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Kelvin-Helmholtz instability in high-energy heavy-ion collisions
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The dynamical development of collective flow is studied in a (3 + 1)-dimensional fluid dynamical model,
with globally symmetric, peripheral initial conditions, which take into account the shear flow caused by the
forward motion on the projectile side and the backward motion on the target side. While at

√
sNN = 2.76A TeV

semiperipheral Pb + Pb collisions the earlier predicted rotation effect is visible, at more peripheral collisions,
with high resolution and low numerical viscosity, the initial development of a Kelvin-Helmholtz instability is
observed, which alters the flow pattern considerably. This effect provides a precision tool for studying the low
viscosity of quark-gluon plasma.
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I. INTRODUCTION

Global collective observables are becoming essential in
ultrarelativistic heavy-ion reactions [1]. When we want to
extract information from experiments, both on the equation
of state (EoS) and on the transport properties of matter [2,3],
we have to invoke a realistic description with a fully (3 + 1)-
dimensional [(3 + 1)-D] dynamical evolution at all stages of
the reaction, including the initial state.

It is important to note that the phase transition to quark-
gluon plasma (QGP) and consequent fluctuations may enhance
the collective behavior of the system [4]. For the fluid
dynamical (FD) initial state we must have a system that is
close to local equilibrium; thus, at high energies the transition
to QGP has to happen earlier than the formation of the locally
equilibrated initial state.

The (3 + 1)D, relativistic FD model we use to describe
energetic heavy-ion reactions is well established and describes
the measured collective flow reliably [5,6]. We use the particle
in cell (PIC) method in which an Eulerian grid contains a
very large number of Lagrangian marker particles that move
with the matter. This method enables us to follow the motion
of the fluid with good precision. At Large Hadron Collider
(LHC) energies in these calculations we observed a significant
rotation of the QGP fluid in peripheral collisions, which leads
to observable consequences [6].

Our detailed studies indicate the development of an in-
teresting phenomenon, namely, the beginning of a physical
instability. In peripheral collisions, in the transverse, [y, z],
plane a nonsinusoidal instability starts to develop. We can
visualize this by coloring the markers in the projectile (upper)
side blue and the target (lower) side red. Initially, the dividing
surface is a plane. As time proceeds, the markers (which
indicate the location of conserved baryon charge) move, and
the dividing surface becomes a wave, which resembles the start
of a Kelvin-Helmholtz (KH) instability, as shown in Fig. 1, in
the [x, z] reaction plane, i.e., |y| � 1 cells (|y| � 0.7 fm).

Initially, at 1.5 and 3.0 fm/c, we can see two shorter
wavelength KH instabilities, which then dissolve and are fed
into a longer wavelength instability.

The nonsinusoidal behavior of the instability at later times is
not obvious as the development of instability and the spherical
expansion compete with each other.

The density of the central zone decreases rapidly so that
the matter “freezes out” and the fluid dynamical description
breaks down. As a consequence, we do not see the vorticity
sheet rolling up as in a fully fledged KH instability. In more
central collisions the dividing surface nearly remains a plane.
The usual reason for the KH instability is a “shear flow,”
where in a fluid layer there is a large velocity gradient.
Thus, the origin and the energy source of this phenomenon
is in the initial configuration and the initial velocity distri-
bution, which are correctly represented in our initial-state
model [7].

In our computational fluid dynamics (CFD) calculation the
initial-state model—based on longitudinally expanding flux
tubes or streaks [7]—is used [5,6]. In noncentral collisions
only a portion of the original nuclei interact. These are in
the participant zone where the streaks develop. Spectator
nucleons on the two sides are not participating in the
reaction.

The participant streaks are formed by the color charges
arising from the projectile and target nuclei after these
have penetrated through each other. The chromo-electric
field, characterized by the string tension, slows down the
expansion of the ends of the streaks. Our FD initial state is
a configuration where the matter is stopped within each streak,
while streaks expand independently of each other. Thus, this
model is applicable streak by streak and the momentum of
the streaks varies, especially for the peripheral streaks where
the asymmetry between the projectile and target contribution
to the participant matter is the biggest. So, the streaks at the
projectile and target sides move in the beam (z) direction with
substantial velocity difference. This generates the shear flow
configuration.

The aspect ratio of matter in the reaction plane ([x, z] plane)
becomes more elongated with increasing impact parameter b,
as the height of the participant profile, L, becomes smaller,
L = (2R − b), for nuclei of radius R, and the streaks are
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FIG. 1. (Color online) Growth of the initial stage of Kelvin-
Helmholtz instability in a 1.38A + 1.38A TeV peripheral, b =
0.7bmax, Pb + Pb collision in a relativistic CFD simulation using the
PIC method. We see the positions of the marker particles (Lagrangian
markers with fixed baryon number content) in the reaction plane. The
calculation cells are dx = dy = dz = 0.4375 fm and the time step
is 0.04233 fm/c The number of randomly placed marker particles
in each fluid cell is 83. The axis labels indicate the cell numbers in
the x and z (beam) direction. The initial development of a KH-type
instability is visible from t = 1.5 up to t = 7.41 fm/c, corresponding
to 35 to 175 calculation time steps.

becoming longer due to the smaller effective string tension [7].
Thus, the aspect ratio for b = 0.5bmax (where bmax = 2R) is
[1:1.5], while for b = 0.7bmax it is [1:3]. Of course, this aspect
ratio depends on the initial-state model, and some of these
do not take into account the longitudinal expansion before
thermalization, and even less the dependence of the expansion
on the effective string tension.

In a heavy-ion reaction the projectile edge of the participant
domain moves almost with the velocity of the projectile, u,
while the target side moves with the target velocity, −u. At
high energy this difference provides considerable shear in the
velocity fields. At the same time in the initial-state model [7]
the initial transverse velocity is zero for all fluid elements.
A low [x : z] profile makes it possible to develop a typical
shear-flow configuration and, thus, there may be a possibility
to form the initial stages of a KH instability.

II. PHYSICAL CONSIDERATIONS

A. Growth of the KH instability

The growth of a small initial KH instability in an idealized
shear-flow configuration can be described in a rather simple
way. From Sec. 3 of Ref. [8] it follows that for the shear flow
starting from a small sinusoidal perturbation in incompressible
and inviscid flow, the perturbation will grow exponentially,
∝ exp(st) (Eq. (3.15) of Ref. [8]), where t is the time and s is
proportional to the wave number k,

s = kV

(Eq. (3.28) of Ref. [8]), where ±V is the characteristic velocity
of the upper and lower sheets, which is somewhat less than the
projectile or target velocity.

Thus, the largest k or shortest wavelength will grow fastest.
Also, increasing the beam energy (i.e., increasing V ) will also
lead to increased development of turbulence!

For a Pb + Pb reaction, with R = 7 fm and bmax = 14 fm,
we study the impact parameters b = 0.5 or 0.7bmax. For these
collisions the typical transverse size of the initial shear flow is

L = (2R − b) = 7.0 or 4.2 fm.

The typical calculation cell size is dx = dy = dz = 0.35 fm.
The beam-directed, longitudinal length of the initial state is

lz = 10.5 or 13.1 fm, (1)

and the minimal wave number is

k = 2π/lz = 0.598 or 0.479 fm−1,

respectively.
For the scaling analysis of instabilities we need the

dimensionless numbers constructed from the typical length
L and speed V . The Reynolds number is Re = V L/ν, where
ν is the kinematic viscosity. So, for a peripheral heavy-ion
collision with impact parameter b, the characteristic length is
L and V is the velocity of the top and bottom layer, V = |u|. In
exactly central collisions u = 0, while with increasing impact
parameter, u = ±0.26c, 0.34c, 0.36c, 0.39c, 0.43c, 0.42c,
and 0.39 c for b/bmax = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, and 0.7
respectively. Notice that due to the geometry and the minimal
string diameter of 1 fm, the increase of this velocity does not
reach the beam velocity, so for typical peripheral collisions
V = |u| ≈ 0.4c.

In the simplest incompressible and inviscid flow approxi-
mation the amplitude of the starting turbulence would double
in 2.90 or 3.62 fm/c for b = 0.5 or 0.7bmax. The growth of the
instability is very fast in this approximation and it increases
with the beam energy (beam velocity) and with the wave
number. The typical reaction time in a heavy-ion collision
exceeds the time needed to double the amplitude of an initial
instability.

At the same time we also observe that at smaller impact
parameters the development of an instability is not seen in our
calculations (see Fig. 2). Thus, we have to conclude that the
role of viscosity is decisive as a large viscosity will decrease
this growth rate and may eliminate the possibility of the KH
instability.
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FIG. 2. (Color online) Time evolution of the flow in a 1.38A +
1.38A TeV peripheral, b = 0.5bmax Pb + Pb collision. The calcu-
lation cells are dx = dy = dz = 0.585 fm and the time step is
0.08466 fm/c. The number of randomly placed marker particles in
each fluid cell is 83. In contrast to Fig. 1 the KH instability does
not develop during the initial ∼ 8 fm/c time, due to the increased
numerical viscosity and the similar length and height of the initial
state. Thus the sides of the fluid provide a stiffer formation and the
system rather rotates as a solid body, instead of forming an expanding
turbulent, rotating shell. Due to angular momentum conservation the
rotation slows down as the system expands.

B. Formation of critical-length KH instability

While perturbations with larger wave number (shorter
wavelengths) may grow faster, there is a critical minimal
wavelength beyond which the perturbation is stable and able
to grow. Smaller wavelength perturbations tend to decay into
random thermal fluctuations. This situation is analogous to the
phase transition dynamics via homogeneous nucleation where
the formation of critical size bubbles or droplets is required to
start the phase transition [4].

This aspect of turbulence formation was first discussed by
Kolmogorov [9] for flow in the “inertial range” where the
effects of viscosity are still negligible. These considerations are
applicable until the viscosity does not have a significant effect
on the formation of vortices. The minimal stable wavelength
for a starting instability is given by the Kolmogorov length
scale, which is the smallest scale of turbulence. Dominant and

increasing viscosity results in increasing critical vortex size,
λKol. Smaller perturbations are unstable.

The average rate of energy dissipation, ε, per unit mass
and unit time, is associated with the decay of an eddy of size
l and characteristic speed vl into two smaller ones, in time,
tl = l/vl . It follows then that ε ∼ v2

l /tl = v3
l / l. The decay (or

formation) time of the small size eddy, tl , can be compared to
the viscous diffusion time of a perturbation of size l, which
is tdis.

l = l2/ν. Equating the two estimated characteristic times
provides the minimal, Kolmogorov length:

λKol = [ν3/ε]1/4. (2)

Here ν is the kinematic viscosity of the fluid, ν = η/ρ =
η/(nmB), where η is the shear viscosity, ρ is the mass density,
n is the baryon charge density, and mB is the characteristic
mass falling on unit net baryon charge in a QGP.

Even if the average rate of energy dissipation, ε, is
proportional to the viscosity, this dependence is linear, so the
critical vortex size is still increasing with increasing viscosity.
The key question is: Can a critical size vortex be formed in
a heavy-ion collision? Lower viscosity and higher energy or
energy dissipation may enable the formation of a critical size
or larger vortex.

Kolmogorov’s theory also provides an energy distribution
spectrum for small vortices or whirls in nearly perfect fluids.
The energy density spectrum in terms of the scale of the
vortices, λ, is proportional to λ−1/3; i.e., it is lower for larger
vortices. Large vortices may generate smaller ones, until we
reach the viscous limit, λKol, where the vortices are becoming
just thermal fluctuations.

In nonrelativistic flow the mass flow is identical to the
flow of massive particles while the flow energy and the
thermal energy are negligible compared to the rest mass of
the fluid. At ultrarelativistic energies this is not the case and
the separation of flow (inertial) energy and the random thermal
energy is not a trivial question. In order to follow the classical
concepts of turbulence and its development we will follow
Eckart’s definition of flow velocity, where flow is bound to
the conserved net baryon charge and we will assume that the
flow of the average of all quarks can be characterized by this
velocity. The observed constituent quark number scaling of
collective flow observables for different hadrons supports this
approach.

We focus on the description of the initial stages of the
development of turbulent instability in the central zones of
the collision at a period just after the formation of the locally
equilibrated FD initial state. We will estimate the correspond-
ing collective mass of the partonic matter in QGP per unit
baryon charge, mB , at this stage of the reaction. Before the
collision at the LHC each nucleon has an energy of 1.38 TeV.
Local equilibration is reached when, for impact parameter
b = 0.7bmax, in the first 3 fm/c time after initial equilibration
the average temperature is T ≈ 400–600 MeV, the average
entropy density is s ≈ 150–440 fm−3, the average baryon
charge density is n = 0.1–0.16 fm−3, and the average inter-
nal energy is T (s/n) = T σ = e/n ≈ 1.1–1.3 TeV/nucleon,
where σ is the specific entropy per unit baryon charge. At
the initial stages of QGP flow the remaining energy is shared
between collective flow energy and the particle mass of all

054901-3



L. P. CSERNAI, D. D. STROTTMAN, AND CS. ANDERLIK PHYSICAL REVIEW C 85, 054901 (2012)

constituents, plus a smaller amount may go to pre-equilibrium
emission of high-energy particles. Thus, the effective mass can
be estimated as mB ≈ 100 GeV per unit baryon charge.

By late stages of the reaction the kinetic energy of the
flow increases substantially, while the dissipation increases
the thermal energy by about 4–6% [10]. The total hadron
multiplicity increases by about an order of magnitude, so the
effective mass per net baryon charge is of the order of mB ≈
10 GeV. We are interested in the case of initial QGP in local
equilibrium when the KH instability could start.

The shear viscosity is temperature dependent with a sharp
minimum at the critical point of the phase transition between
hadronic matter and QGP [3], and reaching unity at the initial
hot, compressed QGP at about 4Tc:

η

s
≈ 1h̄–2h̄,

which for the initial QGP gives

η = sh̄ ≈ 30–158 GeV/(fm2 c),

and about 1/10 of this for the minimal viscosity. Given that the
initial effective mass density may vary between as ρ = nmB ≈
10–16 GeV/(fm3 c2), the corresponding kinematic viscosity
is

ν = η

ρ
= 2.5–16 fm c,

and about 1/10 of this for the minimal viscosity.
The corresponding Reynolds number is Re = 0.3–1 (for

“η/s = 1”), and if we choose the minimal viscosity (“η/s =
0.1”), then Re = 3–10. These are small Re values for turbulent
flow in general, but the KH instability can also appear for small
Re [8].

If we have a perfect fluid the flow is adiabatic, and there is
no dissipation, so λKol ∼ (0/0)! The specific dissipated flow
energy to heat is

ε = ė/ρ ∝ T σ̇/ρ ∝ ν, (3)

where the dot indicates the proper-time derivative, ė ≡ ∂te is
the change of energy density with time, T is the temperature,
and σ̇ is the proper-time derivative of the specific entropy
density, σ . Thus if ν −→ 0 then λKol −→ 0. So, the minimal
size will grow from zero if the viscosity grows. With finite
viscosity one can have a large minimal size, so that the
turbulence cannot develop within the given length of the
system. As in the final expanding stages of the QGP fluid
the viscosity increases [3], the minimal eddy size, λKol, will
be larger, so initial smaller length instabilities will disappear.

A good example of the formation of a minimal size eddy can
be observed in a two-component Fermi gas (e.g., Li-6), which
forms a superfluid at low temperatures in a rotating magnetic
trap [11]. If we reach a limiting rotation frequency, a small
eddy may develop in the central region of the cylindrical trap
when the energy of a small critical size eddy will be sufficient
to balance the viscous dissipation, and this eddy may become
stable. One also needs a given viscosity or scattering length
to form this eddy in the middle; thus the eddy first appears
at a given finite scattering length! (See Fig. 14 of the first of
Refs. [11].) The minimal KH instability has similar minimal
size behavior, although the shear-flow geometry is different;

one needs a minimal torque from the boundary condition and
a minimal viscosity to form a critical eddy.

Let us make a very simplified estimate for the size of the
smallest possible eddy in a heavy-ion collision. For finite
shear viscosity the energy dissipation per unit mass and
unit time, ε = ė/ρ, depends on the viscosity as well as the
flow pattern. The characteristic shear V/L depends on the
impact parameter, so that (V/L)2 = 0.0038–0.0086 (c/fm)2

for b = 0.5–0.7bmax, respectively. For ideal shear flow the
dissipated energy with the minimal viscosity (“η/s = 0.1”) is
(see Sec. 16 of Ref. [12] or Sec. 1.6 of Ref. [13])

ė ≈ η

(
V

L

)2

=
{

11–26 MeV c/ fm4 for b = 0.5bmax,

61–138 MeV c/ fm4 for b = 0.7bmax.

(4)

Then the energy dissipation, with an estimated average unit
mass density of ρ = 13 GeV/(fm3 c2), gives the rate of energy
dissipation ε = ė/ρ and thus the Kolmogorov length is

λKol =
{

2.1–5.4 fm for b = 0.5bmax,

1.4–3.6 fm for b = 0.7bmax.
(5)

In peripheral heavy-ion collisions the KH instability can
develop only if

lz > λKol. (6)

Thus, comparing the above values of the Kolmogorov length
scale to the length of the initial state in the beam direction,
Eq. (1), we can see that at b = 0.7bmax we may have a
possibility of initiating a KH-type instability in a heavy-ion
collision, while at smaller impact parameters this possibility
is marginal. This is enhanced by the fact that viscosity and the
Kolmogorov length both increase with expansion, so the time
slot where the KH instability may develop is reduced for more
central collisions.

Based on Eqs. (2) and (4) we see that in our situation the
Kolmogorov length is proportional with the square of viscosity,
λKol ∝ η2; if the viscosity doubles, the Kolmogorov length,
Eq. (5), increases by a factor of 4, so it can reach 20 fm,
which exceeds the longitudinal system size and hinders the
development of the KH instability up to about 8 fm/c. This
is illustrated in Fig. 2 with the increased numerical viscosity.
The change of marker particle resolution does not influence
the disappearance of the KH instability.

The characteristic geometry of the KH instability (approx-
imately two planes close to each other) requires that L < R

or b � R, and so b may vary in the interval between 0.5bmax

and 0.8bmax where bmax = 2R. At larger impact parameters, L
becomes too small and the general applicability of a continuum
approach becomes questionable. So, this parameter cannot
vary too much, and condition (6) requires having a viscosity
smaller than a limiting value,

νc � 5 fm c,

which is satisfied by the low-viscosity QGP, even at higher
than critical temperatures.
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III. FLUID DYNAMICAL MODEL PREDICTIONS

We have performed CFD simulations with the PIC solution
method [5,6] where the equations of relativistic FD were
solved for a perfect quark-gluon fluid. At the same time
the numerical method, due to the finite grid resolution, led
to dissipation and thus to entropy production, which has
been analyzed [10]. From the entropy production we could
determine the corresponding “numerical viscosity,” and this
was approximately the same as the estimated, low viscosity
of the quark-gluon plasma. To avoid double counting, i.e.,
overcounting of viscous dissipation, we did not add additional
viscous terms to our CFD model simulations.1

Our numerical model predictions confirm the previously
presented physical conclusions, and these show a developing
instability which is visible at b = 0.7bmax (Fig. 1), but at the
smaller impact parameter the KH instability is weak and does
not change with increasing resolution (see Fig. 3). Increasing
the resolution by 67% at b = 0.7bmax increases the amplitude
of the KH instability wave by 57%. The final KH instability
amplitude (1.1 fm) is 6% of the final profile height (and 16%
of the initial one).

In the case of heavy-ion collisions the special geometry,
i.e., the shape of the participant zone, is also hindering the
development of the instability because the more extended side
walls at smaller impact parameters have a stabilizing effect
against the KH instability.

We can observe in our calculations that the initial sinusoidal
wave shape will become asymmetric in standard plane shear
flow (see Fig. 3.3 of Ref. [8] or Fig. 2 of Ref. [14]), especially
at points of accumulating vorticity.

The PIC method has a particular advantage in studying
the KH instability. The numerical viscosity is set by choosing
a calculation grid size, which provides the estimated small
dissipation of the viscous QGP fluid. At the same time the
PIC method has a large number of marker particles in each
Eulerian fluid cell. Their number can vary and can be orders
of magnitude higher then the number of Eulerian fluid cells
forming the fixed calculation grid. Thus the motion of the
marker particles provides a fine resolution and can follow
the dynamics of the flow more accurately. In this method
the marker particles provide an accurate tracing of the initial
development of the KH instability.

In connection with our CFD solution one has to mention
that the numerical viscosity of our model calculation is small,

1In numerical CFD simulations of instability, it is important to
study the dissipative effects of both the numerical viscosity and
the physical viscosity. A finite grid resolution in the CFD solutions
leads to the absorption of the shorter wavelength and high-frequency
fluctuations, and the energy of these fluctuations is converted into
heat. There exist solution methods, with finite computational grid
resolution, which enforce entropy conservation for perfect fluids.
These solutions then appear to be perfect adiabatic fluid flow
solutions. However, this is misleading, such a numerical solution
still absorbs high-frequency, small-wavelength perturbations, while
the energy of these is converted into large-wavelength fluctuations.
Thus, such methods may result in misleading results.

FIG. 3. (Color online) Comparison of the flow pattern in the
reaction plane in 1.38A + 1.38A TeV peripheral, Pb + Pb collisions
at two impact parameters: b = 0.5bmax (left column) and b = 0.7bmax

(right column), at a late stage of 10.16 fm/c (240 time steps).
By this time an instability wave is also noticeable at b = 0.5bmax.
The resolution increases from the top to the bottom as dx =
0.585, 0.4375, 0.35 fm (i.e., NR = RPb/dx = 12, 16, 20). The
numbers of marker particles were 83, 63, and 53 for these resolutions,
so that each of the marker particles carried about the same amount of
baryon charge: 5.61 × 10−5, 5.61 × 10−5, and 4.97 × 10−5. For the
impact parameter b = 0.5bmax, independently of the resolution and
numerical viscosity, the rotation of the dividing plane is 2 degrees, and
the amplitude of the KH instability wave is not bigger than 0.35 fm.
For the impact parameter b = 0.7bmax the rotation of the dividing
plane is 3.75 degrees for all resolutions, but the amplitude of the KH
instability wave is increasing with increasing resolution (decreasing
numerical viscosity) as 0.7, 0.9, and 1.1 fm.

η/s = 0.1, based on the small Eulerian cells. In addition, the
number of initial marker particles per normal-density cell
was changed from 33 = 27 to 93 = 729 so that the higher
Lagrangian resolution allows for a more accurate description
of the instability.

In case of heavy-ion reactions the flow is not stationary
and the shear flow geometry is only present in the initial state.
Later, due to the large pressure of QGP, the plasma explodes
and expands radially in a way such that the final flow pattern
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at freeze-out is close to spherical, albeit somewhat elongated
longitudinally (± z-direction) and in the reaction plane
(± x-direction) due to the dominant elliptic flow.

A. CFD results

In heavy-ion reactions the radial expansion modifies the
dynamics of the development of the KH instability, but in
case of low viscosity this is a strong instability and its initial
signs can be clearly recognized in CFD calculations if both the
viscosity and the numerical viscosity are sufficiently small.

Looking at Fig. 1 initially at Ncyc = 0, we see that the
fluctuation is not visible, although the randomly placed
markers include a possibility for fluctuations (and note that
the length of the system is 35 cells). At 1.5 fm/c (Ncyc = 35),
there appear two semisinusoidal waves. The length of the
system is 45 cells. The amplitude of turbulence is ≈1 cell.
At 3.0 fm/c (Ncyc = 70) the length of the system is ≈50 cells.
The central perturbation of 15-cell wavelength is weakening
while the outside part grows. The amplitude of turbulence is
≈3 cells. At 4.4 fm/c (Ncyc = 105) the middle perturbation
wave is weakening further, and the amplitude of the turbulence
is ≈4 cells. By 5.9–7.4 fm/c (Ncyc = 140–175) the middle,
short-wavelength perturbation is hardly visible. The amplitude
of the turbulence has reached 6–10 cells.

Because the radial expansion and the shear flow are
superimposed upon each other the growth rate and the wave
shape of the developing turbulence are not identifiable fully
as in (quasi)stationary flow. The initial shorter wavelength
perturbations become unstable and disappear, while the longest
one grows due to the radial expansion. This can be attributed
to the fact that the Kolmogorov minimal size is increasing
faster than the expansion, and thus the short perturbations are
becoming unstable while the largest one survives.

The phenomenon enables us to draw some quantitative
consequences from the physical viscosity of QGP based
on qualitative differences in the flow pattern. The smaller
central perturbation which disappears during expansion is not
detectable. The larger one develops if the available length of the
system exceeds the Kolmogorov length scale. Then the shortest
of these possible perturbations will grow fastest and will lead
to enhanced and observable “rotation.” Increased beam energy
leads to increasing V , which leads to an exponential increase
in the growth of the instability, much more than just what the
linearly increased angular momentum would cause!

As the estimates of the previous section indicate, the
development of the KH instability is critically dependent on
the flow configuration, just as the numerical estimates for λKol

indicate the CFD results for impact parameter b = 0.5bmax also
show that the KH instability is weak and does not develop with
increasing resolution for more central collisions (see Fig. 2).

The dynamics in the CFD model indicates that the KH
instability may start to develop in ultrarelativistic heavy-ion
collisions. The numerical viscosity in the calculation is about
the same as the conjectured minimal viscosity [2] as discussed
in Ref. [10].

In the analysis in the previous section we assumed an initial
viscosity based on Ref. [3], which was around the minimal

viscosity, and it was sufficient to develop the critical-size KH
instability. An order-of-magnitude larger viscosity would not
be able to create a sufficiently small initial perturbation.

B. Instability estimates for viscous fluids

In shear flow one of the necessary conditions for the start
a KH instability is that there should be an inflection point in
the basic velocity profile uz(x), or, in other words, u′′

z (x) must
change sign at least once (see Sec. 8 of Ref. [8]). The initial
condition [7] and the subsequent flow satisfy this requirement.

As Fig. 4 shows, at time steps 4 and 40 the condition is
satisfied in the center (x = 0), and later at steps 80, 120, and
160 a second wave develops; however, the distance of the
nodes is less than λKol, so considering the viscous limits we
see that these secondary waves are not realizable physically.
For a single KH instability wave the situation is established
and persists up to time step 120. By time step 160 the central
density drops considerably and apart from short-length fluctu-
ations the required condition is not satisfied. This is because, in
the discussed heavy-ion collision, we do not have a stationary
boundary condition, and the spherical expansion competes
with the growth of the KH instability. At later stages, time step
160 and later, the growth speed, kV , decreases, as both the
velocity and the wave number decrease, while the expansion
speed is increasing. Thus at time step 160 the flow changes to
a combined approximately radial expansion and rotation. On
the other hand, by this time the system is close to freeze-out
and hadronization. At this time the matter is dilute and weakly
interacting, so the local fluid dynamical equilibrium cannot be
maintained and the FD description will not be applicable.

The central zones at late stages have low density and low
pressure, which resembles a cavitation bubble in the QGP
liquid, and this bubble will contain the condensed hadrons.
Due to the expansion the bubble will not recollapse as usual

FIG. 4. (Color online) The velocity profile in the beam direction
as a function of the x coordinate, at different times, 4, 40, 80, 120,
160, 200, and 240 time steps of 0.04233 fm/c for b = 0.7bmax,
cell size dx = 0.35 fm, and 73 marker particles per fluid cell. The
velocity is plotted in the reaction plane (at y = 0 and z = 0), and it
is antisymmetric in the ±x direction, but only the upper x > 0 half
of the reaction plane is plotted. In the CFD calculation the mirror
symmetry is exact.
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in cavitation phenomena in classical fluid flow; instead, the
surrounding QGP fluid will break up into pieces and will also
hadronize and freeze-out simultaneously.

IV. CONCLUSIONS

Based on theoretical estimates and on CFD model calcu-
lations, one should explore the possibility at LHC energies
of a KH instability developing in peripheral, b = 0.6–0.8bmax

Pb + Pb collisions. The formation of the instability may take
place up to about 5 fm/c, beyond which the radial expansion
becomes dominant although the system still rotates.

The KH instability is rather sensitive to the value of
viscosity, so it is a perfect tool to measure the viscosity of
QGP. The rotation of the weak antiflow peak to forward angles
was predicted earlier Ref. [6]. The rotation of the v1 peak to
forward angles depends sensitively on the balance between the
speed of radial expansion and explosion and the initial angular
momentum (which increases with increasing beam energy). If
the radial expansion is stronger than estimated [6] then the peak
may remain an “antiflow” peak and the KH instability would
destructively interfere with this peak. If the peak has rotated to
forward angles, as predicted in Ref. [6] and used also in these
calculations, the KH instability increases the rotation and it
converts a larger part of beam energy into rotation than would
happen in a simple solid-body type of rotation. (See Fig. 5.)

At cycle 160 (t = 6.77 fm/c) using the method of Ref. [6]
primary v1(y) values for massless pions were evaluated for
two different impact parameters, b = 0.5 and 0.7bmax, and for
different grid resolutions. The numbers of marker particles
were chosen so that the number of marker particles per baryon

FIG. 5. (Color online) The detailed view of the marker particle
positions in the lower half of the initial-state markers after 175 time
steps. A 1.38A + 1.38A TeV energy Pb + Pb peripheral collision
is shown, at impact parameter b = 0.7 bmax with 73 = 343 markers
per initial, normal-density-fluid cell resolution. The lines across the
collision center point indicate the initial dividing axis, the change of
this axis due to rotation, and the additional change of rotation arising
from the start-up of a Kelvin-Helmholtz type of instability. This
additional effect more than doubles the rotation. In this calculation
the cell size is dx = dy = dz = 0.35 fm, with a total number of
1 814 814 marker particles.

TABLE I. Change of directed flow.

y b/bmax Pb + Pb Pb + Pb Pb + Pb Pb + Pb
dx, dy, dz (fm) 0.5 0.5 0.7 0.7

0.585 0.350 0.585 0.350

0.35 v1(y) (%) −3 10 25 47
0.45 v1(y) (%) 13 32 53
0.55 v1(y) (%) −3 9 20 50

charge was about the same, 20 120 for cell size dx = 0.35 fm
and 17 825 for cell size dx = 0.585 fm. For the Pb + Pb
reaction at b = 0.5bmax and dx = 0.585 fm resolution the
directed flow peak was at the rapidity bin y = 0.45 with a
peak value of v1(0.45) = 0.177. This was taken to be 100%.
By decreasing the cell size to dx = 0.35 fm the peak value
increased to v1(0.45) = 0.200, i.e., by 13%. The changes of
the directed flow peak values are shown in Table I.

For b = 0.5bmax the KH instability on the v1 peak is weak,
13%, which can partly be attributed to the decreased viscous
dissipation. At b = 0.7bmax, the increase is significantly
stronger, 21%. These primary data of course are reduced by
random initial-state dissipation, as discussed in Ref. [6]. The
position of the peak in rapidity barely changes with higher
grid resolution; for b = 0.5bmax it moves from y = 0.485 to
y = 0.46, while for b = 0.7bmax it moves from y = 0.475 to
y = 0.46.

Recently, it was pointed out [15] that due to random initial
fluctuations turbulence may show up and even grow in the
transverse, [x, y], plane. The energy of the growth is provided
by absorbing small, higher-wave-number perturbations. We
also observed this effect (see Fig. 1). In that work an alternative
detection method is suggested via measuring two-particle
correlations, which may also be used to detect the KH
instability in the reaction plane.

Although the predicted rotation effect is not easily de-
tectable due to initial-state fluctuations, the KH instability
enhances the flow and changes its pattern in peripheral
collisions. The present developments suggest that the global
collective v1 flow can be disentangled from random fluctua-
tions. This is necessary to measure the global collective flow in
peripheral collisions. The opposite, the separation of the flow
originating from random initial-state fluctuations, has been
done successfully recently [16] for selected central collisions.

The KH instability is very sensitive to the magnitude of
the viscosity. Thus if this research is successful the analysis
of global collective v1 flow as a function of beam energy and
impact parameter may provide a precision measurement of
viscosity and its variation.
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