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Low-mass dilepton production through transport processes in a quark-gluon plasma
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We attempt to understand the low-mass dielectron enhancement observed by the PHENIX Collaboration at
the Relativistic Heavy Ion Collider by transport peak in the spectral function. On the basis of the second-order
formalism of relativistic dissipative hydrodynamics, we parametrize the spectral function in low-frequency and
long-wavelength regions by two transport coefficients, electric diffusion coefficient D and relaxation time τJ,
and compare our theoretical dielectron spectra with the experimental data. We study the spectrum of dielectrons
produced in relativistic heavy-ion collisions by using the profile of matter evolution under full (3 + 1)-dimensional
hydrodynamics. We find that the experimental data require the diffusion coefficient to be D � 2/T , with T being
temperature. Our analysis shows that dielectrons emitted through the transport process mainly come from the
high-temperature quark-gluon plasma phase.
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I. INTRODUCTION

Study of the quark-gluon plasma (QGP) is currently
under way at the Relativistic Heavy Ion Collider (RHIC)
at Brookhaven National Laboratory (BNL) and at the Large
Hadron Collider (LHC) at the European Organization for Nu-
clear Research (CERN). At RHIC, signatures of the strongly
correlated QGP have been accumulated through the analyses
of the collective evolution of hot QCD matter [1–3] and of the
energy loss of jets and heavy quarks [4,5]. Electromagnetic
probes (i.e., photons and dileptons) are also important probes
of the QCD matter since they are not contaminated by strong
interaction and reflect the transport property of the matter.

Recently, the PHENIX Collaboration at RHIC reported
enhancement of dielectrons in the low-mass (0.1 < mee <

0.75 GeV) region in Au + Au collisions [6,7].1 However,
theoretical models, which were successful in reproducing the
low-mass dilepton spectra at the Super Proton Synchrotron
(SPS), cannot explain the PHENIX data. This indicates the
existence of yet unknown sources beyond the standard thermal
radiations [9–14]. By modeling the spectral function based
on the two scenarios discussed in the literature, the dropping
mass and the width broadening, and combining it with the full
(3 + 1)-dimensional hydrodynamic evolution, we also find
that our model spectral function cannot explain the low-mass
enhancement at PHENIX. (See Appendix A for details.) As
pointed out in Ref. [11], one of the possible candidates that
has a tendency to fill the gap could be the processes considered
in the Landau-Pomeranchuk-Migdal resummation, such as
the off-shell annihilation process q + q + q̄ → q + γ ∗ →
q + e+ + e− [15]. However, the use of perturbative picture
near the transition temperature is not necessarily justified.

1A recent measurement by the STAR Collaboration [8] is inconsis-
tent with the PHENIX data [6,7]. We concentrate on analyzing the
PHENIX data in this paper.

The main purpose of this paper is to study transport peak in
the spectral function and its consequences on dilepton spectra
in the low-mass region. Since the transport peak gives a di-
vergent dielectron rate in the low-frequency limit ω → 0, this
could be a possible source of the low-mass enhancement. The
transport peak reflects the transport property of the QCD matter
and makes the nonperturbative analyses available but has not
been fully considered in the above calculations. In particular,
we study the transport peak from electric charge diffusion,
which reflects the diffusive motion of charged particles, that
is, quarks (charged hadrons) in the QGP (hadronic) phase. Per-
turbative calculations of the transport coefficients and spectral
function in low-frequency region [16–21] require higher-order
resummation and thus the transport peak originates from
various multiple scattering processes. Instead of taking the
perturbative result, we parametrize the transport peak at low
frequency and long wavelength by a set of transport coeffi-
cients, the electric charge diffusion coefficient D, and relax-
ation time τJ [22,23]. Then we try to constrain their values by
analyzing the dielectron data at PHENIX with the use of the full
(3 + 1)-dimensional hydrodynamics simulation and the state-
of-the-art lattice equation of state. Furthermore, we compare
the resultant constraint with the perturbative QCD estimate at
weak coupling [17–19] and the AdS/CFT estimate at strong
coupling [24]. We find that the main source of the low-mass
dielectrons emitted through the transport process is the high-
temperature QGP, not the low-temperature hadronic phase.

In Sec. II, we review the basics of the relativistic hy-
drodynamic model. In Sec. III, we utilize the second-order
formalism of relativistic dissipative hydrodynamics in the
presence of an external electromagnetic field to obtain the
spectral function parametrized with two transport coefficients,
D and τJ. Then, we calculate dielectron production using the
spectral function with a transport peak and compare the results
with the experimental data. In Sec. IV, we give conclusion and
outlook.
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II. RELATIVISTIC HYDRODYNAMICS

The relativistic hydrodynamic model has been quite suc-
cessful in describing collective flow phenomena in heavy-ion
collisions at RHIC [1–3]. Its basic equation for perfect fluids
reads

∂μT μν = 0, T μν = (e + P )uμuν − Pgμν, (1)

where T μν is the energy-momentum tensor, e is the energy
density, P is the pressure, and uμ is the fluid velocity. The
baryon chemical potential is neglected, since it is small near
midrapidity at RHIC and LHC energies.

A. Lattice equation of state and spacetime evolution

The energy density and pressure are related through the
equation of state (EoS) P = P (e). In the present paper, we
use one of the latest EoSs obtained from (2 + 1)-flavor lattice

QCD simulations with a Symanzik improved gauge action
and a stout-link improved staggered fermion action [25]. The
parametrization of the trace anomaly I ≡ e − 3P given in [25]
reads

I (T )

T 4
= exp(−h1/t − h2/t2)

(
h0 + f0[tanh(f1t + f2) + 1]

1 + g1t + g2t2

)
,

(2)

where t ≡ T/(0.2 GeV), (h0, h1, h2) = (0.1396, -
0.1800, 0.0350), (f0, f1, f2) = (2.76, 6.79, −5.29),
and (g1, g2) = (−0.47, 1.04). As shown in Fig. 1, the lattice
EoS shows a smooth crossover from the hadronic phase to the
QGP phase in contrast to the historic bag EoS, which has the
first-order phase transition.

In solving hydrodynamic equation Eq. (1), we pose the
initial condition at τ0 = 0.6 fm/c for entropy density s and
flow vector �u:

τ0s(ηs, �x⊥) = Cθ (yb − |ηs|)f pp(ηs)

[
a

(
yb − ηs

yb

dNA
part

d2x⊥
+ yb + ηs

yb

dNB
part

d2x⊥

)
+ (1 − a)

dNcoll

d2x⊥

]
, (3)

uz = sinh ηs, ux = uy = 0, (4)

when nucleus A (B) is traveling along the z-axis in the
negative (positive) direction. Here yb (>0) is the beam
rapidity, C = 13.0 and a = 0.85 are fitting parameters,
dN

A(B)
part /d2x⊥, dNcoll/d

2x⊥ are defined in the Glauber model
[26], and f pp(ηs) is a parametrization of the shape of rapidity
distribution in proton-proton (p + p) collision at

√
sNN =

200 GeV. For details of the initial condition, see Refs. [27–30].
With this initial condition, hydrodynamic equations Eq. (1)
are numerically solved assuming chemical equilibrium above
freezeout temperature Tf , which we determine as follows.

At T = Tf , the Cooper-Frye formula [31] converts the
profile of hydrodynamic evolution (�u, T ) into spectra of
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FIG. 1. (Color online) Pressure as a function of energy density
P = P (e) compared with the conventional bag equation of state and
the lattice equation of state [25]. In the bag model at T = 170 MeV,
pressure with Nf = 3 massless free ideal QGP gas is matched to that
of a hadron resonance gas including resonances up to 	(1232). The
resultant bag constant is B1/4 = 247 MeV.

particles and resonances [up to 	(1232)] by

E
dNi

d3p
= di

(2π )3

∫
∂�

pμdσμ

exp[pμuμ/Tf] ∓ 1
, (5)

where di is the degeneracy factor of hadron species i, the
sign in the denominator is − (+) for bosons (fermions), ∂�

is the spacetime hypersurface satisfying T (τ, ηs, x, y) = Tf ,
and dσμ is its element. To obtain the spectra of stable
particles, the decay products from 	(1232) are also included.
We determine the thermal freezeout temperature Tf by fitting
the experimental slope of the proton pT spectra as shown in
Fig. 2. The slopes can be fitted well by Tf = 0.15 GeV. The
impact parameters of the simulation are b = 7.1 fm (20–30%
centrality) and b = 9.7 fm (40–50% centrality). Note that we
have multiplied a factor ≈1.4 to fit the absolute magnitude of
the experimental data at pT = 1.0 GeV. This slight difference
in the magnitude between hydrodynamical calculation and
experimental data is possibly due to an absence of chemical
freezeout mechanism [28] in the lattice equation of state.

B. Dielectron spectrum

Here we briefly summarize the formula for the dielectron
production from an expanding medium in relativistic heavy-
ion collisions. Since the invariant mass of our interest is√

q2 � 0.1 GeV, we neglect the electron mass in the following.
The (3 + 1)-dimensional hydrodynamic model gives each
spacetime point a local flow vector uμ(x) and a local tem-
perature T (x). Each spacetime volume under hydrodynamic
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FIG. 2. (Color online) Shown is the hydrodynamic calculation for the slope of pT spectra of protons with freezeout temperature Tf =
0.15 GeV. The pT spectra are calculated by the hydrodynamic model with lattice EoS. In the hydrodynamic calculation, chemical equilibrium
is assumed at T > Tf = 0.15 GeV. The impact parameters of the collision are (a) b = 7.1 fm (20–30% centrality) and (b) b = 9.7 fm (40–50%
centrality) in the hydrodynamic calculation. Note that overall pT spectra are scaled (by multiplying ≈ 1.4) to match the experimental data at
pT = 1.0 GeV.

evolution emits lepton pairs with the rate [32,33]

E1E2dN

d3p1d3p2d4x
= α2

2π4q4

p
μ

1 pν
2 + p

μ

2 pν
1 − q2

2 gμν

exp(q0/T ) − 1
× ImGR,μν(q; T ), (6)

G
μν

R (q; T ) ≡
∫

d4xeiqxiθ (x0)〈[Jμ(x), J ν(0)]〉T , (7)

Jμ(x) ≡ 2

3
ūγ μu − 1

3
d̄γ μd − 1

3
s̄γ μs (8)

when observed in the local fluid rest frame. In the laboratory
frame, momentum distribution of the lepton pairs emitted from
the thermal medium in heavy-ion collisions is expressed by the
following integration:

E1E2dN

d3p1d3p2
=

∫
�

d4x
α2

2π4q̃4

p̃
μ

1 p̃ν
2 + p̃

μ

2 p̃ν
1 − q̃2

2 gμν

exp[q̃0/T (x)] − 1

× ImG̃R,μν(q̃; T (x)). (9)

� indicates the spacetime region of the hot QCD medium with
T > Tf , which is considered to radiate dielectrons. The Ãμν···
denotes a Lorentz tensor in the local rest frame boosted by uμ

from that in the laboratory frame Aμν···.
In the PHENIX experiment, with which we will compare

our results later, the acceptance of each electron or positron
depends on the detector geometry and on the particle kinemat-
ics [6,7]. We introduce an acceptance function A(p1, p2) to
pick up the phase space where both the electron and positron
are in the acceptance. The dielectron invariant mass spectrum
from the expanding medium is therefore given by

dN

dmee

= 2mee

∫
d3p1d

3p2
dN

d3p1d3p2
A(p1, p2)δ

(
q2 − m2

ee

)
.

(10)

III. MODEL OF LOW-MASS DILEPTONS:
TRANSPORT PEAK

One of the promising nonperturbative approaches to explain
the low-mass enhancement is to utilize the transport theory,
which parameterizes the spectral function in low-energy
and long-wavelength region with transport coefficients. The
transport process we consider is the electric charge diffusion
of quarks (charged hadrons) in the QGP (hadron) phase.

A. Linearized hydrodynamics with external field

Here we construct retarded correlator G
μν

R (q; T ) and cor-
responding spectral function (transport-SPF) from the linear
analysis of transport equations. According to the linear re-
sponse theory, the retarded correlator relates small perturbation
δH (t) = ∫

d3xJμ(x)δAμ(x) and system response 〈δJμ(q)〉T
in the linear order [22]:

〈δJμ(q)〉T = −G
μν

R (q; T )δAν(q), (11)

where f (q) ≡ ∫
d4xeiqxf (x). Hereafter we calculate the

linear relation between δJμ and δAν on the basis of relativistic
dissipative hydrodynamics.

In the presence of external field δAμ, conservation laws for
the energy-momentum tensor T μν and the electric current Jμ

are modified to

∂νT
νμ = FμνJν, (12)

∂μJμ = 0, (13)

where we define Fμν ≡ ∂μδAν − ∂νδAμ, �E ≡ −�∇δA0 − ∂δ �A
∂t

,

and �B ≡ �∇ × δ �A. In relativistic viscous hydrodynamics in
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Landau frame [34],2 the energy-momentum tensor T μν and
the electric current Jμ are decomposed as

T μν = euμuν − (P + �)
μν + πμν, (14)

Jμ = ρuμ + νμ, (15)


μν ≡ gμν − uμuν, (16)

with bulk pressure �, shear stress tensor πμν , and dissipative
electric current νμ satisfying πμνuν = 0, πμ

μ = 0, νμuμ = 0.
The scalar quantities e, P , and ρ satisfy the equation of state
P = P (e, ρ) derived in equilibrium. The entropy current in
the second-order formalism constructed by Israel and Stewart
[35,36] is decomposed as

sμ = suμ − μ

T
νμ − 1

T
(α0�νμ + α1π

μννν)

− uμ

2T
(β0�

2 − β1ν
μνμ + β2π

ρσπρσ ), (17)

with positive transport coefficients αa (a = 0, 1) and βb (b =
0, 1, 2) and chemical potential μ for the electric charge. Here
s is the entropy density s(e, ρ) derived from the equation of
state. Calculating the divergence of the entropy current up to
quadratic order in �,πμν, νμ, and Fμν and in derivatives of
e, ρ, and uμ, we obtain

∂μsμ = −�

T
(∂μuμ + α0∂μνμ + β0�̇)

+ πμν

T
(∂μuν − α1∂μνν − β2π̇μν) − νμ

T

[
T ∂μ

(
μ

T

)

+Fμνu
ν + α0∂μ� + α1∂νπ

ν
μ − β1ν̇μ

]
, (18)

where ḟ ≡ uμ∂μf . The second law of thermodynamics
requires the following constitutive equations:

−� = ζ (∂μuμ + α0∂μνμ + β0�̇), (19)

πμν = 2η〈〈∂μuν − α1∂μνν − β2π̇μν〉〉, (20)

νμ = σ
μρ

[
T ∂ρ

(
μ

T

)
+ Fρσuσ + α0∂ρ�

+α1∂σπσ
ρ − β1ν̇ρ

]
, (21)

with bulk and shear viscosities ζ, η (�0), and electrical
conductivity σ (�0). Here 〈〈Bμν〉〉 stands for a spatial,
symmetric, and traceless tensor extracted from a general
tensor Bμν :

〈〈Bμν〉〉 ≡ 
μρ
νσ

[
Bρσ + Bσρ

2
− 
ρσ
αβBαβ

3

]
. (22)

2Since we are interested in the quark-gluon plasma at vanishing
chemical potential, the Eckart frame, in which we define the flow
vector by uμ by J μ = ρuμ, is inconvenient. This is because the
electric current is J μ = (0, 0, 0, 0) in equilibrium and hence uμ

becomes ill defined.

When the system is close to equilibrium, the energy density
e(x), the charge density ρ(x), and the flow vector uμ(x) slightly
deviate from their equilibrium quantities:

e(x) = e + δe(x), (23)

ρ(x) = ρ + δρ(x), (24)

uμ(x) = (1, δ�u(x)). (25)

Neglecting for simplicity the couplings α0,1 between different
dissipative modes, the dissipative part of the electric current
νμ(x) is then given by

ν0(x) = 0, (26)

�ν(x) = −σ

[
T �∇

(
μ

T

)
− �E + β1∂t �ν

]
, (27)

in the linear order in δe, δρ, δ�u, and Aμ. Explicitly in terms of
δe and δρ,

T �∇
(

μ

T

)
= 1

X

( ∂e

∂T
+ μ

T

∂e

∂μ

)
�∇δρ

− 1

X

(
∂ρ

∂T
+ μ

T

∂ρ

∂μ

)
�∇δe, (28)

X ≡ ∂e

∂T

∂ρ

∂μ
− ∂e

∂μ

∂ρ

∂T
. (29)

In the quark-gluon plasma with vanishing baryon density, ρ =
0, we have ∂e

∂μ
= 0 and ∂ρ

∂T
= 0, so that the electric current is

obtained as

Jμ(x) = (δρ(x), �ν(x)), (30)

�ν(x) = σ �E − D �∇δρ − τJ
∂�ν
∂t

, (31)

D = σ

χ
, τJ = β1σ, χ = ∂ρ

∂μ
. (32)

The dynamics of the electric current Jμ(x) is obtained in a
closed form, while with finite electric charge density there
arises a coupling between the sound mode δe(x) and the
dissipative electric current νμ(x) even after ignoring α0,1.
This is because energy current, or momentum, carries electric
charge at finite density μ �= 0.

Combining Eqs. (13), (15), and (31), we obtain

J 0(q) = σ [−k2δA0(q) − ωkiδAi(q)]

−τJω2 − iω + Dk2
, (33)

J i(q) = −σωki

−τJω2 − iω + Dk2

(
δA0(q) + ωkjδAj (q)

k2

)

+ σω

−τJω − i

(
−δAi(q) + kikj δAj (q)

k2

)
, (34)

where qμ = (ω, �k) and upper and lower Lorentz indices matter,
kx = ki=1 = −ki=1 for example. The retarded correlators are
given by

G00
R (ω, �k; T ) = σk2

−τJω2 − iω + Dk2
, (35)

G0i
R (ω, �k; T ) = Gi0

R (ω, �k; T ) = σωki

−τJω2 − iω + Dk2
, (36)
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G
ij

R (ω, �k; T ) = σω

−τJω − i

(
δij − kikj

k2

)

+ σω2

−τJω2 − iω + Dk2

kikj

k2
, (37)

which are decomposed into two independent parts, namely
longitudinal and transverse parts:

G
(L)
R (ω, �k; T ) ≡ −q2

k2
G00

R (ω, �k; T ) = σq2

τJω2 − Dk2 + iω
,

(38)

G
(T)
R (ω, �k; T ) ≡ 1

2
(Gμ

R,μ(ω, �k; T ) − G
(L)
R (ω, �k; T ))

= σω

τJω + i
. (39)

Note that the poles of Eqs. (38) and (39) are always located in
the lower half of the ω plane. Corresponding two independent
components of the spectral function are

ImG
(L)
R (ω, �k; T ) = − σωq2

ω2 + (τJω2 − Dk2)2
, (40)

ImG
(T)
R (ω, �k; T ) = − σω

τ 2
J ω2 + 1

, (41)

with ImG
μ

R,μ = 2ImG
(T)
R + ImG

(L)
R .

Due to the analyticity of G
(L,T)
R (ω, �k; T ) in the upper half

of the ω plane, the following one-subtracted Kramers-Kronig
relation is satisfied by Eqs. (38) and (39) irrespective of the
values of σ , D, and τJ:

Re
[
G

(L,T)
R (ω, �k; T )

] − σ

τJ
=

∫ ∞

−∞

dω′

π
P

(
1

ω′ − ω

)

× Im
[
G

(L,T)
R (ω′, �k; T )

]
. (42)

As a consistency check, let us consider the
charge fluctuation χ ≡ Re[G(L)

R (ω = 0, �k → �0; T )] =
σ
τJ

+ ∫ ∞
−∞

dω′
π

Im[G(L)
R (ω′,�k→�0;T )]

ω′ . By using the information of

Im[G(L)
R ] obtained from Eq. (40) in the timelike (ω � |�k|) and

the spacelike (ω < |�k|) regions, one finds χ = σ/D, which
is nothing but the relation in Eq. (32) obtained from the
linearized hydrodynamics under an external field.

To illustrate the effect of D, τJ, and σ to the dilep-
ton emission rate, let us now consider the scaled spectral
function �(q; T ) ≡ −ImG

μ

R,μ(q; T )/(3q2) = −[ 2
3 ImG

(T)
R +

1
3 ImG

(L)
R ]/q2. Since the timelike kinematics, ω � |�k|, is

relevant for dileptons, let us consider an extreme case,

�(ω �= 0, |�k| = 0; T ) = 1

ω

σ

τ 2
J ω2 + 1

, (43)

where the transverse component and the logitidinal component
contribute with 2 to 1 ratio. (In our numerical calculation later,
we use the spectral function with full ω and �k dependence.)
Equation (43) indicates a large enhancement of the dilepton
emmission rate near ω = 0 with a typical width τ−1

J (Fig. 3).
Also, the rate becomes large for large conductivity and/or small
relaxation time.

Σ(
ω

,0
;T

)

ω

(τJ
-1, στJ/2)

FIG. 3. Scaled transport-spectral function (SPF) �(ω, �0; T ). It
diverges as � ∝ 1/ω in the limit ω → 0.

Although we have demonstrated the derivation in a
one-flavor case, generalization to the multiflavor case is
straightforward. We discuss in Appendix B that the transport
equation Eq. (31) holds in the three-flavor case under three
assumptions: (i) There is no coupling between the dissi-
pative modes in the decomposition of the entropy current.
(ii) Transport coefficients are flavor-independent. (iii) Quark
number susceptibility matrix is proportional to the unit matrix
χij ∝ δij . Here χij ≡ ∂ni

∂μj
and ni (μi) is a quark number density

(quark number chemical potential) for a flavor i. χij ≡ ∂ni

∂μj
is

measured by a lattice QCD simulation [37] and is found to
satisfy χij ∝ δij approximately.

B. Diffusion coefficient and relaxation time

In the following, we use (D, τJ, χ ) instead of (D, τJ, σ ) as
independent parameters to parametrize the spectral function.
The electric charge susceptibility χ can be expressed in terms
of the quark number susceptibility by

χ = 4
9χuu + 1

9χdd + 1
9χss − 4

9χud − 4
9χus + 2

9χds ≈ 2
3χuu,

(44)

which can be fitted to the result of lattice QCD simulation [37]
as follows:

χ (T ,μ = 0) ≈ 0.28T 2

[
1 + tanh

(
T − T ∗

c

0.15T ∗
c

)]
. (45)

We take T ∗
c to be the temperature at the center of the chiral

crossover transition T ∗
c ≈ 0.155 GeV (see Fig. 4 (right) in

[38]). We parametrize D and τJ as

D ∝ 1

T
, τJ ∝ 1

T
, (46)

for dimensional reasons.3To see the typical magnitude of the
transport coefficients of weakly and strongly coupled plasmas,
we refer to the results obtained by perturbative QCD [17–19]

3We can also parametrize τJ ∝ 1/T and σ ∝ T assuming the scaling
to temperature. This parametrization differs from the one adopted in
our study only below the transition region T < T ∗

c if we fix the higher
temperature (T ∼ 2T ∗

c ) behavior.
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FIG. 4. (Color online) We compare in (a)–(d) the dielectron spectrum dN/dmee calculated with the transport-SPF and the corresponding
experimental data [7]. In the transport-SPF, diffusion coefficient is fixed to D values of (a) 10/T , (b) 5/T , (c) 2/T , and (d) 1/T . The relaxation
time τJ is varied in (0.0–1.0)/T . We take into account the contributions from the hadronic decays after freezeout (denoted as “Cocktail” in
these figures). We plot only the statistical errors for experimental data.

with g ≈ 2,

DpQCD ≈ DpQCD
q ≈ 0.150

α2
s ln(0.461/αs)T

≈ 4

T
, (47)

τ
pQCD
J ≈ 3.748 × DpQCD ≈ 15

T
, (48)

and those by AdS/CFT [24],

DAdS/CFT = 1

2πT
, τ

AdS/CFT
J = ln 2

2πT
. (49)

Here D
pQCD
q stands for quark number diffusion coefficient. We

can show D = Dq within the same approximation as used in
the derivation of the constitutive equation in the multiflavor
case. (See Appendix B.)

C. Comparison to experimental data

We calculate the theoretical spectrum of dilepton produc-
tion using Eq. (10). Note that, on the one hand, our spectral
function is calculated by the transport theory and contains
dynamical information of QCD matter close to equilibrium. On
the other hand, the equation of state used in the hydrodynamic
calculation is the one in equilibrium in all the temperature

above Tf . The minimum bias theoretical spectrum is calculated
by

dNmin.bias

dmee

= 1

10
×

[
dN0−10%

dmee

+ · · · + dN90−100%

dmee

]

≈ 1

10
×

[
dN0−10%

dmee

+ · · · + dN50−60%

dmee

]
, (50)

neglecting peripheral collisions with centrality 60–100%
because their contributions are small.

In Figs. 4(a)–4(d), we compare the dielectron spectrum
dN/dmee calculated with the transport-SPF with the ex-
perimental data. The dilepton from the transport process is
dominant around mee ∼ 0.5 GeV due to the 1/ω long tail,
and the dilepton from Dalitz decay becomes important only
for mee < 0.1 GeV. The parametrization for the diffusion
coefficient is (a) D = 10/T , (b) D = 5/T , (c) D = 2/T ,
and (d) D = 1/T and that for the relaxation time is varied
in τJ = (0.0–1.0)/T . We add the dielectrons from hadronic
decays after freezeout (hadronic cocktail) [7] to the thermal
contribution from the transport-SPF. We find that our results
with (DT, τJT ) = (10, 0.5), (5, 0.2), and (2, 0.0–0.1) give
dielectron spectra comparable to the experimental data. These
values are rather different from the theoretical estimates,
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FIG. 5. (Color online) In panels (a) and (b), we compare our calculation of the dielectron spectrum with restricted pT windows and the
experimental data [7]. The dielectron spectrum dN/dmee is restricted in (a) 0.0 < pT < 0.5 GeV and (b) 0.5 < pT < 1.0 GeV. We calculate
with parameter sets (DT, τJT ) = (10, 0.5), (5, 0.2), and (2, 0.0–0.1) in the transport-SPF. The hadronic decays after freezeout are taken into
account (denoted as “Cocktail” in these figures). In panels (a) and (b), we only plot the statistical errors for experimental data.

(DpQCDT , τ
pQCD
J T ) ≈ (4, 15) and (DAdS/CFTT , τ

AdS/CFT
J T ) =

( 1
2π

, ln 2
2π

). From (c) and (d), we also find that experimental
data set a lower bound for the diffusion coefficient D �
2/T because the dielectron rate is largest with τJ = 0 for
fixed D.

Next we study the dielectron spectrum in more detail. In
Figs. 5(a) and 5(b), we show the dielectron invariant mass spec-
trum with the dielectron transverse momentum restricted in
(a) 0 � pT � 0.5 GeV and (b) 0.5 � pT � 1.0 GeV. We calcu-
late these spectra with parameter sets (DT, τJT ) = (10, 0.5),
(5, 0.2), and (2, 0.0–0.1) in the transport-SPF. Clearly all
of our calculations for low pT window (a) undershoot the
experimental data in 0.3 < mee < 0.7 GeV, while for high
pT window (b) they all show good agreement with the
data.
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FIG. 6. (Color online) We compare the transverse mass spectrum
calculated with the transport-SPF and the corresponding experimental
data [7]. The parameter sets (DT, τJT ) are the same with those in
Fig. 5 In the experimental data, other sources such as hadron decays
are subtracted and PHENIX acceptance is corrected. We plot only the
statistical errors for experimental data.

In Fig. 6, we show the dielectron transverse mass (mT )
distribution at midrapidity yp = 0. The calculation is per-
formed with (DT, τJT ) = (10, 0.5), (5, 0.2), and (2, 0.0–0.1).
We first calculate the dielectron pT spectrum by integrating
in the invariant mass range 0.3 � mee � 0.75 GeV for each
centrality. We then divide the dielectron pT spectra by half of
the number of participant nucleons (Npart/2) for each centrality.
We take the horizontal axis to be mT − m0 = √

p2
T + m2

0 − m0

to obtain mT spectra. Here m0 is the mean value of the
dielectron invariant mass with minimum bias m0 ≡ 〈mee〉 in
0.3 � mee � 0.75 GeV, which turns out to be m0 ≈ 0.47 GeV
in our calculation. Experimental data are also obtained by the
same procedure after subtracting other sources such as hadron
decays and correcting PHENIX acceptance. The experimental
data exceed the theoretical spectra at mT − m0 < 0.3 GeV
while the former are comparable with the latter at mT − m0 >

0.3 GeV. This is consistent with what we found in Fig. 5.
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FIG. 7. (Color online) Plotted is dielectron production from
the matter with T > 0.3 GeV, 0.2 < T < 0.3 GeV, and T <

0.2 GeV. The parameter for transport-SPF is (DT, τJT ) = (10, 0.5).
The PHENIX acceptance is taken into account.
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In Fig. 7, we show dielectron production from the hot
matter with different temperature ranges: T > 0.3 GeV, 0.2 <

T < 0.3 GeV, and T < 0.2 GeV. Clearly the intermediate-
temperature QGP phase with 0.2 < T < 0.3 GeV is the main
source for the dielectron production in spite of its small
spacetime volume. This makes a sharp contrast with the
expectation that the low-mass dielectrons are radiated from
the low-temperature hadronic phase due to the larger spacetime
volume [9]. Furthermore, this tendency may be consistent with
the previous analyses at SPS, where the transport peak does
not play an important role.

IV. CONCLUSION AND OUTLOOK

In this paper, we have studied the dilepton production from
the hot dynamical medium in relativistic heavy-ion collisions.
In particular, we have explored the relation between the
low-mass dielectron enhancement and the transport property
of the hot QCD matter, namely the electric charge diffusion
process of quarks (hadrons) in the QGP (hadronic) phase.
Because the dielectron rate from the transport-SPF is divergent
at ω ∼ 0, it is reasonable to expect that the transport property
is relevant to the low-mass dielectron enhancement. Also the
transport theoretical approach enables us to treat the problem
nonperturbatively.

We have conducted our analysis in the following way. We
start from the second-order formalism of relativistic dissipative
hydrodynamics, which introduces diffusion coefficient D

and relaxation time τJ. By performing linear analysis, we
parameterized the low-frequency and long-wavelength region
of the spectral function with these transport coefficients. We
calculated the dielectron yield by combining the transport-
SPF and the full (3 + 1)-dimensional hydrodynamic medium
evolution with the lattice EoS and attempted to extract the
transport coefficients from the data. We summarize our results
in Fig. 8. We found that transport peak with parameter sets
(DT, τJT ) = (10, 0.5), (5, 0.2), (2, 0.0–0.1) can reproduce the
experimental data dN/dmee. We also showed that in order
to explain the data, the diffusion coefficient must be D �
2/T . These obtained parameter sets are rather different from
both weak-coupling pQCD calculation and strong-coupling

 0.01

 0.1

 1

 10

 0.01  0.1  1  10

D
T

τJT

Data pQCD

AdS/CFT

FIG. 8. (Color online) We plot parameter sets (DT, τJT ) with
which the experimental data dM/dmee are consistent. We also plot
two limiting sets obtained by weak-coupling (pQCD) and strong-
coupling (AdS/CFT) calculations.

calculation on the basis of the AdS/CFT correspondence. Since
there is no a priori relation between the transport coefficients
D, τJ and the shear viscosity η, the dilepton spectrum and
elliptic flow give us useful independent information on the
different aspects of the QGP. On the other hand, the large
ratio D/τJ ∼ 20 obtained in our analysis, which neither
weak-coupling nor strong-coupling calculations predict, might
indicate that the transport peak does not explain all of the
dilepton enhancement observed at PHENIX. Furthermore,
while these parameter sets could reproduce the more detailed
experimental data dN/dmee restricted in 0.5 < pT < 1.0 GeV
and (1/2πmT )dN/dmTdyp in mT − m0 > 0.3 GeV, they could
not reproduce those restricted in 0.0 < pT < 0.5 GeV and
in mT − m0 < 0.3 GeV. In view of these calculations, we
conclude that the low-mass dielectrons at RHIC have not
been fully understood theoretically despite the fact that the
transport peak of the spectral function has a tendency to
enhance low-mass dileptons.

Meanwhile we also found that a large portion of the thermal
dielectron radiation comes from the high-temperature QGP
phase with T > 0.2 GeV because the fluctuation of electric
charge is larger at higher temperature. Note that RHIC has
explored the temperature range T > 0.2 GeV for the first time
ever. This tendency of dielectron production from the transport
peak may be consistent with the dielectron production at SPS,
which can be explained without the transport peak.

We list several future implications of interest: (i) First-
principle calculation of transport coefficients and spectral
function by lattice QCD is highly desirable. Calculation of
the spectral function with finite momentum may give a clue to
understanding the origin of low-mass dielectron enhancement.
Some recent developments in such a direction can be seen
in Refs. [39–42]. (ii) The event-by-event fluctuation of the
initial geometry, which is expected to remain large at the early
QGP phase, would enhance the dielectron production from the
transport peak, as it does for real photon emission from high
temperature region [43]. (iii) Since high-temperature QGP
phase emits a large portion of thermal dielectrons in spite
of its small spacetime volume, the dielectron production from
pre-equilibrium stage, or the so-called glasma, might also be
important and thus needs to be evaluated.
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APPENDIX A: MODEL OF LOW-MASS DILEPTONS:
VECTOR MESON DOMINANCE

Here we assume vector meson dominance on the hadronic
coupling to virtual photon and study its consequence on the
dilepton spectra. Two standard scenarios, the dropping mass
and the width broadening of the vector meson spectral function
(VMD-SPF) will be considered.

1. Vector meson at finite temperature

We define the dimensionless spectral function at finite T

as �(q; T ) ≡ −ImG
μ

R,μ(q; T )/3q2. In the vacuum at T = 0, it
can be is measured by the cross section of the electron-positron
annihilation (e+e− → hadrons) and can be decomposed as

�(q; T = 0) = σρ(q; T = 0) + 1
9σω(q; T = 0)

+ 1
9σφ(q; T = 0), (A1)

where σρ(q; T ), σω(q; T ), σφ(q; T ), and �(q; T ) correspond
to the current correlations of Jμ

ρ = 1
2 (ūγ μu − d̄γ μd), Jμ

ω =
1
2 (ūγ μu + d̄γ μd), J

μ
φ = s̄γ μs, and Jμ = Jμ

ρ + 1
3Jμ

ω − 1
3J

μ
φ ,

respectively.
The spectral function at zero temperature, �(q; T = 0),

has hadronic contribution at low q and perturbative QCD
continuum at high q with an approximate continuum threshold
at 1–1.5 GeV and may be parametrized as [44]

σ
V
(q; T = 0) =

{
f 2

V
�

V
m

V

(q2−m2
V

)2+�2
V

m2
V

(s0V
< q2 < s1V

)

c
V

(s1V
< q2)

, (A2)

with V = ρ, ω, φ. Here s0V
corresponds to the threshold asso-

ciated with the decay into two pions (280 MeV) or three pions
(420 MeV), while s1V

corresponds to the continuum threshold.
We take the height of the continuum cV from the leading-order
perturbation theory and fit the other parameters (the resonance
mass m

V
, the resonance width �

V
, the resonance height f

V
,

and the continuum threshold s1V
) by using experimental data

in [45]. These parameters are listed in the Table I.
Since the ρ channel is a dominant source of the thermal

component of the low-mass dileptons and is expected to receive
the medium effect most strongly, we hereafter restrict our
analysis on the medium modifications of σρ(q; T ) at finite
T within the same parametrization as Eq. (A2). Then the

TABLE I. The parameters of the vacuum spectral functions given
in the unit of GeV except for dimensionless parameters c

V
. They are

obtained by fitting the experimental data [45].

Vector meson m
V

�
V

f
V

√
s0V

√
s1V

c
V

ρ 0.77 0.15 0.15 0.28 1.3 1/8π

ω 0.78 0.008 0.14 0.42 1.1 1/8π

φ 1.02 0.004 0.24 0.42 1.5 1/4π

simplified form of the dilepton production rate reads

E1E2dN

d3p1d3p2d4x

= − α2

6π4q2

[(
1 + 2m2

l

q2

)
ImG

μ

R,μ(q; T )

]
fBE(q0; T )

� α2

2π4

[(
1 + 2m2

l

q2

)
σρ(q; T )

]
fBE(q0; T ), (A3)

where we implicitly assume that the transverse and longitudi-
nal spectral functions are the same even at finite T .

Let us now consider so-called dropping mass scenario
where the mass parameters, mρ(T ) and s1ρ

(T ), are assumed
to scale with the chiral condensate [46–49]:

mρ(T )

mρ(0)
= s1ρ

(T )

s1ρ
(0)

= 〈q̄q〉
T

〈q̄q〉0
. (A4)

The scaling function in Eq. (A4) is obtained by fitting the
latest lattice data (Fig. 4 (right) in Ref. [38]) by the following
ansatz with (T ∗

c ,	) = (0.155 GeV, 0.025 GeV):

〈q̄q〉T
〈q̄q〉0

= 1

2

[
1 − tanh

(
T − T ∗

c

	

)]
. (A5)

We assume that the pion mass does not change appreciably
below T ∗

c and adopt the following prescription for the
low-energy threshold: s0ρ

= min · {2mπ, mρ(T )}. Instead of
introducing a parametrization for the T dependence of �ρ(T ),
we vary its value in the range 0.15–0.45 GeV to see its effect
on the dilepton yield. Once it is given, remaining parameter,
fρ(T ), is constrained by the QCD spectral sum rule [50]:

∫ ∞

0
dω2[σρ(ω, �0; T ) − cρ] = 0. (A6)

Shown in Fig. 9 is a resultant spectral function in
the ρ channel with a parameter set, (T ∗

c ,	, �ρ) =
(0.155 GeV, 0.025 GeV, 0.3 GeV).
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FIG. 9. (Color online) Shown is the scaled spectral function
σρ(ω, �0; T ) as a function of ω at several different tempera-
tures. The parameters in the spectral function are (T ∗

c ,	, �ρ) =
(0.155 GeV, 0.025 GeV, 0.3 GeV).
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FIG. 10. (Color online) Shown in panels (a) and (b) are sum of the dielectron spectra from the thermal medium and the contributions
from the hadronic decays after freezeout. The latter is denoted as “Cocktail” in these figures. The parameters of the VMD-SPF are �ρ =
0.15, 0.3, 0.45 GeV and (a) mρ(T ) ∝ 〈q̄q〉T (dropping mass) and (b) mρ(T ) = 0.77 GeV (collisional broadening). These spectra are compared
with experimental data of dielectron spectrum with minimum bias [7]. In panels (a) and (b), we plot only the statistical errors for experimental
data.

2. Dielectron spectra

In Fig. 10, we compare the theoretical spectrum with the
experimental data by taking into account the contributions
from hadronic decays after freezeout (hadronic cocktail) given
in Ref. [7]. The PHENIX acceptance is already taken into
account. We show in Fig. 10(a) the thermal dielectron spec-
trum for �ρ = 0.15, 0.3, 0.45 GeV and mρ(T ) = 0.77 GeV
(collisional broadening). It is clear from this figure that the
dielectron emission with collisional broadening cannot explain
only the experimental data in the low invariant mass region
mee < 0.6 GeV. We show in Fig. 10(b) the thermal dielectron
spectrum for �ρ = 0.15, 0.3, 0.45 GeV and mρ(T ) ∝ 〈q̄q〉T .
Even with the dropping mass, the dilepton yield undershoots
the experimental data substantially in the low-invariant-mass
region mee < 0.6 GeV. The above findings are consistent with
the previous attempts to reproduce the low-mass dileptons at
PHENIX [9–14].

APPENDIX B: EXTENSION OF TRANSPORT SPECTRAL
FUNCTION TO MULTIFLAVOR CASE

We derive the transport spectral function for the mul-
tiflavor case. In this derivation, it is more convenient to
treat flavor current for each quark species N

μ

f . We start
from conservation laws in external field δAμ, which couples
to each flavor current and gives the perturbed Hamiltonian
δH (t) = ∫

d3x
∑

f qf Nμ(x)δAμ(x):

∂νT
νμ = Fμν

∑
f

qf Nf,ν, (B1)

∂μN
μ

f = 0 (f = u, d, s), (B2)

with Fμν ≡ ∂μδAν − ∂νδAμ and qu = 2/3, qd,s = −1/3. Ac-
cording to relativistic viscous hydrodynamics in the Landau

frame [34], we decompose T μν and N
μ

f as

T μν = euμuν − (P + �)
μν + πμν, (B3)

N
μ

f = nf uμ + ν
μ

f , (B4)


μν ≡ gμν − uμuν, (B5)

with bulk pressure �, shear stress tensor πμν , and dissipative
flavor current ν

μ

f satisfying πμνuν = 0, πμ
μ = 0, ν

μ

f uμ = 0.
The entropy current in the second-order formalism [24,35,36]
is decomposed as

sμ = suμ −
∑
f

μf

T
ν

μ

f

− uμ

2T

(
β0�

2 −
∑
f,f ′

β
ff ′
1 ν

μ

f νf ′,μ + β2π
ρσπρσ

)

− 1

T

( ∑
f

α
f

0 �ν
μ

f +
∑
f

α
f

1 πμννf,ν

)
, (B6)

with coupling coefficients α
f

0 , α
f

1 and β0,2 (�0), a positive

semidefinite matrix β
ff ′
1 , and a chemical potential μf for each

flavor. Divergence of the entropy current by using Eqs. (B3)
and (B4) up to second-order deviation from equilibrium is

∂μsμ = −�

T

(

μν∂μuν + β0�̇ +

∑
f

α
f

0 ∂μν
μ

f

)

+ πμν

T

(
∂μuν − β2π̇μν −

∑
f

α
f

1 ∂μνf,ν

)

−
∑
f

ν
μ

f

T

[
T ∂μ

(
μf

T

)
+ qf Fμνu

ν

−
∑
f ′

β
ff ′
1 ν̇f ′,μ + α

f

0 ∂μ� + α
f

1 ∂νπ
ν
μ

]
, (B7)
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where ḟ ≡ uμ∂μf . Constitutive equations which ensure the
second law of thermodynamics are obtained as follows:

−� = ζ
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, (B8)
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, (B9)
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with bulk and shear viscosities ζ, η (�0), flavor conductivity
σf (�0), and a positive semidefinite flavor mixing matrix κff ′

.
〈〈Bμν〉〉 stands for
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. (B11)

We perform linear analysis in terms of δe, δnf , and δ�u
defined as

e(x) = e + δe(x), (B12)

nf (x) = nf + δnf (x), (B13)

uμ(x) = (1, δ�u(x)), (B14)

and external vector field δAμ. For simplicity we neglect the
couplings between different dissipative terms: α

f

0 = α
f

1 =
0, β

ff ′
1 = βf δff ′ , and κff ′ = κf δff ′ [assumption (i)]. The

dissipative flavor current ν
μ

f (x) is then given by

ν0
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, (B16)

in the linear order in δe, δnf , δ�u, and Aμ. We define
susceptibility matrices X and Xf as
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Then the dissipative flavor current ν
μ

f is obtained as

ν0
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(B18)

{�eu} ≡ {1, 0, 0}, {�ed} ≡ {0, 1, 0}, {�es} ≡ {0, 0, 1}.
(B19)

We make another simplification that σf and β
f

1 are flavor
independent [assumption (ii)]:

σf ≡ σ̄ , β
f

1 ≡ β̄1, (B20)

and restrict ourselves to the situation with vanishing flavor
chemical potential μf = 0, which decouples flavor dissipation
and sound mode propagation. We then arrive at
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So far we have simplified transport coefficients in order to
reduce unknown parameters and to avoid mode couplings. In
order to obtain simple constitutive equation for diffusive elec-
tric current in the multiflavor case, it is necessary to simplify
thermodynamic quantities, namely susceptibility matrix to be
Xf ≈ (∂nu/∂μu)1 ≡ χuu1 [assumption (iii)]. This yields

�νf + β̄1σ̄
∂

∂t
�νf = qf σ̄ �E − σ̄

χuu

�∇δnf . (B22)

Note that by this simplification we also obtain electric charge
susceptibility χ in terms of u-quark number susceptibility
χ = (2/3)χuu. Then constitutive equation for diffusive electric
current is given by

δn ≡
∑
f

qf δnf , �ν ≡
∑
f

qf �νf ,

(B23)
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3
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In comparison with Eq. (31), transport coefficients for the
electric current are related to those for flavor currents by

τJ = β̄1σ̄ , σ = 2

3
σ̄ , D = 2σ̄

3χ
, (B24)

satisfying σ = χD.
We are also interested in the constitutive equation for

diffusive quark number current. Then we need to modify
Eq. (B23) by substituting qf → 1, δAμ → δA

μ
q , and �E → �Eq,

where δA
μ
q denotes an external vector field that couples with

quark number current. Note also that total quark number
susceptibility is χq = 3χuu because of the simplification for
Xf . Then we get

δnq ≡
∑
f

δnf , �νq ≡
∑
f

�νf ,

(B25)
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∂
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χq
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τq = β̄1σ̄ , σq = 3σ̄ , Dq = 3σ̄

χq
, (B26)

satisfying σq = χqDq. Therefore we can verify D = Dq, which
we use in the text.
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