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We develop the relativistic theory of hydrodynamic fluctuations for application to high-energy heavy-ion
collisions. In particular, we investigate their effect on the expanding boost-invariant (Bjorken) solution of the
hydrodynamic equations. We discover that correlations over a long rapidity range are induced by the propagation
of the sound modes. Due to the expansion, the dispersion law for these modes is nonlinear and attenuated even in
the limit of zero viscosity. As a result, there is a nondissipative wake behind the sound front which is generated
by any instantaneous pointlike fluctuation. We evaluate the two-particle correlators using the initial conditions
and hydrodynamic parameters relevant for heavy-ion collisions at RHIC and LHC. In principle these correlators
can be used to obtain information about the viscosities because the magnitudes of the fluctuations are directly
proportional to them.
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I. INTRODUCTION

The success of relativistic hydrodynamics in describing
the fireball created in ultrarelativistic heavy-ion collisions
opened the possibility to study the properties of strongly
interacting matter at extremely high temperatures and densities
near thermal equilibrium. We know from lattice simulations
of quantum chromodynamics (QCD) that strongly interacting
matter at temperatures above the crossover at Tc ≈ 165 MeV
is a quark-gluon plasma [1,2]. Lattice QCD is able to pre-
dict stationary thermodynamic properties of the quark-gluon
plasma, such as the equation of state, but is presently unable
to make reliable predictions for dynamical properties, such as
transport coefficients.

A remarkably small value of the shear viscosity η in the
natural units of the entropy density s, 4πη/s < 2.5, has been
deduced from comparison of the results of relativistic viscous
fluid dynamics simulations with data from Au + Au collisions
at the Relativistic Heavy Ion Collider (RHIC) [3]. This result
is interesting because it is smaller by at least a factor of 5
than the value of η/s calculated in thermal perturbation theory
at leading order [4] and not far away from the value found
earlier in a large class of strongly coupled non-Abelian gauge
theories [5]. It would thus be desirable to confirm the inferred
experimental result for the shear viscosity by other methods.

Due to the fluctuation-dissipation theorem, the shear and
bulk viscosities control not only the dissipative properties
of a fluid in the limit of small velocity gradients but also
the magnitude of hydrodynamic fluctuations in the fluid.1

Thus it is interesting to explore whether fluctuations in the
density and flow velocity of the fluid can be used to deduce
the value of the shear viscosity from experimental data. The
purpose of our work is to lay the foundations for quantitative

1This fact is also represented by Kubo formulas, relating viscosities
to correlators of the stress-energy tensor, and underlies the approach
taken in Ref. [6] to study bulk viscosity.

investigations of this idea by identifying the sensitivity of
correlation observables to the hydrodynamic fluctuations.

Before proceeding, let us identify four major sources of
density fluctuations in relativistic heavy-ion collisions:

(i) Initial-state fluctuations. These are the result of quan-
tum fluctuations in the densities of the two colliding
nuclei and fluctuations of the energy deposition mech-
anism. They appear as event-by-event fluctuations in
the energy density and flow velocity distributions at the
onset of the hydrodynamic regime. These fluctuations
and their phenomenological ramifications have recently
been studied extensively [7–20] because they may
be responsible [21] for the angular correlations of
particle emission observed in heavy-ion experiments
[22–27]. The power spectrum of the final-state angular
correlations induced by initial-state fluctuations may
provide information about the speed of sound and the
shear viscosity of the matter produced in the heavy-ion
collision [10,28]. Longitudinal fluctuations and corre-
lations among the initial-state angular fluctuations have
been investigated [17,29]. The initial-state correlations
over large rapidity intervals have been subject to studies
in connection with the ridge phenomenon [30–39].

(ii) Hydrodynamic fluctuations. These are the result of
finite particle number effects in a given fluid cell. This
leads to local thermal fluctuations of the energy density
and flow velocity which propagate according to the
hydrodynamical equations. According to the general
theory of hydrodynamical fluctuations [40], the squared
amplitude of these fluctuations is proportional to the
viscosity. These fluctuations are the focus of our paper.

(iii) Fluctuations induced by hard processes. Energetic
partons, which have been scattered in the initial
collision of the two nuclei, can propagate through
the quark-gluon plasma where they lose energy. To
the extent that this energy is thermalized, it acts as
a source term for the hydrodynamical equations. The
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space-time shape of this source term has been calculated
in the weak- and strong-coupling limits [41–43]. If the
shear viscosity of the plasma is as low as inferred from
the RHIC data, these sources will excite Mach-cone-
shaped perturbations in the expanding fluid [44,45]. It
is presently not clear whether these lead to observable
phenomena after freeze-out [46].

(iv) Freeze-out fluctuations. Event-by-event fluctuations
may also be caused by finite particle number effects
during and after the freeze-out of the hydrodynamically
expanding fluid.

The main purpose of this article is to develop and apply
the relativistic theory of hydrodynamical fluctuations to the
evolution of the quark-gluon plasma formed in relativistic
heavy-ion collisions. Although the relativistic generalization
of the textbook [40] theory of hydrodynamic fluctuations has
been considered before in a different context [47,48], for
completeness we outline the derivation in Sec. II. We then
apply the resulting stochastic hydrodynamic equations to the
simplest example of a boost-invariant (Bjorken) flow. Our
purpose is to illustrate the application of the theory in a most
transparent, yet phenomenologically meaningful setting.

We are able to obtain a number of closed-form analytic
results which demonstrate important phenomenological conse-
quences of the theory. In particular, we find that hydrodynamic
fluctuations during the early phase of the expansion naturally
induce correlations across large rapidity intervals. It is usually
assumed that such correlations, observed in experiments, must
be produced before equilibration.

A full implementation of the framework we develop
here will eventually require numerical solution of stochastic
hydrodynamic equations in three spatial dimensions, which
we defer to future studies.

II. THEORY OF HYDRODYNAMIC FLUCTUATIONS

Hydrodynamics is an effective theory that describes the
long-wavelength and low-frequency space-time evolution of
the densities of a few conserved quantities such as energy,
momentum, electric charge, and baryon number. In the case
of spontaneous breaking of continuous symmetries it also
describes the evolution of the phases of order parameters.
These hydrodynamic variables are defined as average values
of the corresponding local, space-time dependent, coarse-
grained operators. The coarse-grained averaging is performed
over distances and times that are small compared to the
macroscopic scales of interest but large compared to the
microscopic scales, such as mean free paths and mean free
times between collisions. The hydrodynamic variables evolve
according to the deterministic equations which follow from
the conservation equations obeyed by the corresponding
operators.

Fluctuations and correlations in the hydrodynamic variables
can be characterized by averaged values of the products
of the operators at different space-time points. Although
the fluctuations themselves occur on microscopically short
space-time scales, these fluctuations are correlated not only
on short space-time scales but also on macroscopically large

scales. This can be understood as a result of the diffusion
or propagation of each fluctuation at any earlier time to
later times. Such propagation over long times and distances,
and thus the long-range behavior of correlation functions, is
described by hydrodynamics.

A. Hydrodynamic variables and equations

We consider a general case of a system with five conserved
quantities: energy, charge, and three momentum components.
In the case of QCD we can think of the charge being the baryon
number. The five equations are the conservation equations
for the energy-momentum tensor, ∂μT μν = 0, and the current
conservation equation ∂μJ

μ

B = 0.
The energy-momentum tensor and current densities for a

fluid in thermal, chemical, and mechanical equilibrium are

T
μν

ideal = −Pgμν + wuμuν ; J
μ

B = nBuμ (equilibrium).

(1)

Here P is the equilibrium pressure at given energy density ε

and baryon density nB, w = P + ε = T s + μBnB is the local
enthalpy density, μB is the baryon chemical potential, and uμ

is the local flow four-velocity. The metric gμν is (+,−,−,−).
The nonequilibrium corrections to these expressions, �T μν

and �J
μ

B , are proportional, at lowest order, to first derivatives
of the local quantities with coefficients given by the shear
viscosity η, bulk viscosity ζ , and thermal conductivity χ .
Explicit expressions may be found in textbooks [49,50]. Local
thermal fluctuations are described by the additional stochastic
terms Sμν and Iμν :

T μν = T
μν

ideal + �T μν + Sμν,

J
μ

B = nBuμ + �J
μ

B + Iμν. (2)

In the following we shall determine the correlation functions
of the stochastic terms. Since the source of the fluctuations is
local, these correlation functions are delta functions in space
and time. The amplitude of these source terms is fixed by the
fluctuation-dissipation theorem.

In practice, the idea is to consider the stochastic terms
as given functions of space and time and to solve the fluid
equations of motion to first order in it. Quantities which are
linear in the Sμν will average to zero, where the average is
taken over the ensemble of fluctuations. Quantities which are
quadratic in the Sμν may have nonzero average values which
we must determine.

The form of the hydrodynamic equations depend on the
definition of the local flow velocity uμ. There are two common
choices; we discuss each in turn, including the modifications
necessary to incorporate fluctuations.

B. Eckart approach

The Eckart approach is a convenient choice if we want to
compare with the nonrelativistic limit. In this approach uμ is
the velocity of baryon number flow. The dissipative terms must
satisfy the conditions �J

μ

B = 0 and uμuν�T μν = 0, the latter
following from the requirement that T 00 be the energy density

054906-2



RELATIVISTIC THEORY OF HYDRODYNAMIC . . . PHYSICAL REVIEW C 85, 054906 (2012)

in the local (baryon) rest frame. The most general form of
�T μν is

�T μν = �T μν
vis + �T

μν

heat, (3)

where

�T μν
vis = η (�μuν + �νuμ) + (

2
3η − ζ

)
hμν (∂ · u) (4)

is the viscous part and

�T
μν

heat = χ (hμαuν + hναuμ) qα (5)

is the heat conduction part. Here

hμν = uμuν − gμν (6)

is a projection tensor normal to uμ,

�μ = ∂μ − uμ (u · ∂) (7)

is a derivative normal to uμ, and

qα = −∂αT + T (u · ∂) uα (8)

is a four-vector whose nonrelativistic limit is q = ∇T . The
entropy current is

sμ = suμ + 1

T
uν�T μν. (9)

By using energy-momentum conservation, ∂μT μν = 0, the
divergence of the entropy current can be put in the compact
form

∂μsμ = �T μν∂μ (βuν) . (10)

For some purposes it is better to express this divergence as

∂μsμ =�T μν

[
1

2T

(
�μuν +�νuμ

)+ 1

2T 2
(uμqν +uνqμ)

]
.

(11)

Substituting the explicit form of �T μν into the above expres-
sion gives

∂μsμ = η

2T

[
(�μuν + �νuμ) + 2

3
hμν (∂ · u)

]2

+ ζ

T
(∂ · u)2 + χ

T 2
hμνqμqν. (12)

In the local rest frame this is

∂μsμ = η

2T

(
∂iu

j + ∂ju
i − 2

3
δij∇ · u

)2

+ ζ

T
(∇ · u)2 + χ

T 2
(∇T + T u̇)2 . (13)

The term T u̇ is a relativistic correction to ∇T , being smaller
by a factor of 1/c2 in physical units. All three dissipation
coefficients must be non-negative to ensure that entropy can
never decrease.

It is useful to decompose Sμν into a piece associated with
viscosity and another piece associated with heat conduction.
Overall we must require that uμuνS

μν = 0, just like �T μν , so
that in the local rest frame of the fluid T 00 equals ε = T 00

ideal.
Then if we are given Sμν with this property we can define

S
μν

heat = Sμαuαuν + Sναuαuμ (14)

and

Sμν
vis = Sμν − S

μν

heat. (15)

This decomposition is unique.
We follow Sec. 88 of Ref. [40] on hydrodynamic fluctu-

ations. In the general theory of quasistationary fluctuations,
presented in Ref. [51], one considers the set of equations

ẋa = −
∑

b

γabXb + ya, (16)

which gives the response of the set of variables xa to the driving
terms Xa and to the ya , which represent random fluctuations.
The time rate of change of the entropy is

Ṡ = −
∑

a

ẋaXa. (17)

In order for the probability distribution of fluctuating variables
to agree with the thermodynamic distribution given by eS , the
noise autocorrelations must be given by

〈ya(t1)yb(t2)〉 = (γab + γba)δ(t1 − t2). (18)

This general framework needs to be applied to the present
situation.

The time rate of change of the total entropy of the system
is

dS

dt
=

∫
d3x �T μν

[
1

2T
(�μuν + �νuμ)

+ 1

2T 2
(uμqν + uνqμ)

]
. (19)

Coarse graining is performed in the usual way with cell vol-
umes �V . Since viscosity and heat conduction are independent
physical processes, it is natural to make the identifications

ẋ1 → �T μν
vis , ẋ2 → �T

μν

heat. (20)

Comparing to the rate of entropy change allows us to deduce
that

X1 → − 1

2T
[�μuν + �νuμ]�V,

X2 → −
[

1

2T
(�μuν + �νuμ) + 1

2T 2
(uμqν + uνqμ)

]
�V.

(21)

Next, the Onsager coefficients γab can be determined:

γ11 = 2T

[
ηhμαhνβ + 1

2

(
ζ − 2

3
η

)
hμνhαβ

]
1

�V
,

(22)

γ22 = 2χT 2[hμαuνuβ + hνβuμuα]
1

�V
.

γ11 is made unique by the requirement that it vanish when any
of its indices is contracted with the four-velocity. γ12 and γ21

are zero as expected.
Different coarse-grained cells are independent. Then the

factor 1/�V goes over to a Dirac delta function in position
space. The correlation functions are easily written down (after
acknowledgment that they must have certain symmetries in
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the Lorentz indices). They are〈
Sμν

vis (x1)Sαβ
vis (x2)

〉 = 2T
[
η(hμαhνβ + hμβhνα)

+ (
ζ − 2

3η
)
hμνhαβ

]
δ(x1 − x2) (23)

and〈
S

μν

heat(x1)Sαβ

heat(x2)
〉 = 2χT 2[hμαuνuβ + hνβuμuα

+hμβuνuα + hναuμuβ]δ(x1 − x2)

(24)

and 〈
Sμν

vis (x1)Sαβ

heat(x2)
〉 = 0. (25)

When the viscous correlation function is evaluated in the local
rest frame it will vanish unless all of the indices are spatial.
With μν = ik and αβ = lm we get〈

Sik
vis(x1)Slm

vis(x2)
〉 = 2T

[
η(δilδkm + δimδkl)

+ (
ζ − 2

3η
)
δikδlm

]
δ(x1 − x2), (26)

which is exactly the expression in Ref. [40]. When the heat
correlation function is evaluated in the local rest frame it will
vanish unless each Sheat has one spatial and one temporal index.
With μν = 0i and αβ = 0j we get〈

S0i
heat(x1)S0j

heat(x2)
〉 = 2χT 2δij δ(x1 − x2), (27)

which also agrees with the corresponding expression in
Ref. [40]. Since these correlation functions reduce to the
known ones in the local rest frame, and since they are
constructed from tensors, they are obviously valid in any frame
of reference.

C. Landau-Lifshitz approach

The Landau-Lifshitz approach is the most convenient
and frequently used approach for ultrarelativistic heavy-ion
collisions. In this approach uμ is the velocity of energy
transport. The dissipative part of the energy-momentum tensor
satisfies uμ�T μν = 0, and �J

μ

B is not constrained to be zero.
In this case the most general form of the energy-momentum
tensor is

�T μν = �T μν
vis = η (�μuν + �νuμ) + (

2
3η − ζ

)
hμν∂ · u.

(28)

The baryon current is modified by

�J
μ

B = σT �μ (βμB) , (29)

where σ is the (baryon) charge conductivity. The modification
to the current satisfies uμ�J

μ

B = 0. This means that nB is the
baryon density in the local rest frame.

The entropy current in this approach is different, being

sμ = suμ − βμB�J
μ

B . (30)

Using baryon number conservation, ∂μJ
μ

B = 0, we can write

∂μsμ = ∂μ (suμ) + βμB∂μ (nBuμ) − �J
μ

B ∂μ (βμB) . (31)

By using energy-momentum conservation in the form
uμ∂νT

μν = 0, this can be written in a way convenient for

future use:

∂μsμ =�T μν
vis

[
1

2T
(�μuν +�νuμ)

]
+�J

μ

B [hμν�
ν(βμB)].

(32)

Compared to the Eckart frame there is no change in the viscous
part associated with shear and bulk viscosities. Therefore it can
again be written in the symmetric form

∂μsμ = η

2T

[
(�μuν + �νuμ) + 2

3
hμν(∂ · u)

]2

+ ζ

T
(∂ · u)2 + σT hμν�μ (βμB) �ν(βμB). (33)

The part due to charge conductivity seems to be different
than the part due to heat conduction in the Eckart frame,
but it is not. Using energy-momentum conservation in the
form hαμ∂νT

μν

ideal = 0, which is valid to zeroth order in the
dissipative coefficients and sufficient for this purpose, and
dP = sdT + nBdμB, one finds

�α(βμB) = w

nBT 2
hαβqβ. (34)

This can be inserted into the expression for the divergence of
the entropy current to obtain exactly the same expression as in
the Eckart frame, provided that the charge conductivity σ is
related to the heat conductivity χ , by

σ = χT (nB/w)2, (35)

which corresponds to the Franz-Wiedemann law.
The fluctuations Sμ = S

μν
vis and Iμ must satisfy the con-

ditions uμS
μν
vis = 0 and uμIμ = 0 for the reasons mentioned

above.
The time rate of change of the total entropy of the system

is

dS

dt
=

∫
d3x

{
�T μν

vis

[
1

2T

(
�μuν + �νuμ

)]

+�J
μ

B [hμν�
ν (βμB)]

}
. (36)

It is natural to make the identifications

ẋ1 → �T μν
vis , ẋ2 → �J

μ

B . (37)

Comparing to the rate of entropy change allows us to deduce
that

X1 → − 1

2T
[�μuν + �νuμ]�V,

(38)
X2 → −hμν�

ν (βμB) �V.

Next, the γab can be determined:

γ11 = 2T

[
ηhμαhνβ + 1

2

(
ζ − 2

3
η

)
hμνhαβ

]
1

�V
,

(39)

γ22 = σT hμν 1

�V
.

γ11 is made unique by the requirement that it vanish when any
of its indices is contracted with the four-velocity. γ22 is made
unique by the requirement that uμ�J

μ

B = 0. γ12 and γ21 are
again zero as expected.
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The correlation function for the viscous part,
〈Sμν

vis (x1)Sαβ
vis (x2)〉, is exactly the same as in the Eckart

approach. The mixture, 〈Sμν
vis (x1)Iα(x2)〉, is zero. The

correlation function for the baryon current is

〈Iμ(x1)I ν(x2)〉 = 2σT hμνδ(x1 − x2). (40)

When the baryon current correlation function is evaluated in
the local rest frame it will vanish unless both indices are spatial.
Then

〈I i(x1)I j (x2)〉 = 2σT δij δ(x1 − x2). (41)

This completes the generalization of the theory of hydrody-
namic fluctuations to the relativistic domain.

III. FLUCTUATIONS IN BOOST-INVARIANT
HYDRODYNAMICS

In this section we consider, as an example, application of
the stochastic hydrodynamic equations derived in the previous
section to the hydrodynamic fluctuations around Bjorken’s
boost-invariant solution of relativistic hydrodynamics [52].
Unlike the thermal fluctuations around a stationary equilibrium
solution, which are well known, the correlations induced by
hydrodynamic fluctuations on a nonstationary solution have
not been discussed in the literature to our knowledge. Although
this example is not entirely realistic or directly applicable
to data, it is semianalytic in nature and allows us to gain
experience with these fluctuations and with the issues that
may arise in more realistic, multidimensional calculations.

Here we shall consider only fluctuations of temperature (or
energy density) and flow velocity and neglect the effects of
the baryon number fluctuations. For highly relativistic heavy-
ion collisions at LHC and the top range of RHIC energies
this is a reasonable approximation because the smallness of
the baryon chemical potential μB suppresses mixing between
baryon charge and energy density fluctuations.

In this example we shall focus on longitudinal flow
fluctuations by integrating all densities over the coordinates
x and y perpendicular to the beam or z axis. This effectively
reduces the dimensionality of the problem to (1 + 1). Thus, our
example is different from the treatment in the existing literature
in at least in two aspects: (i) we consider hydrodynamic
fluctuations, not initial-state fluctuations; and (ii) we consider
longitudinal correlations, not azimuthal ones. We shall briefly
discuss transverse correlations in Appendix C but defer their
detailed study to further work.

It is convenient to view the Bjorken boost-invariant flow in
Bjorken coordinates, with proper time τ and spatial rapidity
ξ :

τ =
√

t2 − z2, ξ = tanh−1(z/t),
(42)

t = τ cosh ξ, z = τ sinh ξ.

The average values of hydrodynamic quantities depend only
on τ while fluctuations, after integration over the transverse
coordinates x and y, depend on both τ and ξ . The flow velocity
is given by uμ = xμ/τ + δuμ, where the last term denotes the
fluctuations. We express the fluctuations of the longitudinal

flow in terms of the rapidity variable ω, which we define as

u0 = cosh[ξ + ω(ξ, τ )], u3 = sinh[ξ + ω(ξ, τ )]. (43)

The local pressure depends on the temperature, which in turn
depends on both coordinates. The average value of T depends
only on the proper time, but fluctuations of T depend on both
coordinates. Therefore

T = T0(τ ) + δT (ξ, τ ),

P = P0(τ ) + δP (ξ, τ ), (44)

ε = ε0(τ ) + δε(ξ, τ ),

where the subscript 0 refers to the average value of the
function. Obviously, all variations are related to variations in
the temperature on account of the equations of state:

δε = cV (T )δT , δs = cV (T )

T
δT ,

δP = s(T )δT , δw = δε + δP . (45)

Here cV (T ) = dε/dT is the heat capacity per unit volume.
For the case of zero chemical potentials, as we are considering
here, cV (T ) = s(T )/vs

2(T ).
The noise term satisfies uμSμν = 0 and is symmetric in

its indices. Due to the reduced (1 + 1) dimensionality of this
model this condition allows us to express the noise in terms of
a single scalar function f as

Sμν = w(τ )f (ξ, τ )hμν, (46)

where hμν was defined in Eq. (6); the factor of w(τ ) is included
to make f dimensionless and to simplify subsequent formulas.
For the same reason the viscous term can be expressed in terms
of a single function

�T μν
vis = −(

4
3η + ζ

)
(∂ · u)hμν. (47)

The fluctuations mentioned above will be linear functionals
of f . Their average values will be zero since 〈f 〉 = 0. The
fluctuations in those observables will be determined by

〈f (ξ1, τ1)f (ξ2, τ2)〉 = 2T (τ1)

Aτ1w2(τ1)

[
4

3
η(τ1) + ζ (τ1)

]

× δ (τ1 − τ2) δ (ξ1 − ξ2) (48)

on account of Eq. (23). In this case the delta function in the
transverse coordinates δ (x⊥1 − x⊥2) is replaced with 1/A,
where A is the effective transverse area of the colliding nuclei
(which, for noncentral collisions, would depend on the impact
parameter in the usual way).

A. Hydrodynamic equations

The hydrodynamic equations of motion can now be written
out using any one of several standard methods. There are
two independent scalar equations of motion, each of which
is first order in derivatives. In the absence of fluctuations, one
of them is satisfied automatically due to the assumption of
boost invariance. When dissipation is neglected the nontrivial
equation simply expresses entropy conservation for ideal fluid
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flow,

d(τs)

dτ
= 0, (49)

and has the solution s(τ ) = s(τ0)τ0/τ , where τ0 is the initial
proper time (when thermalization first is achieved). Once dis-
sipation is included the equation becomes more complicated.
By defining

ν ≡ (4η/3 + ζ )/s, (50)

the equation is

d(τs)

dτ
= νs

τT
, (51)

meaning that the entropy per unit rapidity interval, τsA,
increases due to dissipation. The explicit solution requires
knowing the relationship between s and T , in other words
the equation of state, plus the temperature dependence of ν.
For example, using an equation of state with vs

2 = dP/dε =
constant, and with ν = constant, the solution is

T (τ ) =
[
T0 + vs

2γ 2
s ν

τ0

] (
τ0

τ

)vs
2

− vs
2γ 2

s ν

τ
, (52)

where γs = 1/
√

1 − vs
2. Compared to the inviscid case the

temperature decreases more slowly, assuming it starts from
the same value.

Now we account for fluctuations by adding noise. At this
point, we make no assumption about the form of the equation of
state or the temperature dependence of ν. The two independent
equations that follow are

τ
∂δε

∂τ
+ δw + wf − δ(νs)

τ
+

[
w − 2

νs

τ

]
∂ω

∂ξ
= 0 (53)

and

τ
∂

∂τ

[
ω

(
w − νs

τ

)]
+ 2ω

(
w − νs

τ

)

+ ∂

∂ξ

[
δP + wf − δ(νs)

τ

]
− νs

τ

∂2ω

∂ξ 2
= 0. (54)

In deriving these equations it is helpful to make use of
Eqs. (46) and (47). On account of the reduced dimensionality,
as reflected in Eqs. (46) and (47), Eqs. (53) and (54) follow
from the equations of motion of a perfect fluid (f = 0 and
ν = 0) by the replacements

P → P + wf − νs

τ

(
1 + ∂ω

∂ξ

)

while δε is unchanged. The fluctuations δP , δs, δε, and δw

can all be expressed in terms of a new dimensionless variable

ρ ≡ δs/s, (55)

so that δε = wρ and δP = vs
2wρ. Hence the pair of equations

(53) and (54) will determine the two independent dimension-
less variables ρ and ω.

Since the unperturbed solution is boost invariant and
independent of ξ , it is advantageous to use the Fourier

transform

X̃(k, τ ) =
∫ ∞

−∞
dξe−ikξX(ξ, τ ) (56)

for any variable X. Note that the wave number k is dimen-
sionless. With this transformation Eqs. (53) and (54) become
a pair of coupled first-order linear differential equations. The
solutions for the dimensionless variables can be expressed as

ρ̃(k, τ ) = −
∫ τ

τ0

dτ ′

τ ′ G̃ρ(k; τ, τ ′)f̃ (k, τ ′) (57)

and

ω̃(k, τ ) = −
∫ τ

τ0

dτ ′

τ ′ G̃ω(k; τ, τ ′)f̃ (k, τ ′). (58)

Note that ρ̃(k, τ0) = 0 and ω̃(k, τ0) = 0 so that there are no
fluctuations in the initial conditions, although they could easily
be incorporated (see Sec. IV C).

The problem reduces to finding the (dimensionless) Green
functions Gρ and Gω followed by quadrature. Averaging is
performed by use of

〈f̃ (k1, τ1)f̃ (k2, τ2)〉 = 2 ν(τ1)

Aτ1w(τ1)
δ (τ1 − τ2) 2π δ (k1 + k2) .

(59)

In k space the correlators are

〈 X̃(k1, τ1) Ỹ (k2, τ2)〉 = 2π

A
δ(k1 + k2)

∫ min(τ1,τ2)

τ0

dτ

τ 3

2 ν(τ )

w(τ )

× G̃X(k1; τ1, τ )G̃Y (k2; τ2, τ ), (60)

where X and Y can be either ρ or ω. The correlator in ξ space
is obtained by a Fourier transform (56).

For the most part we shall be interested in the equal-time
(proper-time) correlation function at the freeze-out time τf ,
which can be written as

CXY (ξ1 − ξ2; τf) ≡ 〈X(ξ1, τf ) Y (ξ2, τf ) 〉
= 2

A

∫ τf

τ0

dτ

τ 3

ν(τ )

w(τ )
GXY (ξ1 − ξ2; τf, τ ), (61)

where the Fourier transform of GXY (ξ ; τf, τ ) is given by

G̃XY (k; τf, τ ) ≡ G̃X(k; τf, τ )G̃Y (−k; τf, τ ). (62)

Thus

GXY (ξ1 − ξ2; τf, τ )

=
∫ ∞

−∞
dξGX(ξ1 − ξ ; τf, τ )GY (ξ2 − ξ ; τf, τ ). (63)

This equation shows directly that a fluctuation at point ξ at
time τ induces a correlation between points ξ1 and ξ2 at later
time τf via a hydrodynamically propagating response given by
Eqs. (57) and (58).

B. Inviscid case

For the sake of clarity we shall first present the case
where we neglect the contribution of dissipation (viscosity)
in the equations of motion and then later consider viscous
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corrections. Of course, we cannot simply set the viscosity to
zero since, according to the fluctuation-dissipation theorem
expressed by Eq. (23), we would also eliminate fluctuations.
However, if the viscosity is small and the flow is close to
ideal, as is the case for heavy-ion collisions, the contribution
of viscous terms to the correlators is limited to the vicinity of
singularities. These singularities correspond to unattenuated
propagation of sound shocks which the viscosity will smear
out, as we shall quantify in Sec. III F.

After Fourier transformation, Eqs. (53) and (54) become

τ
∂ρ̃

∂τ
+ ikω̃ + f̃ = 0, (64)

τ
∂ω̃

∂τ
+ (

1 − vs
2
)
ω̃ + ikvs

2ρ̃ + ikf̃ = 0. (65)

There are at least two different methods to solve these
equations, each having its own merits. They must, of course,
yield the same solution. We outline each in turn.

The pair of equations can be combined into a Langevin
equation for the two-component vector

ψ̃ =
(

ρ̃

ω̃

)
. (66)

The Langevin equation takes the form

τ
∂ψ̃

∂τ
+ Dψ̃ + ñ = 0, (67)

where the drift and noise terms are given by

D = D0 ≡
(

0 ik

ikvs
2 1 − vs

2

)
, ñ =

(
1

ik

)
f̃ . (68)

The solution to these equations for arbitrary noise and drift,
with the given initial conditions, can be written as

ψ̃(k, τ ) = −
∫ τ

τ0

dτ ′

τ ′ Ũ(k; τ, τ ′)ñ(k, τ ′), (69)

where Ũ is the evolution operator satisfying

τ
∂Ũ(k; τ, τ ′)

∂τ
+ D(k, τ )Ũ(k; τ, τ ′) = 0, (70)

subject to the condition Ũ(k; τ, τ ) = 1. Explicitly,

Ũ(k; τ, τ ′) = T exp

{
−

∫ τ

τ ′

dτ ′′

τ ′′ D(k, τ ′′)
}

, (71)

where T is the time ordering operator. Comparing Eq. (69)
to Eqs. (57) and (58) allows for determination of G̃ρ and G̃ω,
namely,

(
G̃ρ(k; τ, τ ′)
G̃ω(k; τ, τ ′)

)
= Ũ(k; τ, τ ′)

(
1

ik

)
. (72)

The second method is to eliminate one of the variables in
favor of the other to arrive at a single second-order differential

equation. Elimination of ω̃ results in

τ 2 ∂2ρ̃

∂τ 2
+ (

2 − vs
2
)
τ

∂ρ̃

∂τ
+ vs

2k2ρ̃

+
[
τ

∂f̃

∂τ
+ (

k2 + 1 − vs
2
)
f̃

]
= 0. (73)

Denote the two independent solutions to the homogeneous
equation, when f̃ = 0, by ρ̃1 and ρ̃2. The function G̃ρ is
constructed from a linear combination of the two homogeneous
solutions as

G̃ρ(τ, τ ′) = ã1(τ ′)ρ̃1(τ ) + ã2(τ ′)ρ̃2(τ ). (74)

The functions ã1 and ã2 are determined by substitution into
Eq. (73), with the result that

ã1(τ )ρ̃1(τ ) + ã2(τ )ρ̃2(τ ) = 1, (75)

ã1(τ )τ
∂ρ̃1(τ )

∂τ
+ ã2(τ )τ

∂ρ̃2(τ )

∂τ
= k2. (76)

Solution of this pair of algebraic equations solves the problem
of determining G̃ρ . The Green function for ω is then found by
substitution into Eq. (64) to yield

G̃ω(k; τ, τ ′) = iτ

k

∂G̃ρ(k; τ, τ ′)
∂τ

. (77)

Without an explicit equation of state and viscosities it is not
possible to be more specific.

C. Linear equation of state

To proceed further we now choose the equation of state
dP/dε = vs

2 with a constant speed of sound, vs = constant.
This is a reasonable approximation to QCD at high tempera-
ture. The response functions G̃ρ and G̃ω can then be found in
terms of elementary functions.

In the Langevin approach the drift matrix D is a constant,
and the evolution operator Ũ can be found explicitly in terms
of the eigenvalues λ± and eigenvectors ψ± of D. With

Dψ̃± = λ±ψ̃± (78)

we find (cf. Ref. [53])

λ± = α ± β, α = 1
2

(
1 − vs

2
)
, β =

√
α2 − vs

2k2,

(79)

and

ψ̃± = (ik, λ±). (80)

Then the evolution matrix Ũ can be determined as

Ũ(k; τ, τ ′) = (τ ′/τ )λ−

λ+ − λ−

(
λ+ −ik

−ikvs
2 −λ−

)

− (τ ′/τ )λ+

λ+ − λ−

(
λ− −ik

−ikvs
2 −λ+

)
. (81)
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The response functions are then given by Eqs. (72) as

G̃ρ(k; τ, τ ′) =
(

τ ′

τ

)α [
cosh(β ln(τ/τ ′))

+
(

α + k2

β

)
sinh(β ln(τ/τ ′))

]
, (82)

G̃ω(k; τ, τ ′) = ik

(
τ ′

τ

)α [
cosh(β ln(τ/τ ′))

−
(

α + vs
2

β

)
sinh(β ln(τ/τ ′))

]
. (83)

Note that β is real if |k| < (1 − vs
2)/2vs and is pure imaginary

if |k| > (1 − vs
2)/2vs, leading to exponential or oscillatory

behavior, respectively.
In the second method, the two solutions to Eq. (73) are

found to be

ρ̃1(τ ) =
(

τ0

τ

)α+β

, ρ̃2(τ ) =
(

τ0

τ

)α−β

. (84)

The corresponding coefficient functions to construct G̃ are

ã1(τ ′) = β − α − k2

2β

(
τ ′

τ0

)α+β

,

(85)

ã2(τ ′) = β + α + k2

2β

(
τ ′

τ0

)α−β

.

The response functions are identical to the ones given in
Eqs. (82) and (83).

D. Singularities and the sound horizon

It is instructive to analyze the singularities of Gρ(ξ ; τ, τ ′)
and Gω(ξ ; τ, τ ′). As we shall see, they reflect propagation of
sound along the z axis on top of the expanding medium. The
propagation of sound waves in the transverse directions has
been discussed in Ref. [8].

First, observe that G̃ρ and G̃ω are meromorphic functions of
k. The sole singularity is an essential singularity at infinity. As
k → ∞, β → ivsk whereas α remains a constant. Therefore,
when |ξ | > vs log(τ/τ ′), one can close the contour in the
Fourier integral over k around either the upper or lower large
semicircle (depending on the sign of ξ ) to show that

GX(ξ ; τ, τ ′) = 0 when |ξ | > vs ln(τ/τ ′). (86)

This means that there is a sound horizon which expands
logarithmically with proper time τ . This result is confirmed
by the observation that, in the local rest frame, the velocity
of the front, τdξ/dτ , equals vs. Arguing similarly, or using
Eq. (63) directly, one can show that the correlations do not
spread beyond the sound horizon:

GXY (ξ ; τ, τ ′) = 0 when |ξ | > 2vs ln(τ/τ ′). (87)

The singularities of GXY (ξ ; τ, τ ′) at the sound horizon can
be analyzed by considering the large-k asymptotics of its
Fourier transform. For example, since for large k

G̃ρ(k; τ, τ ′) → k

vs

(
τ ′

τ

)α

sin[vsk ln(τ/τ ′)], (88)

we can use Eq. (62) to find that

Gρρ(ξ ; τf, τ ) =
∫ ∞

−∞

dk

2π
eikξ G̃ρ(k; τf, τ )G̃ρ(−k; τf, τ )

→ 1

4vs
2

(
τ

τf

)2α

{δ′′[ξ − 2vs ln(τf/τ )]

+ δ′′[ξ + 2vs ln(τf/τ )] − 2δ′′(ξ )}, (89)

where ξ = ξ2 − ξ1. We see that the correlator is singular
whenever there is a noise source event at earlier time τ such
that a sound cone originating from it goes through both points
ξ1 and ξ2 at time τf . That source point is located midway
between the points ξ1 and ξ2 for the first two delta functions
in Eq. (89). For the last delta function, there are two source
events located a distance ln(τf/τ ) away on either side of the
coinciding points ξ1 = ξ2.

The second derivative of the delta function can be traced
back to the derivative of the force term f with respect to ξ .
This derivative is a consequence of momentum conservation.
The second derivatives of the delta function in Eq. (89) only
represent the leading singularities. There exist subleading
singularities, such as step functions, delta functions, and first
derivatives of delta functions. The prefactor (τ/τf )2α describes
the dilution of the fluctuation due to the expansion.

E. The wake

In a stationary medium, and with viscous effects neglected,
sound propagation would be the only source of correlations.
This is because the sound propagation would be nondispersive
with a linear relation between frequency and wave number. In
the expanding medium we are considering, sound propagation
also leads to a sound horizon but, unlike the stationary case,
the dispersion relation is nonlinear according to Eq. (79).
This leads to a wake behind the sound front, even without
dissipation.

Let us illustrate this using Eq. (82) to calculate the cor-
relator G̃ρρ(k; τf, τ ) = |G̃ρ(k; τf, τ )|2. The Fourier transform
Gρρ(ξ ; τf, τ ) of this function is singular as discussed in the
previous section. It is instructive to separate the most singular
part of this function by expanding Gρρ(k; τf, τ ) in powers of
1/k2 and keeping all terms regular at k = 0. This leads to

G̃sing
ρρ (k; τf, τ ) = (a1k

2 + b1) + (a2k
2+b2) cos [2vs ln(τf/τ )k]

+
(

a3k
2 + b3

k

)
sin (2vs ln(τf/τ ) k) , (90)

where the expansion coefficients an and bn are functions of
ln(τf/τ ). The Fourier transform of Eq. (90), G

sing
ρρ (ξ ; τf, τ ), is

a sum of step functions and its derivatives with singularities
located at ξ = 0 and ξ = ±2vs ln(τf/τ ). The most singular
term we have already written out in Eq. (89). The regular part

Greg
ρρ ≡ Gρρ − Gsing

ρρ (91)

is a continuous function of ξ , which is shown in Fig. 1. We see
that the correlations spread along the rapidity axis from ξ = 0
with time. In Appendix A we show that for long times this
process resembles diffusion, and for asymptotically large τf/τ

the function Gρρ is given by a Gaussian. However, one should
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FIG. 1. (Color online) The regular (continuous) part of the
correlator Gρρ(ξ ; τf, τ ) with vs

2 = 1/3. The correlator is shown for
ln(τf/τ ) = 2 (dashed line), ln(τf/τ ) = 4 (solid line), and ln(τf/τ ) = 6
(dotted line).

bear in mind that this diffusion is occurring in the absence of
any dissipative effects since we have neglected viscous terms
in the hydrodynamic equations at this stage.

In order to display the singular part G
sing
ρρ we convolute it

with the Gaussian

1√
2πσ

e−(ξ−ξ ′)2/2σ 2

of a small width σ 2 = 0.1. This simply replaces delta functions
with Gaussians and step functions with error functions. The
result is shown in Fig. 2.

It is useful to note that the correlator Gρρ(ξ ; τf, τ ) obeys
the sum rule ∫ ∞

−∞
dξ Gρρ(ξ ; τf, τ ) = 1, (92)

which is related to entropy conservation. Indeed, the time
independence of the integral in Eq. (92) is due to the
zero mode in Eq. (78): λ−(k = 0) = 0. The origin of the
zero mode can be understood using the equation of motion
(49). Expressing the fluctuation at k = 0 as δρ̃(k = 0, τ ) =
constant

∫
δs(ξ, τ ) τdξ , we see that it is proportional to the

fluctuation of the total entropy whose relaxation rate must
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FIG. 2. (Color online) The singular part of the correlator
Gρρ(ξ ; τf, τ ) with vs

2 = 1/3 and ln(τf/τ ) = 4. The function is
smeared by a Gaussian of variance σ 2 = 0.1 in order to show the
nature of the singularities.

vanish in the inviscid case. It is also interesting to note that at
asymptotically large times, τf/τ � 1, the sum rule is saturated
by the regular part of Gρρ since the singular part is suppressed
by a factor (τ/τf )2α; see Eq. (89) and Appendix A.

F. Viscosity and taming of the singularities

We now include the effects of viscosity on the space-time
evolution of the system. In general, viscosity acts to smooth
out gradients in temperature and flow velocity. Even if the
viscosity is very small and its effects on the solutions to the
equations of motion can mainly be neglected, the effect of
viscosity on the correlation functions will still be important
near the sound horizon singularities discussed in the previous
two sections. The goal of this section is to demonstrate how
the effect of viscosity smoothes out these singularities. The
equations to be solved now are (53) and (54). For simplicity,
and for illustrative purposes, we consider a constant value of
ν as well as a linear equation of state, vs

2 = constant.
As in the inviscid case, we combine Eqs. (53) and (54) into

a two-component matrix Langevin equation. It is convenient
to use a rescaled variable ω (1 − ν/T τ ) instead of ω. The drift
operator now has the form D = D0 + D1 with D0 being given
by Eq. (68) and the viscous contribution (with terms higher
order in ν/T τ being neglected) being

D1 = ν

T τ

(
vs

2 −ik

−ik 1 + vs
2 + k2

)
. (93)

To see the effect of viscosity more clearly it is convenient to
rewrite the evolution operator in Eq. (71) as

Ũ(k; τ, τ ′) = (τ0/τ )D0 T exp

{
−

∫ τ

τ ′

dτ ′′

τ ′′ DI (τ ′′)
}

(τ ′/τ0)D0 ,

(94)

where we defined the matrix DI as

DI (τ ′′) = (τ ′′/τ0)D0 D1(τ ′′) (τ0/τ
′′)D0 . (95)

Note that DI = O(ν). To leading order in ν (in the exponent)
we can use the Baker-Campbell-Hausdorff formula to remove
the operation of time ordering in Eq. (94), which greatly
simplifies calculations. The matrix Ũ can be then calculated
through a lengthy matrix algebra.

In order to evaluate the effect of dissipation on the delta-
function singularities in ξ space let us consider the regime
k � 1. It is important to note that this regime is compatible
with hydrodynamic limit if viscosity (more precisely, ν/T τ ) is
sufficiently small, because viscous corrections are suppressed
by νk2/T τ .

In this regime the matrix algebra simplifies and can be
performed more easily. Keeping only the leading terms in
Eq. (93) we obtain

D0 ≈
(

0 ik

ikvs
2 0

)
, D1 ≈ ν

T τ

(
0 0

0 k2

)
≡ νk2

2T τ
(1−σ 3),

(96)

where σ 3 denotes the third Pauli matrix. We next note that σ 3

anticommutes with D0 in Eq. (96), which implies that Eq. (95)
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can be written as

DI (τ ′′) ≈ ν k2

2T (τ ′′)τ ′′ [1 − σ 3 (τ0/τ
′′)2D0 ]. (97)

Since the eigenvalues of D0 are pure imaginary (±ikvs), the
second term in brackets in Eq. (97) is an oscillating function
of ln τ ′′. Upon integration over τ ′′ in Eq. (94) the oscillating
terms will be suppressed by a power of 1/k, and the leading
contribution, of order k2, will be proportional to the unit matrix,
an important simplification.

The integral needed then is

H (τ, τ ′) ≡
∫ τ

τ ′

dτ ′′

τ ′′
1

T (τ ′′)τ ′′ = 1

2α

[
1

T (τ ′)τ ′ − 1

T (τ )τ

]
,

(98)

where we used T = T0(τ0/τ )vs
2

and α defined in Eq. (79).
Thus we can write

Ũ(k; τ, τ ′) ≈ (τ0/τ )D0 e−νH (τ,τ ′)k2/2 (τ ′/τ0)D0

= e−νH (τ,τ ′)k2/2 Ũ0(k; τ, τ ′), (99)

where Ũ0(k; τ, τ ′) = (τ ′/τ )D0 is the evolution matrix in the
inviscid case. We see that the effect of viscosity is to dampen
the oscillatory (or constant) behavior at large k as long as τ 
=
τ ′. The overall result is that both G̃ρ(k; τ, τ ′) and G̃ω(k; τ, τ ′)
are to be multiplied by the Gaussian function e−νH (τ,τ ′)k2/2.
The effect of viscosity is thus simply a diffusion in space-time
rapidity whose proper-time dependence is controlled by the
function H (τ, τ ′).

Next we turn to the second method for solving the same
problem. In the limit of small viscosity, ν � τT , Eqs. (53)
and (54) in k space become

τ
∂ρ̃

∂τ
+ ikω̃ + f̃ = 0, (100)

τ
∂ω̃

∂τ
+ (

1 − vs
2
)
ω̃ + ik

(
vs

2ρ̃ + f̃
) + νk2

τT
ω̃ = 0. (101)

In the limit ν = 0 these reduce to exactly the same equations
as studied earlier. The only new term is the last one in the
second equation above on account of the fact that, even though
ν/τT is assumed to be small, large enough values of k will
make it important. Upon eliminating ω̃ one arrives at a single
second-order differential equation

τ 2 ∂2ρ̃

∂τ 2
+

(
2 − vs

2 + νk2

τT

)
τ

∂ρ̃

∂τ
+ vs

2k2ρ̃

+
[
τ

∂f̃

∂τ
+ (

k2 + 1 − vs
2
)
f̃

]
= 0. (102)

Compared to Eq. (73) there is only one new term.
To find the solutions to the homogeneous equation (f̃ = 0)

it is convenient to change variables from τ to x = (τ0/τ )2α .
This leads to the second-order differential equation

∂2ρ̃

∂x2
− νk2

2ατ0T0

∂ρ̃

∂x
+ vs

2k2

4α2x2
ρ̃ = 0. (103)

The two independent solutions to this equation are

ρ̃1 ∼ √
x exp

(
νk2x

4ατ0T0

)
Kβ/2α

(
νk2x

4ατ0T0

)
, (104)

ρ̃2 ∼ √
x exp

(
νk2x

4ατ0T0

)
Iβ/2α

(
νk2x

4ατ0T0

)
. (105)

For νk2/τT � 1, the arguments of both the Bessel functions
and the exponential are small. Keeping the lowest order terms
in both functions we obtain the same result in the inviscid case
as given by Eq. (84). When k is sufficiently large, νk2/τT

may not be small. In this regime, however, the index of
the Bessel functions becomes large, β/2α ∼ O(k), and the
Bessel function can still be approximated2 as Kμ(z) ∼ z−μ,
Iμ(z) ∼ zμ. Therefore the solutions are approximately (the
normalization does not matter)

ρ̃1(τ ) =
(

τ0

τ

)α+β

exp

(
νk2

4ατT (τ )

)
,

(106)

ρ̃2(τ ) =
(

τ0

τ

)α−β

exp

(
νk2

4ατT (τ )

)
.

These are the same as the inviscid case, Eqs. (84), with an
additional exponential factor.

The Green function G̃ρ is constructed in exactly the same
way as in the inviscid case, Eqs. (74)–(76), because the
homogeneous term in f̃ is unchanged. This now leads to

ã1(τ ′) = 1

2β

[
β − α − k2 − νk2

2τ ′T (τ ′)

] (
τ ′

τ0

)α+β

× exp

(
− νk2

4ατ ′T (τ ′)

)
,

ã2(τ ′) = 1

2β

[
β + α + k2 + νk2

2τ ′T (τ ′)

] (
τ ′

τ0

)α−β

× exp

(
− νk2

4ατ ′T (τ ′)

)
. (107)

The result for G̃ρ is

G̃ρ(k; τ, τ ′) =
(

τ ′

τ

)α [
cosh[β ln(τ/τ ′)]

+ 1

β

(
α + k2 + νk2

2τ ′T (τ ′)

)
sinh[β ln(τ/τ ′)]

]

× exp

[
−νk2

4α

(
1

τ ′T (τ ′)
− 1

τT (τ )

)]
. (108)

When ν = 0 this reduces to the inviscid case represented by
Eq. (82). In the regime νk2/τT � 1 the term proportional
to ν in front of the sinh is negligible and this result coincides
with Eqs. (98) and (99). Equation (108) is, however, somewhat
more accurate, since it does not assume νk2/τT � 1, which
is reflected in the coefficient of the hyperbolic sine.

2This requires only that z2 � μ; i.e., the argument of the Bessel
function does not have to be small if the index is large.
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G. Example of other sources of smoothing of singularities

The sound horizon singularities would be smeared if
the delta-function correlator for the noise in Eq. (48) were
replaced by a narrowly peaked regular function. Indeed, the
origin of the noise is the fluctuation on a microscopic scale
whose correlation length, small on the hydrodynamic scale,
is nonzero. Here we shall consider the effect of the finite
correlation length of the noise. Although the introduction of
a finite correlation length is physically intuitive, it should be
borne in mind that from the point of view of hydrodynamics
it corresponds to inclusion of some, but not all, higher-order
corrections in the systematic gradient expansion. We shall use
this effect in the next section to estimate possible sensitivity
of our results to higher-order hydrodynamic corrections.

The most microscopically sensible replacement for the delta
functions is one that is exponential in time and in space.
When distances are small the time and space intervals can
be expressed in terms of Bjorken coordinates as �t ≈ �τ

and �z ≈ τ�ξ . For simplicity, we keep the delta function
δ(τ2 − τ1) in Eq. (48) but replace δ(ξ2 − ξ1)/τ1 with an
exponential

δ(�ξ )

τ
→ e−τ |�ξ |/λ(τ )

2λ(τ )
, (109)

where λ(τ ) denotes the correlation length, which is a function
of proper time. The net result is to multiply the right-hand side
of Eq. (59) by

τ 2
1

τ 2
1 + λ2(τ1)k2

1

.

It is natural to assume that λ(τ ) = cλ/T (τ ). We can make
a simple estimate of the constant cλ by assuming that λ is
given by the average interparticle distance at temperature T .
For gluons plus three flavors of massless quarks the particle
density is

n = 127ζ (3)

4π2
T 3, (110)

which gives cλ = n−1/3T = 0.637. The implications of this
choice will be investigated in the next section.

IV. PHENOMENOLOGY

In order to make contact with experiment we need to
consider how the fluctuations are frozen out. In general,
hydrodynamic freeze-out occurs when the particles can no
longer maintain local thermal equilibrium and therefore begin
free-streaming. An often used approach in statistical models is
to assume that this happens at some fixed temperature or energy
density. Each fluid element has a thermal distribution in its
own rest frame, and this must be boosted according to its flow
velocity to obtain the particle distributions in any fixed frame of
reference. This approach has a long history; see, for example,
Refs. [54–56]. A somewhat more sophisticated approach to
the freeze-out problem is represented by the Cooper-Frye
formula [57] (but see also [58–60]). This formula describes the
distribution of emitted particles as an integral over a freeze-out
hypersurface �f , usually chosen to coincide with a surface

of constant temperature Tf (isothermal freeze-out) of the
expanding fluid. In the Bjorken expansion scenario this surface
is also a τf = constant surface, but this equivalence holds only
for averaged quantities. The fluctuations of temperature mean
that the conditions Tf = constant and τf = constant differ. In
this paper we shall choose the simplest of these two conditions,
isochronous freeze-out with τf = constant, which has been
used for the study of fluctuations in Ref. [61]. The alternative
approach was pursued by Staig and Shuryak in their treatment
of initial-state fluctuations in the transverse space [10]. Both
approaches offer only a schematic representation of freeze-out,
but they are sufficient for our illustrative purposes. We leave
the more sophisticated implementations of freeze-out to future
studies.

A. Freeze-out and rapidity smearing

Let us consider the phase-space density of particles of
species s with degeneracy ds . In equilibrium it is given by

dNs

d3p
= ds

d3x

(2π )3
fs(x, p), (111)

with

fs(x, p) = (e(E−μs )/T ± 1)−1, (112)

where E is the energy of the particle in the local rest frame
of the matter with local temperature T and chemical potential
μs . For simplicity we will neglect any chemical potentials
and quantum statistics reflected by the ±1 in the distribution
function. For the purpose of obtaining numerical values we
shall consider charged pions, ds = 2.

We are considering freeze-out on a hypersurface of con-
stant Bjorken proper time τ = τf . With a locally fluctuating
longitudinal flow velocity of the matter, it is useful to
introduce four-velocities describing the motion of the various
reference frames. We shall use the laboratory frame to express
coordinates of these vectors (unless noted otherwise). The
local Bjorken frame at any given point is then defined by the
four-velocity

Uμ = (cosh ξ, 0⊥, sinh ξ ). (113)

The fluctuating four-velocity of the local fluid element is

uμ = [cosh(ξ + ω), u⊥, sinh(ξ + ω)]. (114)

A manifestly Lorentz-invariant expression for the number of
emitted particles is obtained by considering the particle current
through the freeze-out hypersurface. The particle current
corresponding to the distribution in Eq. (111) is given by

jμ
s (x) =

∫
d3p

(2π )3

pμ

E
dsfs(x, p), (115)

where E = p0 is the on-shell energy associated with particle
momentum p. The freeze-out hypersurface is characterized
by a four-vector normal to it giving the three-dimensional
volume element d3σμ. The Lorentz-invariant form of the
Cooper-Frye formula [57] for the phase space distribution of
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emitted particles then takes the form

E
dNs

d3p
=

∫
�f

d3σμ pμ θ (σ̂ · p) ds fs(x, p), (116)

where σ̂ is the unit four-vector normal to the freeze-out
hypersurface, and the step function ensures emission in the
forward or outward direction. The argument of the step
function is always positive for isochronous freeze-out.

The product pμ d3σμ is Lorentz invariant and can be
evaluated in any frame. For the isochronous freeze-out con-
sidered here the freeze-out hypersurface is given by constant
τ = τf . Therefore σ̂ = U , as given in Eq. (113). Because we
are interested in the momentum distribution of the emitted
particles in the laboratory, the product is most conveniently
evaluated in the laboratory frame. With

pμ = (m⊥ cosh η, p⊥,m⊥ sinh η), (117)

where η is the kinematic rapidity of the particle and m⊥ =√
p2

⊥ + m2, one obtains

d3σμ pμ = τdξd2x⊥Uμpμ = τfdξd2x⊥m⊥ cosh(η − ξ ).

(118)

It is instructive to also evaluate the expression in the comoving
frame of the fluid element (see Appendix B).

By using the Cooper-Frye formula and the results just
obtained, the rapidity distribution of particles in the laboratory
frame is

dNs

dη
= dsAτf

(2π )3

∫
dξ cosh(η − ξ )

×
∫

d2p⊥m⊥e− cosh(η−ξ−ω)m⊥/T , (119)

where the integration over x⊥ has contributed the transverse
area A, and ω and T are functions of ξ , because the flow
velocity and the temperature fluctuate. The energy of the
particle in the comoving frame is

Ē = uμ pμ = m⊥ cosh(η − ξ − ω) − u⊥· p⊥, (120)

and we neglected contributions of the fluctuating transverse
velocity as elsewhere in this paper.

The integration over the transverse momentum can be easily
done to give

dNs

dη
= dsAτf

(2π )2

∫ ∞

−∞
dξ cosh(η − ξ )

× T 3

cosh3(η − ξ − ω)
�

(
3,

m

T
cosh(η − ξ − ω)

)
,

(121)

where �(3, x) = (2 + 2x + x2)e−x denotes the incomplete
Gamma function.

Fluctuations in dNs/dη are caused by fluctuations in
temperature T (around Tf) and flow rapidity ω. Starting from

Eq. (119) and expanding to linear order in the fluctuations,

e− cosh(η−ξ−ω)m⊥/T

= e− cosh(η−ξ )m⊥/Tf

[
1 + m⊥

Tf

(
δT

Tf
cosh(η − ξ )

+ω sinh(η − ξ )

)
+ · · ·

]
, (122)

and integrating over p⊥, we find

δ

(
dNs

dη

)
= dsAτfT

3
f

(2π )2

∫
dξ

ρ vs
2 + ω tanh(η − ξ )

cosh2(η − ξ )
�

×
(

4,
m

Tf
cosh(η − ξ )

)
, (123)

where �(4, x) = (6 + 6x + 3x2 + x3)e−x and we made use of
the dimensionless variable ρ introduced in Eq. (55):

δT /T = vs
2δs/s = vs

2ρ. (124)

The rapidity correlator can then be written as
〈
δ
dNs

dη1
δ
dNs

dη2

〉
=

(
dsAτfT

3
f

(2π )2

)2 ∫
dξ1

∫
dξ2

×
∑

X = ρ, ω

Y = ρ, ω

FX(η1 − ξ1)FY (η2 − ξ2)

×CXY (ξ1 − ξ2; τf ), (125)

where the smearing functions are given by

Fρ(x) = vs
2

cosh2(x)
�

(
4,

m

Tf
cosh(x)

)
, (126)

Fω(x) = tanh(x)

cosh2(x)
�

(
4,

m

Tf
cosh(x)

)
, (127)

while CXY (ξ1 − ξ2; τf ) = 〈 X(ξ1, τf )Y (ξ2, τf ) 〉 is the equal-
time rapidity correlator defined in Eq. (61). It is convenient
to use Fourier transforms of those functions, in terms of which

〈
δ
dNs

dη1
δ
dNs

dη2

〉
=

(
dsAτfT

3
f

4π2

)2 ∫
dk

2π
eik�η

×
∑

X = ρ, ω

Y = ρ, ω

F̃X(−k)F̃Y (k)C̃XY (k; τf),

(128)

where �η = η1 − η2.

B. Normalization

Since CXY ∼ 1/A [see Eq. (60)], it is convenient to divide
by the event average of dN/dη given by Eq. (121) with ω = 0,〈

dNs

dη

〉
= dsAτfT

3
f

4π2

∫
dx

cosh2(x)
�

(
3,

m

Tf
cosh(x)

)
, (129)

in order to remove the dependence on the transverse area A

of the system. Collecting all factors in front of the integrals
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FIG. 3. (Color online) The correlation function K(�η) in the
normalized correlator of dN/dη fluctuations in Eq. (135). Viscosity
is not included.

in Eqs. (61), (128), and (129), one can write the normalized
correlator as〈

δ
dNs

dη1
δ
dNs

dη2

〉 〈
dNs

dη

〉−1

= 45ds

4π4Neff(T0)

ν

Tfτf

(
T 2

0

T 2
f

)vs
−2−2

×K(�η), (130)

where we defined the effective number of bosonic species
such that s(T ) = 2π2Neff(T ) T 3/45 and T0 ≡ T (τ0). We also
defined the dimensionless function K(�η) in such a way that
most of the dependence on T0 for the long-range tail is in the
prefactor (by using the observations at the end of Sec. III E).

Assuming that reasonable values for the parameters are
vs

2 = 1/3, τf = 10 fm, Tf = 150 MeV, T0 = 600 MeV, Neff =
47.5 (counting gluons, and quarks), and ν = 1/3π , we
plot the normalized correlator (130) in Figs. 3 and 4. To
determine K(�η) we apply the freeze-out (thermal) smearing
described by Eq. (128) in both plots under the assumption
that the observed particles are pions. To evaluate the effect of
viscosity, we compare Fig. 3, which neglects viscosity, with
Fig. 4, which includes viscous broadening as described by
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FIG. 4. (Color online) The correlation function K(�η) in the
normalized correlator of dN/dη fluctuations in Eq. (135). Viscosity
is included. Solid and dashed lines correspond to 4πη/s = 1 and
3, respectively. Note that the overall magnitude of the fluctuation
correlator in Eq. (130) is proportional to the value of viscosity times
the value of the function K(�η).
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FIG. 5. (Color online) The correlation function K(�η) in the
normalized correlator of dN/dη fluctuations in Eq. (135). Viscosity
is included, as well as the source correlator broadening discussed in
Sec. III G.

Eqs. (98) and (99). The factor in front of K(�η) in Eq. (130)
is approximately 1.1 × 10−3 for our choice of parameters.
Combining this with Fig. 4, we conclude that Eq. (130) predicts
correlations of the order of 10−3. Finally, to estimate the effect
of higher-order hydrodynamic corrections we consider the
noise correlator with nonzero correlation length as discussed
in Sec. III G. Adding this effect on top of viscous broadening
we obtain Fig. 5. The effect is visible but does not change the
main features.

The important conclusion from Eq. (130) and Figs. 3–5
is that the absolute magnitude of the correlation, for given
freeze-out parameters, is proportional to the relative viscosity
ν and to a power of the initial temperature T0.

C. Contribution of initial-state fluctuations

Since the fluctuation equations (67) are linear and the noise
is uncorrelated with initial conditions, the contribution of the
initial-state fluctuations to the correlator, Eq. (61), is additive
and is given by

C̃XY (k; τf)
ini =

∑
X′Y ′

ŨXX′ (k; τ, τ0)C̃X′Y ′(k; τ0)ŨYY ′(−k; τ, τ0).

(131)

These correlations, unlike the purely hydrodynamic corre-
lations discussed so far, depend also on the physics deter-
mining the initial-time correlator CXY (ξ ; τ0). Calculation of
CXY (ξ ; τ0) is beyond hydrodynamics; it could be done from the
traditional Glauber approach or from the color glass conden-
sate (CGC) description of the initial state. However, once the
initial correlator CXY (ξ ; τ0) is given, the subsequent evolution
is governed by hydrodynamics according to Eq. (131). Since
hydrodynamic evolution is the main subject of this paper, we
shall assume a generic form of the initial correlator CXY (ξ ; τ0),
leaving its calculation beyond the scope of the paper. It is
reasonable to assume that this correlator is local, meaning that
C̃XY (k; τ0) is a polynomial in k. We shall also assume, for
simplicity, the following matrix form for it, which obeys the
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basic symmetry properties of the correlator:

C̃XY (k; τ0) ≡ 〈X(k; τ0) Y (−k; τ0) 〉 = c0

A

(
1 −ik

ik k2

)
XY

,

(132)

where the factor 1/A is due to the locality of the correlator
in the transverse space Eq. (60) and where we defined the
dimensionful coefficient c0 which parametrizes the absolute
strength of the correlator. Substitution into Eq. (131) results in

CXY (k; τ )ini = c0

A
GXY (k; τ, τ0), (133)

where we used the definition of GXY in Eqs. (62) and (72).
Up to the constant factor c0, the Fourier transform of this
correlator has been already discussed and its matrix element
Gρρ has been plotted in Sec. III E.

The contribution of such initial-state fluctuations to the two-
particle rapidity correlation, similarly to Eq. (128), is given by

〈
δ
dNs

dη1
δ
dNs

dη2

〉ini

= c0A

(
dsτfT

3

4π2

)2 ∫
dk

2π
eik�η

×
∑

X = ρ, ω

Y = ρ, ω

F̃X(−k)F̃Y (k)G̃XY (k; τf, τ0).

(134)

Collecting the factors in front of the integrals in Eqs. (129) and
(134) we can write the contribution of initial-state fluctuations
to the normalized correlator as〈

δ
dNs

dη1
δ
dNs

dη2

〉ini 〈
dNs

dη

〉−1

= c0
dsτfT

3
f

4π2
K ini(�η). (135)

Here we defined the function K ini, which we plot in Fig. 6
for the same choice of the parameters as in Sec. IV B.
The coefficient in front of K ini(�η) in Eq. (134) is 8.5 ×
10−3(c0/1 GeV2) for that choice of parameters. Assuming that
CGC initial conditions give rise to c0 of the order charac-
teristic saturation scale c0 ∼ Q2

sat ∼ 1 GeV2 we conclude that
such initial-state fluctuations produce correlations of similar
magnitude to those due to purely hydrodynamic fluctuations.
Of course, a more detailed analysis of initial conditions is
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FIG. 6. (Color online) The correlation function K ini(�η) in the
normalized correlator in Eq. (135). Viscosity is included.

needed before a quantitative comparison with experiment can
be made.

V. SUMMARY AND CONCLUSIONS

In this paper we explored the contribution of local hy-
drodynamic fluctuations to the event-by-event fluctuations of
particles emitted from relativistic heavy-ion collisions. Unlike
the contribution of initial-state fluctuations, which have been
the main focus of the studies so far and whose magnitude is
determined by quantum pre-equilibrium dynamics, the magni-
tude of the fluctuations we discussed here is directly related to
the hydrodynamic properties of the locally equilibrated matter.
In the framework of relativistic viscous hydrodynamics, owing
to the fluctuation-dissipation theorem, the amplitude of these
fluctuations is governed by the viscosities. This offers a
possibility to measure, or constrain, the viscosity of the
strongly coupled quark-gluon plasma independent from the
traditional analysis of elliptic flow.

We observed two remarkable features of the fluctuation
correlator. The first is that the correlations spread in rapidity
space logarithmically with Bjorken proper time, with velocity
determined by the speed of the sound in a static medium.
This behavior is similar to the circles observed in Ref. [9]
for correlations in transverse space induced by initial-state
fluctuations. The second is that we find that the correlations are
not limited to the sound cone but are accompanied by a wake
behind the sound front, which can be traced to the nonlinearity
of the sound mode dispersion relation in the medium. This
diffusion-like wake is a nondissipative process.

At the lowest order in the gradient expansion, the source
of the fluctuations is white noise, which naively leads to
singularities in the correlation functions of the density and
of the flow velocity. The singular behavior is tamed, in part, by
the viscous terms in the hydrodynamic equations, as well as by
the thermal smearing when one calculates final-state particle
distributions. For completeness, we also considered the effect
of replacing the white noise by colored noise with a thermal
correlation function.

We explored the phenomenological consequences of hy-
drodynamic fluctuations in the idealized scenario of boost-
invariant longitudinal flow with a homogeneous transverse
profile. In the Cooper-Frye approach to freeze-out, the cor-
relation function of the particle yield, dN/dη, as a function
of the kinematic rapidity difference �η is obtained from the
temperature and flow velocity correlation functions in Bjorken
space rapidity ξ by a thermal smearing.

Two features of the particle number correlation function
deserve special mention. One is a strong peak at �η = 0,
which receives contributions from hydrodynamic fluctuations
during the entire course of the expansion. Its height and width
are influenced by both the thermal smearing at freeze-out
and the viscous smearing during the hydrodynamic phase
(see also [62]).

The other noteworthy feature is a broad structure at
larger rapidity differences, extending up to the sound horizon
�ηmax = 2vs ln(τf/τ0), which is caused by the hydrodynamic
propagation of the noise followed by a slower diffusive wake
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generated at early times until thermal freeze-out. Depending
on the precise values of the sound velocity and the start and end
of the hydrodynamic phase, this implies that particle number
correlations extending over significantly more than one unit
of rapidity can be generated during the hydrodynamic phase.
Correlations over large rapidity intervals have been observed
in heavy-ion experiments [30,31] and have been subject to
numerous theoretical studies [32–39]. It would be interesting
to investigate to what extent the hydrodynamic fluctuations
contribute to this phenomenon.

Let us emphasize again the main point of this paper. It has
been clear for some time that the profile of the particle number
correlations depends on the values of the shear (and bulk)
viscosity and of the sound velocity. As others have already
argued [8,28] this is true for azimuthal correlations generated
by fluctuations in the hydrodynamic initial conditions over the
transverse plane. Our results confirm this for the longitudinal
space correlations. What distinguishes hydrodynamic correla-
tions induced by local thermal fluctuations is that their absolute
magnitude is also determined by hydrodynamic properties
of the medium. Thus our findings amplify the opportunities
offered by measured particle number fluctuations to constrain
the fluid dynamical properties of the hot matter created in
relativistic heavy-ion collisions.
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APPENDIX A: LONG-TIME LIMIT

Here we shall determine the behavior of the correlator
Gρρ(ξ ; τf, τ ) in the limit of asymptotically large time sepa-
ration τf/τ � 1. We shall be able to obtain a closed analytical
expression for the correlator in this limit. Unfortunately,
for realistic values of τf/τ relevant for heavy-ion collisions
this expression is still a poor approximation. However, it is
still useful, as analytic solutions often are, in demonstrating
conceptually important features of the fluctuation correlator.

In the limit we consider the behavior of the correlator
is determined by the modes with the slowest rate given by
eigenvalues (79). We observe that the slowest mode is λ−(k)
at small k. This mode relaxes arbitrarily slowly as k → 0 like

λ− = vs
2γ 2

s k2 + O(k4), (A1)

where γs = 1/
√

1 − vs
2, while the mode λ+ = 1 − vs

2 +
O(k2). Thus in the limit τ/τ ′ � 1 the longest lingering modes
are smooth modes corresponding to the eigenvalue λ− given

by ψ̃− in Eq. (80). For such a mode

ω̃ = λ−
ik

ρ̃ ≈ −ikvs
2γ 2

s ρ̃. (A2)

The matrix U in this limit becomes a projector on this mode, as
can be seen directly from Eq. (81). Instead of proceeding from
there, we can also simply substitute Eq. (A2) into Eq. (100)
and obtain a single equation for ρ,

τ
∂ρ̃

∂τ
+ λ−ρ̃ + f̃ = 0, (A3)

which is easily solved in the form of Eq. (57) with the Green’s
function G̃ρ(k; τ, τ ′) given by

G̃ρ(k; τ, τ ′) = (τ ′/τ )λ− . (A4)

Using Eq. (62) we find

G̃ρρ(k; τf, τ ) = (τ/τf )
2vs

2γ 2
s k2

, (A5)

where we also used (A1). Fourier transforming from k to ξ we
find

Gρρ(ξ ; τf, τ ) = (
8πvs

2γ 2
s ln(τf/τ )

)−1/2

× exp

[
− 1

8vs
2γ 2

s

ξ 2

ln(τf/τ )

]
. (A6)

We see that the fluctuation correlator describes diffusion in the
Bjorken coordinate ξ with ln(τf/τ ) playing the role of time. It
is interesting that this diffusion-like process is not associated
with dissipation.

Another question which can be asked is what happens to
the singularities we discussed in Sec. III D in the long-time
limit. This can be easily seen by comparing Eq. (A6) with
Eq. (89). One can see that the strength of the singularities
decreases exponentially with ln(τf/τ ) as (τ/τf )1−vs

2
, while the

contribution of the smooth modes is roughly time independent.
In particular, the sum rule (92) is completely saturated by the
Gaussian (A6) at late times. Numerically, at finite ln(τf/τ ) = 4
the regular part Greg

ρρ in Fig. 1 contributes 1.12, with the singular
part G

sing
ρρ accounting for −0.12.

APPENDIX B: FREEZE-OUT VIEWED IN COMOVING
FRAME

In this section we rederive the expression for the contri-
bution of the fluid element using the comoving frame. The
components of vector uμ in this frame are by definition

ūμ = (1, 0), (B1)

where we use a bar to denote components in the comoving
frame. The Bjorken frame four-velocity in the comoving frame
is given by

Ūμ = (cosh ω, 0⊥,− sinh ω). (B2)

In the comoving frame the energy and longitudinal momentum
of a particle emitted with laboratory rapidity η are

Ē = m⊥ cosh(η − ξ − ω) ; p̄z = m⊥ sinh(η − ξ − ω).

(B3)
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J. I. KAPUSTA, B. MÜLLER, AND M. STEPHANOV PHYSICAL REVIEW C 85, 054906 (2012)

The Lorentz transformation between infinitesimal longitudinal
coordinate differences in the Bjorken frame (dτ, τdξ ) and in
the fluid frame (dt̄, dz̄) is

dt̄ = cosh(ω)dτ − sinh(ω)τdξ,
(B4)

dz̄ = cosh(ω)τdξ − sinh(ω)dτ.

For instantaneous freeze-out at a fixed time τf we have

(dt̄, dz̄) = (− sinh ω, cosh ω)τfdξ, (B5)

implying a four-vector for the volume element of the freeze-out
hypersurface of

d3σ̄ μ = (dz̄, 0⊥, dt̄) = (cosh ω, 0⊥,− sinh ω)τfdξ

= Ūμτfdξ. (B6)

Combining these results, we find

p̄μ d3σ̄μ = (Ēdz̄ − p̄dt̄)d2x⊥ = τfdξd2x⊥m⊥ cosh(η − ξ ),

(B7)

reproducing the result (118) found in the laboratory frame.

APPENDIX C: AZIMUTHAL CORRELATIONS
AND POWER SPECTRUM

Our example application of the theory of hydrodynamic
fluctuations, the one-dimensional boost-invariant Bjorken
flow, allowed us to study correlations of the hydrodynamic
quantities in the longitudinal direction. There are several
natural extensions. Here we shall make a few comments
concerning the study of hydrodynamic correlations in the
transverse plane. The natural quantities to consider in this
case are azimuthal correlations among the number of emitted
particles event by event.

In contrast to initial-state fluctuations, which are intimately
related to geometric aspects of the nuclear collision, hydro-
dynamical fluctuations are caused by local noise and are thus
unaffected by the global geometry. This suggests that it makes
little sense to look for correlations between hydrodynamical
fluctuations and global event properties, such as the event plane
defined by the impact parameter or the elliptic flow pattern.
Instead, a more promising analysis will follow the procedure
used to determine the power spectrum of fluctuations in
the cosmic microwave background radiation (CMBR) [63].
The general argument for the application of this approach to
heavy-ion collisions has been proposed by Mishra et al. [64,65]
for the elliptic flow velocity v2.

The experimental determination of the power spectrum
of azimuthal fluctuations relies on the measurement of two-
particle correlations in the final state. This observable was
originally suggested as a method of measuring collective flow
anisotropies that does not require the determination of the
reaction plane [66–68]. However, as Mishra, et al. emphasized,
the power spectrum |vn|2 of the azimuthal anisotropy of
the distribution of emitted particles picks up not only the
collective flow anisotropy but also event-by-event fluctuations
of the emission pattern, including density fluctuations and
fluctuations of the collective flow velocity.

Within a chosen rapidity window, which will depend on
the masses of the particles involved, one can represent the
distribution in some observable O as

O(φ) = O +
∑
n
=0

oneinφ, (C1)

where φ denotes the azimuthal angle. The window is fixed
in the laboratory frame of reference, and its orientation does
not vary from one collision to the next. For the CMBR the
averaging is performed over points in the sky. In the case of
relativistic heavy-ion collisions the averaging is done over a
large set of events in which the orientation reaction plane and
the hydrodynamic noise change randomly from one event to
another. Thus

〈on〉 = 0, 〈ono
∗
n′ 〉 = 1

2O2
nδn, n′ , (C2)

where On characterizes the magnitude (power) of the nth an-
gular Fourier component of the fluctuations. The dependence
of On on n may reveal hydrodynamic and thermodynamic
properties of the expanding medium. For example, as has
been already observed in the studies of correlations induced
by initial-state fluctuations [9], viscosity suppresses higher
harmonics n. It would be also interesting to consider the effect
of the QCD critical point (see Ref. [69] for a review) on
the power spectrum. In this case the natural choice of the
variable O would be the baryon density, or its experimental
proxy—net proton density. The magnitude of fluctuations
increases near the critical point [70,71], and the fluctuations
can become highly non-Gaussian [72,73]. The increase of
fluctuations could be observed in the power spectrum. In
addition, the increase in the correlation length may cause the
power spectrum to shift its weight toward smaller values of
n. Further quantitative investigation is needed, of course, to
determine whether these effects have an observable magnitude.
We leave this to future work.
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