nonrelativistic limit, i.e., z = m/kBT � 1, the
results above can be further simplified. As for z � 1,

Kn(z) �
√

π

2z
e−z

(
1 + (4n2 − 1)

2!

1

z
+ · · ·

)
, (76)

the reduced enthalpy

ĥ → 1 and γ0 → −10. (77)

TABLE II. Values of the coefficients appearing in Eq. (74) for the
hard sphere gas.

p 1 2 3

Fp 1.2 1.2588 1.2642
F ′

p 0.05 0.0424 0.0403
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In addition, the relativistic omega integral w
(s)
i in Eq. (33)

can be transformed into its nonrelativistic counterpart �
(s)
i as

follows. Introducing the dimensionless quantity

φ = g√
mc2 kBT

= mc sinh ψ√
mc2 kBT

, (78)

whereby

cosh ψ =
√

1 + z−1φ2, (79)

the integral over ψ in Eq. (33) can be written as

Iψ = 2 π kBT

m K2
2 (z)

∫ ∞

0
dφ φ7 (1 + z−1φ2)i−1

×Kj (2z
√

1 + z−1φ2). (80)

The use of a binomial expansion and the expansion of Kn(z)
for z � 1,

Kn(z) �
√

π

2z
e−z

(
1 + (4n2 − 1)

2!

1

z
+ · · ·

)
, (81)

reduces the above integral to

Iψ = 2

√
π kBT

m

∫ ∞

0
dφ φ7 e−φ2

. (82)

Inserting this result in Eq. (33), the omega integral in the
nonrelativistic limit is

�
(s)
2 = 2

√
π kBT

m

∫
dφ φ7 e−φ2

×
∫ π

0
dθ sin θ σ (φ, θ ) (1 − coss θ ). (83)

Note that the magnitudes of the omega integrals in Eqs. (33)
and (83) are determined by a combination of different
physical factors: the thermal weight, collisions with large
relative momenta, and the relative momentum dependence
of the transport cross section. These omega integrals also
feature in the calculation of the shear viscosity in higher
order formulations; expressions for viscosity in higher order
approximations may be found in Ref. [22].

A further simplification occurs in the nonrelativistic limit
with

c00 ≈ 16 w
(2)
2 → 16 �

(2)
2 , (84)

as the second and third terms in Eq. (29) are suppressed by z

being large. Thus, the shear viscosity takes the simple form

ηs = 5

8

kBT

�
(2)
2

. (85)

C. The relaxation time approximation

In the relaxation time approximation, the main assumption
is that the effect of collisions is always to bring the perturbed
distribution function close to the equilibrium distribution func-
tion, that is, f (x, p) → f (0)(x, p). In other words, the effect
of collisions is to restore the local equilibrium distribution

function exponentially with a relaxation time τ0 which is of
order the time required between particle collisions [19]:

Dcf (x, p) = −f (x, p) − f (0)(x, p)

τ0
. (86)

In the relativistic case, we follow closely the formalism
described in the review article by Kapusta [27] and develop
working formulas for the calculation of shear viscosity using
Maxwell-Boltzmann statistics [27–29]. (Bose-Einstein and
Fermi-Dirac cases will be considered later.) We restrict our
attention to the case involving two-body elastic reactions
a + b → c + d in a heat bath containing a single species of
particles. In what follows, we use the notation employed in
Ref. [29]. Differences from earlier notation in this section are
few, and should not cause any confusion.

In the relaxation time approximation, the shear viscosity is
given by [29]

ηs = 1

15T

∫ ∞

0

d3pa

(2π )3

|pa|4
E2

a

1

wa(Ea)
f eq

a , (87)

where wa(Ea) is the collision frequency and f
eq
a is the

equilibrium distribution function of particles a with momenta
pa and energy Ea:

fa(x, pa, t) = 1

e(Ea−μa )/T − (−1)2sa
, (88)

where μa is the chemical potential of the particle, and fa

is normalized such that integration over momenta yields the
density n(x, t).

The collision frequency is given by

wa(Ea) =
∑
bcd

1

2

∫
d3pb

(2π )3

d3pc

(2π )3

d3pd

(2π )3
W (a, b|c, d) f

eq

b ,

(89)

where the quantity W (a, b|c, d) is defined as

W (a, b|c, d) = (2π )4δ4 (pa + pb − pc − pd )

2Ea2Eb2Ec2Ed

|M|2. (90)

Above, |M|2 is the squared transition amplitude for the
two-body reaction a + b → c + d and f

eq

b is the distribution
function of particles b. Utilizing the above expression, one can
write

wa(Ea) =
∑
bcd

1

2

∫
d3pb

(2π )3
f

eq

b IE, (91)

where

IE ≡
∫

d3pc

(2π )3

d3pd

(2π )3

(2π )4δ4(pa + pb − pc − pd )

2Ec 2Ed

|M|2.
(92)

The exit channel integrals in the above equation can be
manipulated in the center of mass (c.m.) frame to feature
the differential cross section. In the c.m. frame,

√
s = Ecm =

Ecm
c + Ecm

d = 2Ecm
c = 2Ecm

d = 2 (m2 + q2
cm)1/2. Performing

the integration over �pd in the c.m. frame,

IE =
∫

d3pc

(2π )32Ecm
c

(2π ) δ (
√

s − Ecm)

2Ecm
c

|M|2. (93)
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The integration over pc can be effected through its connection
to qcm and Ecm,

q2
cm = E2

cm

4
− m2, (94)

so that IE can be rewritten as

IE = 2
√

s(s − 4m2)
∫

d�σ (�), (95)

where

σ (�) = 1

64 π2 s
|M|2 (96)

is the differential cross section in the c.m. frame. The collision
frequency in Eq. (89) thus takes the form

wa(Ea) =
∫

d3pb

(2π )3

√
s(s − 4m2)

2Ea 2Eb

f
eq

b σT , (97)

where σT is the total cross section.
As we can see from the above equation, interactions

appear in the collision frequency through the total cross
section. Here we see the difference with the Chapman-Enskog
approximation, which features a transport cross section that
favors right-angled collisions in the c.m. frame. We shall
see that this difference is at the root of differences in results
between the two approaches in the following sections.

D. Reduction to the nonrelativistic case

We turn now to reduce Eq. (97) for nonrelativistic particles.
Recalling that s = 4(m2 + q2

cm),
√

s(s − 4m2) =
√

4
(
m2 + q2

cm

)
4q2

cm ≈ 4 m |�qcm| (98)

in the nonrelativistic limit. Also, Ea ≈ m and Eb ≈ m for
equal mass particles. Thus,

wa(Ea) =
∫

d3pb

(2π )3
σT f

eq

b |�va − �vb|, (99)

which can be written in the form found in textbooks (see, e.g.,
Ref. [20]),

wa(va) =
∫ ∞

0
d3vb σT f

eq

b |�va − �vb|, (100)

after a suitable change of variables and normalization of f
eq

b .
Finally, employing the nonrelativistic expressions

pa = m va and Ea = m + p2
a/(2m), the shear viscosity in

Eq. (87) takes the form

ηs = 1

30π2

m5

T

∫
dva v6

a

fa

wa(va)
. (101)

III. APPLICATIONS

A. The hard sphere gas (nonrelativistic)

This system is characterized by a constant differential cross
section, σ0 = a2/4, where a is the hard sphere radius.

1. The Chapman-Enskog approximation

Utilizing the hard spheres cross section, the nonrelativistic
omega integral in Eq. (83) becomes

�
(2)
2 = 8σ0

√
π kBT

m
. (102)

Use of this result in Eq. (85) yields the shear viscosity

ηs = 5

64

√
m kBT

π

1

a2
. (103)

2. The relaxation time approximation

Here, the shear viscosity is calculated by combining the
results in Eqs. (100) and (101). For a constant differential
cross section, the collision frequency can be expressed as [20]
(see Appendix for details of the derivation)

wa(va) = n σT

√
2kBT

π m

[
e−ζ 2 + (2ζ + ζ−1)

∫ ζ

0
dt e−t2

]
,

(104)

where the dimensionless variable

ζ =
√

m

2kBT
v. (105)

The shear viscosity, from Eq. (101), is

ηs = 1

30π2

m5

T

∫
dva

v6
a

n σT

√
π m

2kBT

× f
eq
a[

e−ζ 2 + (2ζ + ζ−1)
∫ ζ

0 dt e−t2
] . (106)

In the non-relativistic limit

f eq
a = exp(μ/kBT )e−ζ 2

, (107)

where μ is the chemical potential. Hence

ηs = 1

30π2

m5

T

z

n σT

√
π m

2kBT

×
∫

dva v6
a

e−ζ 2

[
e−ζ 2 + (2ζ + ζ−1)

∫ ζ

0 dt e−t2
] . (108)

A numerical quadrature of the above integral yields the result
0.463282( 2kBT

m
)7/2. The shear viscosity is then given by

ηs = 3.706256
√

π

30π2

exp(μ/kBT )

n σT

m2c4 k2
BT 2

h̄3c3
, (109)

where the factor of (h̄c)3 has been inserted to get the correct
unit of viscosity. For Bolztmann statistics

n = exp(μ/kBT )

(
mc2 kBT

2πh̄2c2

)3/2

, (110)

so that

ηs = 0.34942

4
√

π

√
m kBT

π

1

a2
. (111)
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B. The hard sphere gas (ultrarelativistic)

In this section, we calculate the shear viscosity for massless
particles using a constant differential cross section σ0 = a2/4
for which the total cross section σT = π a2, where a is the
radius of the sphere. For point particles such as quarks, the
quantity a can be regarded as an effective length scale that
serves to define a scattering cross section.

C. The Chapman-Enskog approximation

We start by simplifying the omega integral in Eq. (61):

wk
ij ≡ π

24β

∫ 1

−1
d cos �

∫ ∞

0
dP σ (�,P )(1 − cosk �)

× (βcP )i Ki(βcP ) .

For s = 2 and a constant cross section σ (�,P ) = σ0, we can
rewrite the above equation as

w2
μν = π σ0

12 β

∫ ∞

0
dp (βcp)μ Kν(βcp). (112)

The integration can be performed through a change of variable:

βcp = 2x ⇒ dp = 2

βc
dx. (113)

Then the omega integral can be written as

w2
μν = π σ0

β2c

2μ−1

3

∫ ∞

0
dx xμ Kν(2x). (114)

We can now use the identity∫ ∞

0
dx xμ Kν(2x) = 1

4
� [(μ + ν + 1)/2] �[(μ − ν + 1)/2]

(115)

to write the omega integral for massless particles with a
constant cross section as

w2
μν = π σ0

β2c

2μ−1

12
�[(μ + ν + 1)/2] �[(μ − ν + 1)/2].

(116)

The shear viscosity is

ηs = −4nc−2 (kBT )3 c0, (117)

where c0 can be calculated from Eq. (54). For the first-order
calculation, the coefficient c0 is

[c0]1 = − 40

cn2
(kBT )2 1

c00
. (118)

Substituting for c0 in Eq. (117),

ηs = 160

c4

1

β5

1

c00
(119)

where c00 is taken from Eq. (62). The omega integrals needed
are

w2
63 = 64

π σ0

β2c
, w2

72 = 256
π σ0

β2c
, and w2

81 = 1536
π σ0

β2c
.

(120)

Utilizing these results, the first -order approximation for the
shear viscosity is

[ηs]1 = 1.2
kBT

π a2

1

c
, (121)

where we have used σ0 = a2/4, where a is the radius of the
hard sphere.

1. Successive approximations

A point worth noting is that succcessive approximations to
the shear viscosity can be obtained in the Chapman-Enskog
approximation, a feature that is lacking in the relaxation
time approximation. As an example, we calculated up to 16
orders in the case of the ultrarelativistic hard sphere gas. For
higher-order calculations, the nested sums in Eqs. (57) and (60)
in the calculation of the coefficients cmn and cmn,i call for a
large number of evaluations (many repeated) of the omega
integrals. Fortunately, the omega integrals required in this
calculation can be performed analytically (consuming little
computer time):

ω̃k
ij = π a2

β c

2i

26

(
i + j − 1

2

)
!

(
i − j − 1

2

)
!

(
k

k + 1

)
.

(122)

Our results for shear viscosity are shown in the second column
of Table III and in Fig. 1. We note that results up to the third-
order approximation exist in the literature in Ref. [26]. Our
test of the convergence of higher order approximations here
indicates that for all practical purposes the third-order results
are adequate. In addition, z = mc2/kBT corrections are also
available for the third-order results, which can be gainfully
employed to check results of computer simulations in which
the mass cannot strictly be set to zero.

In addition to showing the convergence of results, the final
result in this case serves as a testbed result that Green-Kubo

TABLE III. Shear viscosity for the ultrarelativistic hard shpere
gas up to the 16th order.

Order of approximation ηs/ [kBT /(πa2c)]

1 1.2
2 1.25581395
3 1.2642487
4 1.2663424
5 1.26703133
6 1.26730375
7 1.26742645
8 1.26748735
9 1.26751995
10 1.26753849
11 1.26754958
12 1.26755648
13 1.26756094
14 1.26756391
15 1.26756593
16 1.26756759
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FIG. 1. The shear viscosity calculated up to the 16th-order
approximation.

calculations can check. Such calculations are underway and
will be reported elsewhere.

D. The relaxation time approximation

Here, we start with the collision frequency in Eq. (97). For
a constant cross section

wa(Ea) = 1

16 π2

σT

Ea

∫ ∞

0
dEb

∫ 1

−1
dx Eb se−Eb/kBT , (123)

where x = cos θ . To solve the above integral, we note that

s − (pa + pb)2 = 2 |pa| |pb|
(

x − s

2|pa| |pb|
)

. (124)

Inserting the identity involving the delta function

1 =
∫

ds
1

2 |pa| |pb| δ

(
x − s

2|pa| |pb|
)

(125)

in the above integral, the collision frequency reads as

wa(Ea) = σT (kBT )3

2 π2
. (126)

Supplying the collision frequency into Eq. (87), the shear
viscosity becomes

ηs = 8

5

kBT

σT

1

c
. (127)

If we use the Bose-Einstein distribution function in the
calculation, then the result for the collision frequency is given
by

wa(Ea) = σT (kBT )3

2 π2
ζ (3) (128)

and the shear viscosity is given by

ηs = 8

5

kBT

σT

1

c

ζ (5)

ζ (3)
, (129)

where σT = π a2.

E. The Maxwell gas

Particles in the Maxwell gas are characterized by the
differential cross section [30]

σ (g, θ ) = m �(θ )

2 g
, (130)

where m is the mass, g is the relative momentum, and �(θ )
is an arbitrary function of angle. The unit of �(θ ) is fm3/s.
In this calculation, we set �(θ ) = �, where � is a constant.
Inclusion of θ dependence is straightfoward.

1. The Chapman-Enskog approximation

We begin by writing the cross section in terms of φ =
g/

√
mT as

σ (g, θ ) = m

2g
�(θ ) = m �(θ )

2 φ
√

mT
. (131)

The nonrelativistic omega integral for Maxwell particles can
be calculated by using Eq. (83):

�
(2)
2 = 5

4
π�. (132)

The quantity c00 can be calculated from Eq. (29) with the result
c00 = 20π�. From Eq. (24), the shear viscosity is

ηs = kBT

2π�
, (133)

where we have used γ0 = −10ĥ with ĥ → 1 in the nonrela-
tivistic limit.

2. The relaxation time approximation

In the relaxation time approximation, the shear viscosity
can be calculated using Eqs. (100) and (101). We start by
calculating the collision frequency

wa(va) =
∫

d3vb d�
m �(θ )

2m |�va − �vb| fb|�va − �vb|. (134)

For angle independent �, the collision frequency wa(va) =
2π�n. From Eq. (101),

ηs = 1

30π2

m5

T

1

2 π � n
z

∫ ∞

0
dva v6

a e−mv2
a/(2kBT ). (135)

The quantity n = z( mT

2πh̄2c2 )3/2 is defined as in Eq. (110). Setting

x =
√

m

2kBT
va (136)

and performing the integral, the shear viscosity is

ηs = kBT

2π�
. (137)
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F. Massless pions

In the relativistic regime, we consider massless pions whose
elastic differential cross section is given by [25]

σ (s, θ ) = s

64 π2 f 4
π

(3 + cos2 θ ), (138)

where s = √
Ecm is a Mandelstahm variable and fπ = 93 MeV

is the pion decay consntant.

1. The Chapman-Enskog approximation

In the Chapman-Enskog approximation, the formalism to
calculate the shear viscosity is described in Ref. [24] and was
summarized in Sec. II B. The shear viscosity is obtained from
Eqs. (58) and (60)–(62). The omega integrals that are required
for chiral pions are

w̃2
63 = 128

πc3

(
kBT

fπ

)4

, w̃2
72 = 768

πc3

(
kBT

fπ

)4

,

and w̃2
81 = 6144

π c3

(
kBT

fπ

)4

. (139)

Using the above omega integrals to calculate c00, we finally
obtain the shear viscosity as

ηs = 15 π

184

f 4
π

kBT

1

c
. (140)

2. The relaxation time approximation

We first calculate the collision frequency defined in
Eq. (97). In order to perform the integral we set x = cos θ

and note that

s − (ka + kb)2 = 2|ka| |kb|
(

x − s

2|ka| |kb|
)

. (141)

Introducing the identity involving the delta function,

1 =
∫

ds
1

2|pa| |pb|δ
(

x − s

2|pa| |pb|
)

, (142)

and inserting the above two relations in Eq. (97), we arrive at

wa(Ea) = π

108
Ea

(
kBT

fπ

)4

. (143)

Inserting the above result into Eq. (87), the shear viscosity for
chiral pions reads as

η = 12π

25

f 4
π

T

1

h̄2c3
. (144)

G. Interacting massive pions

We choose the following parametrization for the experi-
mental π -π phase shifts adopted by Bertsch et al. [31]:

δ0
0 = π

2
+ arctan

(
ε − mσ

�σ/2

)
, (145)

δ1
1 = π

2
+ arctan

(
ε − mρ

�ρ/2

)
, (146)

δ2
0 = −0.12q

mπ

, (147)

where in the symbol δI
l , I is the total isospin of the two pions

and l is the angular momentum. The quantity

ε = 2(q2 + m2
π )1/2 with mπ = 140 MeV. (148)

The phase shift δ0
0 corresponds to the s-wave σ resonance,

with the width �σ = 2.06q and mσ = 5.8mπ . The phase shift
δ1

1 is from the p-wave ρ resonance, with the width

�ρ(q) = 0.095q

(
q/mπ

1 + (q/mρ)2

)2

(149)

and mρ = 5.53mπ . The phase shift δ2
0 accounts for s-wave

repulsive interactions. The isospin averaged cross section for
elastic scattering is obtained from

dσ (q,�)

d�
= 4

q2

′∑
l,I

(2I + 1)(2l + 1)∑
I (2I + 1)

Pl(cos �) sin2 δI
l (q),

(150)

where the prime denotes that the isospin sum is restricted to
values for which l + I is even, and l = 0, 1, 2, whence

dσ (s,�)

d�
= 4

q2
cm

(
1

9
sin2 δ0

0+
5

9
sin2 δ2

0+
1

3
9 sin2 δ1

1 cos2 �

)
.

(151)

FIG. 2. Top panel: Contributing phase shifts for pion-pion scat-
tering. The phase shift δ0

0 corresponds to the s-wave σ resonance,
δ1

1 is from the p-wave ρ resonance, and δ2
0 accounts for s-wave

repulsive interactions. Bottom panel: Total cross section versus the
center-of-mass energy. This figure is adapted from Ref. [32].
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FIG. 3. Shear viscosity versus temperature for a system of
interacting pions with experimental cross sections. Results up to the
second-order approximation are shown. This figure is adapted from
Ref. [25].

In Fig. 2, the phase shifts (top panel) and the total cross
section (bottom panel) are shown. The s-wave σ resonance
and the p-wave ρ resonance are clearly evident from this
figure as the corresponding phase shifts δ0

0 and δ1
1 both exceed

π radians, a signature of resonance formation. Note that the
total cross section is dominated by the ρ resonance with a peak
around 770 MeV.

The results for the shear viscosity of interacting pions up to
the second-order approximation are shown in Fig. 3 using the
experimental differential cross sections. For calculating results
beyond the first-order approximation, methods described in
Sec. II are employed. The role of the energy dependence of
the scattering cross section is evident from this figure. Beyond
the ρ- meson resonance energy of 770 MeV, the experimental
cross sections decrease with the center-of mass-energy which
makes the shear viscosity increase with temperature. The
results also show the rapid convergence of the Chapman-
Enskog approach for the shear viscosity. The first-order
results appear quite adequate for all practical purposes in the
temperature range of 100–200 MeV of relevance to heavy-ion
collisions.

In Fig. 4, the first-order results of shear viscosity
from the Chapman-Enskog approach are compared with
those from the relaxation time approach (left panel). The
right panel shows the ratio that is calculated from the
Chapman-Enskog viscosity divided by the relaxation time
viscosity.

FIG. 4. Left panel: Shear viscosities of pion gas from the
relaxation time approximation and the first-order Chapman-Enskog
approximation. Right panel: The ratio of the results in the left panel.

IV. DISCUSSION OF ANALYTICAL
AND NUMERICAL RESULTS

In this section, we collect results of calculations performed
using the two different approaches: the Chapman-Enskog
approximation and the relaxation time approximation. The
nonrelativistic limit (z = mc2/kBT � 1) is examined in the
cases of the hard sphere particles (nonrelativistic case) and
the Maxwell particles. The ultrarelativistic limit is explored
in the cases of the hard sphere gas and massless pions.
In the case of massive interacting pions with experimental
cross sections, calculations are performed using the general
relativistic scheme outlined in Sec. II.

Table IV shows the systems considered along with with
their corresponding cross sections, and results of ηs from the
first-order Chapman-Enskog and the relaxation time approx-
imations. The results in the table and those in the following
figures must be viewed bearing in mind one difference that
exists in the calculational procedures. The Chapman-Enskog
approximation features the transport cross section with an
angular weight of (1 − cos2 �) in first-order calculations. The
relaxation time approach lacks this angular weighting. The
angular integral can be performed analytically for the cases
chosen and leads to a factor of 4/3 for angle independent cross
sections. Even so, it is intriguing that, for the case of Maxwell
particles, the two methods give exactly the same result. This is

TABLE IV. Summary of results for shear viscosity. Results for the Chapman-Enskog approach are for the first-order approximation.

Case Cross section Chapman-Enskog Relaxation Ratio

Shear viscosities of nonrelativistic systems

Hard sphere (nonrelativistic) σ = a2

4 0.078
√

m kBT

π

1
a2 0.049

√
m kBT

π

1
a2 1.59

Maxwell gas σ0 = m �(θ)
2 g

kBT

2 π �

kBT

2π �
1.00

Shear viscosities of ultrarelativistic systems
Hard sphere (ultrarelativistic) σ0 = a2

4 1.2 kBT

π a2
1
c

8
5

kBT

π a2 c
0.75

Chiral pions σ = s

(64π2f 4
π )

(3 + cos2 θ ) 15π

184
f 4
π

T

1
h̄2c3

12π

25
f 4
π

T

1
h̄2c3 0.169
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perhaps because of the fact that the relative velocity appearing
in the denominator of the cross section is exactly canceled by
a similar factor occuring in the numerator in both methods.
In the remaining cases, it is clear from Table IV that the
energy dependence of the cross sections plays a crucial role in
determining the extent to which results differ between the two
approaches.

V. SUMMARY AND CONCLUSIONS

A quantitative comparison between results from the
Chapman-Enskog and relaxation time methods to calculate
viscosities was undertaken for the following test cases:

(1) the nonrelativistic and relativistic hard sphere gas in which
particles interact with a constant cross section;

(2) the Maxwell gas in which the cross section is inversely
proportional to the relative velocity of the scattering
particles;

(3) chiral pions for which the cross section is proportional to
the squared center-of-mass energy; and

(4) massive pions for which the differential elastic cross section
features resonances is taken from experiments.

The analytical and numerical results of our comparative
study reveal that the extent of agreement (or disagreement)
between the Champan-Enskog and the relaxation time ap-
proaches depends sensitively on the energy dependence of
the differential cross sections employed. Comparisons with
the more exact, albeit classical, calculations that employ
Green-Kubo techniques will be of much interest in these
cases. In the context of the nonrelativistic hard sphere gas,
such comparisons exist in the classical literature (see, e.g.,
Ref. [20], and references therein); the lesson learned here
is that higher order approximations of the Chapman-Enskog
approach come very close to results of the Green-Kubo
approach. In like fashion, our calculations of the shear
viscosity of ultrarelativistic hard spheres can be used to check
Green-Kubo calculations of the shear viscosity. In the context
of relativistic heavy-ion collisions, calculations of the shear
viscosity have been performed in Refs. [33–36] for mixtures
of hadrons. A detailed comparison of the various approaches
with the same energy dependent cross sections is worthwhile,
a task that is being undertaken currently and will be published
separately.
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APPENDIX: NONRELATIVISTIC COLLISION
FREQUENCY [EQ. (104)]

We start from the expresion

wa(va) =
∫ ∞

0
d3vb σT fb |�va − �vb|, (A1)

where

fb = n

(
m

2π kT

)3/2

e−mv2
b/(2kT ). (A2)

For a constant differential cross section, the collision frequency
is

wa(va) = σT n

(
m

2π kT

)3/2

2π

∫
dvb v2

b e−mv2
b/(2kT )

×
∫ 1

−1
|�va − �vb|. (A3)

Setting
√

m
2kT

vb = ζb, we have

wa(va) = 2σT n

(
2kT

m

)1/2 ∫ ∞

0
dζb ζ 2

b e−ζ 2
b

×
∫ 1

−1
dx |�ζa − �ζb|. (A4)

The angular integration yields
∫ 1

−1
dx |�ζa − �ζb| = 1

3 ζa ζb

((ζa + ζb)3 − (ζa − ζb)3). (A5)

The above expression can be further simplified in the cases

ζa > ζb for which
∫ 1

−1
dx |�ζa − �ζb| = 2

(
ζa + ζ 2

b

3 ζa

)
,

ζa < ζb for which
∫ 1

−1
dx |�ζa − �ζb| = 2

(
ζb + ζ 2

a

3 ζb

)
.

(A6)

These two expressions can be inserted into Eq. (A5) so that
the integration over ζb reads as

2

[∫ ζa

0
dζb ζ 2

b e−ζ 2
b

(
ζa + ζ 2

b

ζa

)

+
∫ ∞

ζa

dζb ζ 2
b e−ζ 2

b

(
ζb + ζ 2

a

ζb

)]
(A7)

Upon integration by parts, the first term of the above integration
results in two terms:

ζa

∫ ζa

0
dζb ζ 2

b e−ζ 2 = −1

2
ζa e−ζ 2

a + 1

2

∫ ζa

0
dζb e−ζ 2

b . (A8)

The second term, again using integration by parts, gives

1

ζa

∫ ζa

0
dζb ζ 3

b

(
ζb e−ζ 2

b

) = −ζ 3
a

2
e−ζ 2

a − 3ζa

4
e−ζ 2

a

+3

4

∫ ζa

0
dζb e−ζ 2

b . (A9)
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The sum of these two terms is

I1 = −4

3
ζ 2
a e−ζ 2

a

+
(

ζa + 1

2ζa

) ∫ ζa

0
dζb e−ζ 2

b − 1

2
e−ζ 2

a . (A10)

The last two terms in Eq. (A5) can be integrated to yield

I2 = 2

(∫ ∞

ζa

dζb ζ 3
b e−ζ 2

b + ζ 2
a

3

∫ ∞

ζa

dζb ζb e−ζ 2
b

)

= (
1 + ζ 2

a

)
e−ζ 2

a + ζ 2
a

3
e−ζ 2

a =
(

1 + 4

3
ζ 2
a

)
e−ζ 2

a . (A11)

The sum of I1 and I2 is

IT = I1 + I2 = e−ζ 2
a + (

2ζa + ζ−1
a

) ∫ ζa

0
dt e−t2

. (A12)

Therefore, the collision frequency for the hard sphere gas is
given by

wa(va) = n σT

√
2kT

π m

[
e−ζ 2

a + (
2ζa + ζ−1

a

) ∫ ζa

0
dt e−t2

]
.

(A13)
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