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Mechanism of the 93Nb( �p,3He) inclusive reaction at an incident energy of 160 MeV
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The inclusive 93Nb( �p,3He) reaction to the continuum was investigated at an incident energy of 160 MeV.
Emission-energy distributions for cross sections as well as analyzing powers were explored. A range of scattering
angles from 15◦ to 60◦ (lab.) was covered and 3He emission energies from ≈30 MeV to the kinematic
limit were measured. As in our earlier work, the experimental distributions were compared with a multistep
direct theory in which a reaction mechanism based on two-nucleon pickup is employed. Reasonable agreement
between experimental double-differential cross sections and analyzing powers and the theoretical expectation
was obtained. This work, together with published results for the same reaction at a lower projectile energy, allows
the incident-energy dependence of the cross section and analyzing power distributions to be explored.
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I. INTRODUCTION

Although nucleon-induced reactions into the continuum
of emission energies have been studied for many years in
the incident energy range of 100 to 200 MeV, there is still
a surprising and disconcerting lack of insight regarding the
reaction mechanism leading to composite ejectiles (see for
example Ref. [1]). This situation is very frustrating, especially
if we keep in mind that pre-equilibrium emission [2] of
nucleons, as opposed to composite ejectiles, appears to be
described relatively easily in a consistent way in terms of
various formulations [3] which all share largely comparable
insight of the relevant physical processes.

The effort of Koning et al. [4,5] to combine the best
of current theoretical understanding of these reactions in a
single computer program, represents one of the most ambitious
projects to develop a robust and practicable means of quan-
titative calculations for a wide variety of pre-equilibrium re-
actions. Unfortunately, as implied earlier, with this theoretical
application, more often than not, disconcerting disagreements
between theoretical prediction and experimental data, for
emission of heavier ejectiles such as 3He, 4He, etc., are
encountered [6]. The origin of the problem is not obvious and
various approaches to clarify the issue are possible. One option
is to retain the basic ideas about the reaction mechanism as it
has evolved from studies at lower incident energy, and then to
refine details of calculations based on mechanisms which are
known to become important [7] at higher incident energies.
An alternative theoretical approach, such as in the work of
Budzanowski et al. [8], is to invoke the extrapolation of a
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totally different mechanism that results from studies at much
higher incident energy, in the GeV range [9].

Most of the attempts to resolve the problem rely on
studies of cross-section angular distributions, which are rather
featureless. Consequently, the lack of any clear characteristic
target mass or incident energy dependence evidently creates
a difficulty. In principle, analyzing-power distributions are
more sensitive to details of the reaction mechanism, and
these were exploited in the past [10,11]. However, in practice
measurements of analyzing-power data are rarer because they
require beams of polarized particles. Nevertheless, it presents
a greater challenge to the extraction of accurate quantities,
especially at higher incident energies where cross section
values drop considerably.

In several earlier investigations [10–13] of (p,3He) re-
actions at incident energies between 70 and 160 MeV it
was assumed that the reaction mechanism is driven by a
statistical intranuclear multistep process, with the ejectile
emerging from two-nucleon pickup in the final stage. The
theoretical analysis is based on the ideas of the multistep
formulation of Feshbach, Kerman and Koonin [14], combined
with a distorted wave Born approximation (DWBA) for the
final pickup. Comparison between the theoretical predictions
and experimental cross section and analyzing power angular
distributions yields reasonable agreement.

In recent published work [11] we studied the (p,3He)
reaction at incident energies between 100 and 160 MeV on
59Co and 93Nb. Note that in Ref. [11] it is mentioned that
data were measured for 93Nb also at an incident energy of
160 MeV, but no results were shown. The reason is that the
analyzing power for 93Nb at 160 MeV from that experiment
suffered from such poor statistical accuracy, and covered such
a small angular range, that it would have been meaningless
to include them in Ref. [11]. The present work addresses the
deficiency.
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The two target nuclei 59Co and 93Nb were chosen in
Ref. [11] as representative of medium to heavy mass nuclei in
general, although detail differences, depending on the specific
nucleus, are observed. It is encouraging that these differences
seem to be predicted reasonably well by the theoretical
treatment. Furthermore, the quenching of the analyzing power
[15,16] as the incident energy is increased, is implicitly
supported by the theory. However, due to the complicated and
convoluted nature of the theory, the detailed reasons for the
decreasing analyzing power towards higher incident energy
are not understood yet.

In this paper we present new experimental and theoretical
results for 93Nb(p,3He) at an incident energy of 160 MeV
in order to investigate consistency with our previous studies
[10,11] and to gain additional insight. We previously presented
a preliminary account of the results reported here at an interna-
tional conference [17], but now we provide considerably more
detail, as well as an account of the experimental and theoretical
procedures that were followed.

In Sec. II the experimental setup and design considerations
are presented. Section III comprises a brief overview of the
salient features of the theoretical treatment, with a description
of an improved method to generate appropriate distorted waves
for the incident proton and the outgoing 3He particle. The
results are presented and discussed in Sec. IV. Finally, a
summary and conclusions are given in Sec. V.

II. EXPERIMENTAL PROCEDURE

A beam of polarized protons �p (for simplicity we use
the symbol p interchangeably also for polarized particles, as
would be clear from the context) at an incident energy of 160 ±
0.5 MeV was delivered by the separated sector cyclotron of
iThemba Laboratory for Accelerator Based Sciences (LABS),
Faure, South Africa. The external polarized ion source feeds
beam into an injector cyclotron that accelerates protons to
a maximum energy of 8 MeV, with further acceleration in
the main cyclotron. The accelerator system and the exper-
imental equipment used in this study have been described
elsewhere [18].

The experimental details and technique employed in the
present investigation follow those described in our earlier
work very closely [10,11], therefore only a brief descrip-
tion is given here. The experiment was performed inside
a scattering chamber of 1.5 m diameter, with two detector
telescopes each consisting of a 500 μm silicon surface
barrier detector followed by a NaI(T�) crystal, connected to
a photomultiplier tube. A standard �E-E particle identifi-
cation technique was used to select 3He ejectiles from the
reaction in a target mounted at the center of the scattering
chamber.

The two detector telescopes subtended the same nominal
solid angles (1.13 msr) as defined by tantalum collimators thick
enough to stop 3He (approximately 3 mm thick with a 14 mm
diameter hole). In order to cut down on the flux of lighter
reaction products (protons, deuterons, and tritons) additional,
slightly larger brass collimators were used in front of the
telescopes. This setup was selected in order to minimize the

influence of undesirable collimator scattering of 3He reaction
products that could otherwise enter the detector telescopes.

Standard methods were followed to minimize systematic
error on the measurement of the analyzing power. This entailed
placing the two detector telescopes at symmetric scattering
angles on opposite sides of the beam during data taking.
In addition, the polarization of the incident protons (from
65% to 85% during the experiment), directed perpendicular
to the scattering plane, was switched from up to down at 10 s
intervals.

The polarization of the beam was determined regularly by
scattering of the beam from a 12C foil in the scattering chamber
at 19◦ where the analyzing power for p+12C elastic scattering
at 160 MeV is large (0.92) and accurately known [19]. The
difference in the polarization between the two orientations
was usually less than 10%, but different values as determined
experimentally were used for the two polarization orientations
to calculate analyzing power values.

Energy calibrations of the silicon surface barrier detectors
were made using a 228Th α-particle source, and the calibrations
of the NaI(T�) detector elements were based on the kinematics
of the elastic scattering reactions 1H(p, p)1H and 12C(p, p)12C
from a thin polyethylene target. These calibrations for protons
in the telescope also provide energy values for 3He, if the
difference in the response of these ejectiles with the NaI(T�)
assembly is taken into account [20]. Gain drifts in the
photomultiplier tubes of the NaI detectors were monitored by a
light-emitting diode pulser system, which allowed corrections
to be made during analysis. The overall uncertainty in the
energy scale for 3He is approximately 4%.

Two 93Nb targets which were used, were both self-
supporting foils of natural isotopic composition (100% oc-
currence of the isotope of interest) with thicknesses of 2.6 and
8.6 mg/cm2. The uncertainty in the thicknesses of the targets
(up to 7%) is the main contribution to the systematic error on
the cross section data.

Standard electronics were used and data were collected
and monitored on an online system, and stored for subsequent
offline replay of the data. Data were obtained for 3He emission
energies from a threshold of ≈30 MeV up to the kinematic
limit and scattering angles from 15◦ to 60◦ (lab.) were covered.

III. THEORETICAL ANALYSIS

As in our previous work [10–12], we treat the (p,3He) reac-
tion as occurring in a series of steps in which, as the simplest
process leading to composite particle emission, the incident
proton can pick up a nucleon pair directly from the target in a
single step. Alternatively the pickup takes place after a variable
number of intranuclear nucleon collisions. Consequently the
multistep part may be two-step, three-step, etc. In our notation
a two-step reaction is symbolically indicated as (p, p′,3He)
and a three-step reaction as (p, p′, p′′,3He).

The theory applied to the (p,3He) reaction is based on
the multistep direct theory of Feshbach, Kerman, and Koonin
(FKK) [14] for the intranuclear collisions leading up to the
final two-nucleon pickup, which is then treated in the distorted
wave Born approximation (DWBA). The extension of the FKK
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theory from cross sections to analyzing power is given by
Bonetti et al. [21].

The theoretical formulation has been described extensively
in our earlier publications and references therein. Nevertheless,
in order to highlight some improvements and subtle modifica-
tions introduced in this work, and for ease of use to the reader,
we reproduce a comprehensive account of the theory in the
description that follows. For clarity we use the same notation
as in Ref. [11].

A. Differential cross sections

The double-differential cross section is written as a function
of solid angle d� and emission energy dE acceptance. This is
expressed as

d2σ

d�dE
=

(
d2σ

d�dE

)1−step

+
(

d2σ

d�dE

)2−step

+ · · · , (1)

where, as mentioned earlier, the first step cross section is taken
as a direct two-nucleon (p,3He) pickup process calculated in
terms of the DWBA. This term is given by(

d2σ

d�dE

)1−step

=
∑

N,L,J

(2J + 1)

�E

dσ DW

d�
(θ,N,L, J,E) ,

(2)

at scattering angle θ , where the summation runs over the target
states with single-particle energies within a small interval
(E − �E/2, E + �E/2) around the excitation energy E. The
two-nucleon system bound in the target has quantum numbers
N,L, and J , as will be specified later.

The last factor in Eq. (2) is the DWBA differential cross
section, which is expressed as [22,23]

dσ DW

d�
(θ,N,L, J,E)

= N
∑
{nk}

G2({nk}2)
2Jf + 1

2Ji + 1

∑
T =0,1

b2
STD2

ST

×〈Tf Tf zT Tz|TiTiz〉2

(
dσ

d�

)DWUCK

, (3)

where the sum runs over all possible neutron-proton configu-
rations {nk}. Here N is a normalization constant whose value
depends on the square of the fractional parentage coefficient
for the two-nucleon removal [24] as well as the optical
model potentials. The quantity G2({nk}2) is the spectroscopic
factor for a proton and neutron to form a deuteron bound
state with quantum numbers (N,L, J ), and S and T are the
transferred spin and isospin, respectively, with the selection
rule S + T = 1. Because the microscopic calculation of the
pickup of a neutron-proton pair gives essentially the same
result as a macroscopic calculation in which the nucleon pair
is treated as a deuteron cluster [23], we consider the target
nucleus to consist of a core to which a deuteron is bound in
a shell-model state. The reaction can then be described as a
direct transition of a deuteron, considered as a single particle.
The final and initial total angular momenta are indicated by Jf

and Ji , respectively.

The quantity b2
ST is 0.5 for both values of S and T , and

the values for the strengths of the proton-deuteron interaction
D2

10 and D2
01 are 0.3 and 0.72, respectively [25]. The square of

the Clebsch–Gordan coefficient depends on initial, transferred
and final isospins Ti, T , and Tf . The differential cross sections
( dσ
d�

)DWUCK to particular (N,L, J, T ) states are calculated
using the code DWUCK4 [26].

The form factor of the deuteron is obtained by the usual
procedure of adjusting the well depth of a Woods-Saxon
potential with geometrical parameters r0 = 1.15 fm and a =
0.76 fm [27,28] to obtain the correct binding energy and
wave function characteristics. As was implied earlier, this
geometry results in macroscopic form factors that resemble
the microscopic ones very closely, as would be required.

The multistep cross sections, which are appropriate for the
second and higher steps of the (p,3He) reaction, are expressed
as (

d2σ

d�dE

)multistep

=
nmax∑
n=2

n+1∑
m=n−1

∫
dk1

(2π )3

∫
dk2

(2π )3
· · ·

∫
dkn

(2π )3

×
(

d2σ (kf , kn)

d�f dEf

)
×

(
d2σ (kn, kn−1)

d�ndEn

)
× · · ·

×
(

d2σ (k2, k1)

d�2dE2

)
×

(
d2σ (k1, ki)

d�1dE1

)1−step

p,p′
, (4)

where ki , kn, and kf are the momenta of the initial, nth,
and final steps. The number of reaction steps is indicated with
the symbol n, the maximum number of reaction steps is nmax

and m is the exit mode. Therefore the cross section associated
with m is given by the two-nucleon pickup reaction leading
to the emission of 3He, and all steps prior to the final step are
nucleon-nucleon collisions.

As was pointed out before [11], the specific structure
of the formalism facilitates separate calculation of multi-
step processes, such as two-step (p, p′,3He) and three-step
(p, p′, p′′,3He) reactions. Of course, as in previous work
[10,11], we do not allow the possibility of a (p, n,3He)
contribution, which corresponds to the pickup of a diproton.
Nevertheless, inclusion of different nucleons on an equal
footing in the multistep part of the reaction could be approx-
imately compensated for by a renormalization of the relevant
(p, p′) and (p, p′, p′′) cross sections. However, such an
adjustment would affect only the global overall normalization
factor, which becomes irrelevant when the magnitude of the
theoretical cross section is refitted to the experimental data
anyway, as will be explained later.

The theoretical (p, p′) and (p, p′, p′′) double-differential
cross-section distributions which are required to calculate the
contributions of the second- and third-step processes were
derived from Refs. [29,30]. These cross-section distributions
were extracted by means of a FKK multistep direct reaction
theory, which reproduce experimental inclusive (p, p′) quan-
tities [30] on target nuclei which are close to those needed
for this work, and in an appropriate incident energy range.
Interpolations and extrapolations in incident energy and target
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mass were introduced to match the specific requirements
accurately.

It should be noted that the theory contains an overall
normalization constant N , as expressed in Eq. (3), which we
adjust to reproduce the experimental cross-section angular
distribution at a high emission energy where the one-step
reaction dominates. This procedure is best from a theoretical
point of view, because the accumulated uncertainty resulting
from our specific choice of input ingredients in the formulation
would be less than for the higher order steps. Of course, as
we will see, the analyzing power is a ratio of cross sections,
therefore it does not depend on the value of this normalization
constant.

B. Analyzing power distributions

The analyzing power in terms of protons polarized to a value
P+ in the positive (up) direction as defined by the Basel [31]
and Madison [32] conventions, is given by

Ay = 1

P+

(
σL − σR

σL + σR

)
, (5)

where σL and σR are the double-differential cross sections
for the emission of hellions to the left L and right R of the
incident particle beam, respectively. An analogous expression
holds when the proton polarization is flipped relative to the
scattering plane. A fully polarized beam has a magnitude of
unity.

The multistep expression for the analyzing power becomes

Amultistep = A1
(

d2σ
d�dE

)1−step + A2
(

d2σ
d�dE

)2−step + · · ·(
d2σ

d�dE

)1−step + (
d2σ

d�dE

)2−step + · · ·
, (6)

with Ai , {i = 1, 2, . . .} referring to analyzing powers for the
successive multisteps.

C. Optical potentials in the DWBA calculation

Important ingredients in the theoretical description of the
nuclear reaction properties are the optical potentials, which
take into account the interaction between projectile and target,
and between the ejectile and the heavy residual nucleus,
respectively. The potentials contain volume V and spin-orbit
VSO parts, which are both complex in general, expressed as

U (r) = V (r) + VSO(r) L · S, (7)

where r is the relative radial coordinate, L the angular
momentum, and S the intrinsic spin of the projectile.

In our previous studies [10,11] we have used the global
optical potential of Madland and Schwandt [33,34] for protons
and a double folding potential based on the DDMY3 effective
interaction [35,36] for 3He.

In this work we treat the volume part of the optical potentials
in the incident and the outgoing channels on the same footing
by application of the hybrid nucleus-nucleus optical potential.

The hybrid nucleus-nucleus optical potential [37] has real
and imaginary parts:

U (r) = NRV DF(r) + iNIW (r) (8)

which generally depend on the radius–vector r connecting
centers of the interacting nuclei. The parameters NR and NI

correct the strength of the microscopically calculated real V DF

and imaginary W constituents of the whole potential.
The real part V DF is that double-folding potential that

consists of direct and exchange components:

V DF(r) = V D(r) + V EX(r) (9)

with

V D(r) =
∫

drp drt ρp(rp)ρt (rt )v
D
NN (s), (10)

V EX(r) =
∫

drp drt ρp(rp, rp + s)ρt (rt , rt − s)

× vEX
NN (s) exp

[
iK(r) · s

M

]
, (11)

where s = r + rt − rp is the vector between the projectile
and target nucleons. The reduced mass coefficient is M =
ApAt/(Ap + At ), where Ap and At refer to the projectile and
target atomic mass numbers. The quantities ρp(rp) and ρt (rt )
are their density distributions, ρp(rp, rp + s) and ρt (rt , rt − s)
are the density matrices, which are approximated as in
Ref. [38]. The effective NN potentials vD

NN (of CDM3Y6-
type) are based on the Paris NN potential:

vD
NN (E, ρ, s) = g(E)F (ρ)

3∑
i=1

Ni

exp(−μis)

μis
. (12)

The energy and density dependencies are, respectively,

g(E) = 1 − 0.003E/Ap, F (ρ) = C[1 + αe−βρ − γρ],

ρ = ρp(rp) + ρt (rt ). (13)

The parameters in Eqs. (12) and (13) are defined in Ref. [39].
For the incident channel calculations, ρt for 93Nb was taken
as the standard Fermi form, with parameters from [40]. For
the exit channel, a modified harmonic oscillator expression
ρp = 0.108 exp(−0.3425r2) was used for 3He, whereas a
three-parameter Gaussian with parameters from Ref. [40] was
used for 91Zr.

One should note that in Eq. (11) the radial part of the
nucleus-nucleus momentum K(r) depends on the folding
potential V DF(r) itself:

K(r) =
{

2Mm

h̄2 [E − V DF(r) − Vc(r)]

}1/2

, (14)

where Vc is the Coulomb potential, M as defined earlier, and
m is the nucleon mass. Evidently the calculation of the folding
potential V DF in Eq. (9) is a typical nonlinear problem.

The imaginary part of the optical potential W (r) in Eq. (8)
may have the same form as its real counterpart V DF, or can
be calculated separately within the high-energy approximation
[41] as it was developed in Ref. [37].

The microscopic optical potential obtained in the high-
energy approximation in the momentum space has the
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form

UH
opt(r) = −E

k
σ̄N (i + ᾱN )

1

(2π )3

×
∫

dq e−iq·rρp(q)ρt (q)fN (q) . (15)

Here the NN total scattering cross section σ̄N and the ratio
of real to imaginary parts of the forward NN amplitude
ᾱN are averaged over the isospins of the nuclei. They are
parameterized as given in Refs. [42,43]. The NN form factor
is taken as fN (q) = exp(−q2β/2) with the slope parameter
β = 0.219 fm2 [44]. In fact, we used only the imaginary part
of Eq. (15) transformed to the form

WH (r) = − 1

2π2

E

k
σ̄N

∫ ∞

0
j0(qr)ρp(q)ρt (q)fN (q)q2dq.

(16)

Details about the calculations of the hybrid optical potential
are presented in Refs. [37,39,45,46].

The hybrid optical potential as described above has been
already successfully applied, e.g., in Refs. [47–49] for the
analysis of elastic scattering data of light exotic nuclei.

It turned out that the shape of the analyzing power is rather
sensitive to the spin-orbit part of the optical potential both
in the incident and the outgoing channels. Consequently care
had to be taken in the selection of appropriate potentials. Good
agreement with the experimental data was obtained by using
for protons (incident channel) a Woods-Saxon shape of the
real and imaginary part of VSO(r). The parameters are those,
listed in Ref. [50]. For the spin-orbit potential of 3He (outgoing
channel), on the other hand, we used the real volume part of the
folding potential Eq. (9). The renormalization constants NR

and NI in Eq. (8) in the incident channel are kept equal to unity,
while their values for the exit channel were adjusted to follow
the emission-energy trend of the experimental analyzing power
data (see Table I).

Our treatment of NR and NI in the outgoing channel as
free parameters which are fitted to the data, is consistent
with the procedure followed in Ref. [49]. The values found
in our present investigation, and the trend observed as a
function of emission energy, need further theoretical analysis
and complementary experimental studies for proper evaluation
and interpretation.

The last coefficient we have used to reproduce the exper-
imental data for the double-differential cross section for the
one-step reaction is N in Eq. (3). The value that we needed
to fit the data at Eout = 150 MeV, where the direct transfer
reaction is the most probable, is N = 0.12. It is kept constant
for all calculations of the one-step reaction cross sections.

TABLE I. Values of the renormalization constants NR and NI in
Eq. (8) for the outgoing channel.

Eout (MeV) 150 126 102 82

NR 0.5 0.3 0.25 0.25
NI 0.0 0.01 0.05 0.08

FIG. 1. Double-differential cross sections (a)–(d) and analyzing
power (e)–(h) as a function of scattering angle θ for the 93Nb(p,3He)
reaction at an incident energy of 160 MeV and various 3He outgoing
energies Eout as indicated. Theoretical cross section calculations for
one step (− − −) two steps (− · − · −), and three steps (· · · · ·) are
shown, with the sums of the contributions plotted as continuous
curves. The experimental analyzing power distributions are compared
with theoretical calculations for a one-step reaction (− − −), a
one-step plus a two-step reaction (− · − · −), and a one- plus two-
plus three-step reaction (solid lines).

IV. RESULTS

Double-differential cross-section and analyzing-power an-
gular distributions for the 93Nb(p,3He) reaction at an incident
energy of 160 MeV are displayed in Fig. 1 for various outgoing
energies of 3He. The theory reproduces the experimental
quantities reasonably well, especially if we keep in mind that
the accuracy of the calculations is limited to some extent by
uncertainties inherent to the input ingredients of the theory, as
implied in Sec. III.

All the theoretical cross section distributions were normal-
ized with a single factor extracted from the angular distribution
at an emission energy Eout of 150 MeV, for which the one-step
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reaction dominates. As explained in Sec. III, this procedure
is based on theoretical considerations. However, experimental
uncertainties in, for example, the emission energy calibration
would result in a systematic error in the cross section which is
worst at the top end of emission energies. Consequently, the
fact that the cross sections appear to be mostly underestimated
by the theory could merely be an artifact of our normalization
procedure. Within these constraints, the overall agreement
for the cross section angular distributions is nevertheless
satisfactory. Of course, as was mentioned earlier, the analyzing
power is unaffected by this.

The value used to display the theoretical double–differential
cross section data in Fig. 1 is N = 0.12. One may speculate
that this value is relevant to the preformation factor of
the deuteron in the target nucleus, but proof of such a
relationship would require extensive additional systematic
studies. Nevertheless, in any such interpretation one should
keep in mind that our model of the picked up nucleon
pair as a deuteron is merely a matter of convenience,
which gives approximately the same result as a microscopic
treatment.

As in our previous work [10–12], and as expected for the
multistep character of the reaction process, the dominant step
in the chain changes drastically as a function of emission
energy. This has a profound influence on the features of the
analyzing power angular distributions, and to a lesser extent
to those of the cross section distributions.

At the incident energy of 160 MeV of the present work,
the analyzing power of the 93Nb(p,3He) reaction approaches
zero very rapidly as the emission energy drops. It should be
noted that results are only shown down to an emission energy of
82 MeV in Fig. 1, but below this outgoing energy the analyzing
power remains essentially zero, as was explicitly shown in our
preliminary report of this work [17].

To a large extent a decreasing analyzing power towards
lower emission energy and larger scattering angles is a natural
phenomenon associated with the multistep character of the
reaction mechanism, and in itself is therefore not surprising.
However, why such a trend should become especially drastic
as the incident energy is increased, is not obvious.

The drop in analyzing power as the incident energy is
increased from, say 100 MeV to 200 MeV, appears to be well
established [11,15,16], and although only a few nuclear species
have been investigated to date, it seems to hold generally.
An illustration of this quenching of the analyzing power
with increasing incident energy is provided in Fig. 2, where
an energy distribution from this work for the 93Nb(p,3He)
reaction at a scattering angle of 40◦ is compared with one from
Ref. [10] at the same scattering angle, but at a lower incident
energy of 100 MeV. Within the limitation of the theoretical
implementation, the calculations track the experimental ana-
lyzing power distributions in Fig. 2 as accurately as would be
expected. Thus the observed trend is reproduced by the theory,
in spite of the fact that a simple reason for the quenching
remains obscure.

From this work, together with our previous studies [10,11],
it is known that there is a clear correlation between low
values of analyzing power and the relative importance of
multistep contributions in the explored incident energy range.

FIG. 2. Emission energy distributions of the analyzing power for
the reaction 93Nb(p,3He) at a scattering angle θ of 40 degrees at
incident energies of 100 (a) and 160 MeV (b). The curves represent
theoretical calculations which include a total of up to three steps. Note
that the energy scales are different on the upper and lower panels. The
experimental and theoretical results at an incident energy of 100 MeV
are derived from Ref. [10].

Consequently, it is reasonable to expect that the observed
quenching of the analyzing power towards higher incident
energy is also related to the influence of higher steps in
the reaction process. However, Cowley [51] showed that the
first-step contribution drops off considerably more slowly with
increasing incident energy than the higher steps. In other
words, higher steps should influence the analyzing power
less, instead of more, as the incident energy is increased. This
suggests that the incident-energy dependence of the quenching
may perhaps be linked to the trend of the first step itself.
Unfortunately, due to the convoluted nature of the theoretical
expression for the analyzing power, it is difficult to quantify
the origin of the observed phenomenon from the results of
the present experiment. Therefore, in order to investigate the
behavior of the single-step analyzing power further, a new
study [52] is planned in which the (p,3He) direct reaction
to discrete final states with known spins and parities will be
measured.

In the present work we have extended our earlier investiga-
tion [11] to a complete study for 93Nb(p,3He) at an incident
energy of 160 MeV, which can now be compared with results
at lower incident energy. This allows the implicit assumption
in our earlier work, that 93Nb should behave analogously to
59Co at the highest energy, to be confirmed. The new results
are found to be consistent with those from lower incident
energies [10,11]. Furthermore, although detailed differences
are encountered for this target nucleus compared to 59Co [11],
as would be expected, the basic reaction mechanism clearly
remains similar.
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V. SUMMARY AND CONCLUSIONS

The reaction 93Nb(p,3He) at an incident energy of 160 MeV
leading to ejectiles into the continuum of excitation, was
investigated. Double-differential cross section and analyzing
power angular distributions were measured between 15◦ and
60◦ at various emission energies.

The experimental results were investigated in terms of
a statistical multistep formulation in which each individual
sequence of steps may end up with emission of 3He. The
ejectile is assumed to originate from a two-nucleon pickup
process in the terminal stage. The theoretical predictions are
in reasonable agreement with the angular distributions of
the measured quantities. This study gives a description of
the (p,3He) reaction on 93Nb which is consistent with the
published interpretation at lower incident energies down to
100 MeV.

Together with the earlier work, information regarding the
(p,3He) reaction on 93Nb now extends to the same incident
energy range between 100 and 160 MeV as for the target
nucleus 59Co. Therefore, it is possible to compare existing
insight into the reaction mechanism from the 59Co(p,3He)
reaction with conclusions derived from the complete set of
analyses for 93Nb. Analogous features are found to characterize
the (p,3He) reaction on these two target nuclei.

The well-established quenching of the analyzing power
with increasing incident energy is confirmed and clearly
manifested in the present investigation. It appears likely
that this result is a natural outcome of the incident-energy
dependence of a direct reaction that is driven by a multistep
mechanism. Unfortunately the use of analyzing power to
unravel the reaction mechanism of nucleon-induced pre-
equilibrium composite particle emission appears to diminish
beyond the incident energy investigated in this study.

Clearly it is desirable to conduct further experiments
on a wider range of target nuclei. Also, further theoretical
refinement and development would be invaluable.
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