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Background: The R matrix formalism of Lane and Thomas has proven to be a convenient reaction theory for
solving many-coupled-channel systems. The theory provides solutions for bound states, scattering states, and
resonances for microscopic models in one formalism.

Purpose: The first purpose is to extend this formalism to the relativistic case so that the many-coupled-channel
problems may be solved for systems in which binary breakup channels satisfy a relative Dirac equation. The
second purpose is to employ this formalism in a relativistic continuum shell model.

Methods: Expressions for the collision matrix and the scattering amplitude, from which observables may be
calculated, are derived. The formalism is applied to the 1p-1h relativistic continuum shell model with an
interaction extracted from relativistic mean-field theory.

Results: The simplest of the 0 4+ w + p exchange interactions produces a good description of the single-particle
energies in '°0 and *°Zr and a reasonable description of proton scattering from '3N.

Conclusion: The development of a calculable, relativistic R matrix and its implementation in a 1p — 1k
relativistic continuum shell model provide a simple relatively self-consist physically justifiable model for use in

knockout reactions.
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I. INTRODUCTION

The R matrix formalism of Lane and Thomas [1] has
proven to be the most physical and convenient reaction
theory for solving many-coupled-channel systems in light-
and medium-mass nuclei. It is not uncommon to couple
30 or more residual states of the target in nonrelativistic
calculations, and new computer codes need not be written
each time states are added. Microscopic models and nonlocal
potentials are easily incorporated in the theory. In addition
to providing scattering states, the formalism yields bound
states and resonances. Coupled-channel techniques, which
involve integrating coupled differential equations, can become
unstable for large numbers of channels, and they can miss
narrow resonances because the equations must be solved for
each energy over the resonance. Also, scattering observables
are calculated quickly at a given energy in the R matrix
formalism because they require diagonalizing matrices whose
dimensions are just the number of channels. Additional
advantages may be found in a review paper by Descouvemont
and Baye [2] and applications in a review in Ref. [3].

This paper is the last of a series of three papers that
describe the extension of the R matrix theory to the relativistic
case so that the many-coupled channels problem may be
solved for systems in which binary breakup channels satisfy
a relative Dirac equation. The first paper [4] demonstrated
that a R matrix theory exists for the Dirac equation and
derived the appropriate Bloch operator. Then, an example was
given for 35.5-MeV neutron scattering from a Woods-Saxon
potential. The expansion basis consisted of the free-particle
Dirac solutions whose upper components were zero at twice
the R matrix radius.

Paper [5] demonstrated that Dirac oscillator wave functions
[6,7] provided an excellent and convenient expansion basis.
This paper also demonstrated that the R matrix formalism
allows one to easily orthogonalize scattering solutions to
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bound-state solutions and to treat nonlocal potentials; and,
hence, to calculate exchange terms in relativistic impulse ap-
proximation exactly. Examples were given for 160-200-MeV
elastic proton scattering from '°0O, “°Ca, and °°Zr in the
impulse approximation with the two-nucleon ¢ matrix elements
of Ref. [8]. In Ref. [5], it was shown that the common local-
density approximation for the exchange terms was inadequate
in relativistic calculations. The discrepancy between the exact
and the local-density approximation calculations was traced
to the extreme difference between the matrix elements of the
negative energy states of the basis functions and, hence, was a
relativistic effect.

The present paper provides derivations of the collision
matrix expression for coupled channels and the scattering
amplitude from which scattering observables can be extracted.
As an example of the formalism, relativistic continuum
Tamm-Dancoff approximation (TDA) calculations for '°O
are performed with interactions derived from relativistic
mean-field theory. Specifically, the formalism referred to as
quantum hydrodynamics (QHD) [9] is employed. The classical
meson fields of the original QHD are replaced by one-meson
exchange potentials. The validity of this replacement is
checked by comparing single-particle energies (SPEs) for
907z, calculated from both treatments with the same coupling
constants. Surprising agreement is found between the two
procedures with the simple o + @ + p exchange. In addition,
the simple ¢ + @ 4+ p exchange with QHD coupling
constants provides reasonable agreement with experimental
5N (p,p) N cross sections at 39.84 MeV. This is, there-
fore, a simple, physically justifiable interaction for later use
in knockout reactions. The importance of coupled-channel
solutions in (e,e’x) was emphasized in Ref. [10]. Finally, the
role of pions is investigated. It is found that pions have a
significant effect on SPEs and the N + p Cross section,
however, a definitive conclusion on their utility awaits a better
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approximation for the matrix elements with pseudovector & N
coupling.

II. R MATRIX FORMALISM

Solutions to the one-channel Dirac equation will be written
in the two-component form

_( IF0)/r1®y
D= ([iG(r)/r]obm)” 1

where

Pem =Y Co% Y1 (0. $)Xom, )

memy

wherej = [k| — 5 Land ¢ = k for k > 0 but £ = —(x + 1) for
k <0and 7 1nd1cates a proton or neutron. The regular and
irregular Dirac-Coulomb functions are generated as given by
Young and Norrington [11] employing the code cOULCC [12],
and they are given the asymptotic form

Fr=~E+msin ¢(r) and Ggr =+ E —mcos ¢(),
Fir=vE+mcos ¢(r) and G;p=—+vE —msin ¢(r),

where ¢(r) =kr + y log 2kr + 8, — €7 /2, k is the momentum
of the proton in the center-of-momentum system, y =
ZEE[k, E* = m3 + k%, 8, =W —arg T(y +iy)+ 5 +

1—y),e?Y = %,andy = (k> — Z%e*)'”2. Throughout
this paper, ¢ = i = 1. Incoming and outgoing waves are

constructed as

F[IFIR—iFR and G1=G1R—iGR makinguplc,

and

Fo=Fg+iFg and G = G;g + iGg making up O,

where ¢ indicates a particular channel, |[jkt, Jo(Jp)), Ja is
the target spin, and Jp the total angular momentum. A wave
function with unit outgoing flux is O.//2k..

The appropriate modifications for expanding the one-
channel case, given in Ref. [5], to the many-channel case
are as follows. The wave function is expanded within the
channel radius as ¢ = ), A;|2). The set of |A) will be Dirac
oscillators coupled to the spin of the target. The Hamiltonian
to be solved is

Z |:(A|H —EM) + Z Vac(bre — bc)l/wc] Ay =0, 3

W

where
be = Glac)/Felac), “4)
by = Giclac)/Fie(ae), ®)
and
Vie = Frclac). (6)

G. and F, are the components of the physical wave function
in channel c. The theory is placed in calculable form in the
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method of Philpott [13] in which one finds a transformation 7
such that

> Tul(MHIV) + Zmbxm 1w = Epduy. (1)

AN

With this transformation, Eq. (3) becomes

Y Ew = EYuw = Y VucheVwelAw =0, (8)
w c

where y,c = Y, VacThy, andA; = Z# T, A,. One changes ¢
to ¢’ in Eq. (8), multiplies by y,./(E,, — E), and sums over p

to obtain
y c’ y cUc’
Ye = , Z, EE ZA/LVuc’ &)
p
or
Z [500’ - Rcc’bc’]yc’ = 0’ (10)
where
Yo=Y AuVue: (11)
2
and
Ree = YucYue (Ey — E). (12)
0

The amplitudes are extracted from Eq. (9),

1 1
A= —— cbc c= = - Gelae). 13
m EM_EXC:VM Y E/L_EZC:)/M (ac). (13)

A general solution for the coupled channels wave function
in the external region is [1]

Ye
v = —1. ).
Z (Izk V2k, )
The collision matrix S provides an expression for the x. in
terms of the y.. In matrix notation,

x = —Sy. (15)

From Egs. (4), (6), (10), and (14), the fundamental R matrix
equation for the relativistic case relates the upper components
of the wave functions to the lower,

FC = Z RCC’GC’ = Z Rﬂc’[GOC’xC’/V ch" + Glc’yc’/\/ 2kc’]
¢ ¢
= Focxe/\ 2ke + Fieye /v 2ke. (16)

If one defines diagonal matrices v.. = 2kc8cc, Xeer = ScerXes
Yeeo = ‘Scc/yc’ GOL'C’ = SCC/GOC’ Glcc’ = (Scc’Glca FOcc/ =
Sce' Foe, and Fioer = 8.0 Fe¢, this equation can be written as

Fov '>x 4+ Fiv~ /2y = RGov~/?x + RGyv~'/2y. If one
solves for x, one obtains the form in Eq. (15), x = —Sy, where

S = v!/2(Fo — RGo)™'(F; — RGy)v~'/2. (17)

Then the T matrix, T,., is in the usual form, i (8. — Sce)/2.
The scattering amplitude is found by following standard

techniques. Target (residual) states are noted as |aJsMay),

where J4, M4 are the spin and its projection and o

(14)
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distinguishes among states of the same spin. Target states
may be coupled to the angular momentum of the projectile
yielding states with total angular momentum and projection
| JaljJgMp). The scattering states are designated by the
target state, its projection, and the spin projection of the
projectile o. The resulting scattering amplitude is

<f>oto*MA,oz’o’M/’4
1 . . - PR
= > VAn Qe+ DComn Cotntrts Cotihgs Copton
(18)

The sum is over «, «/, o', Jg, Mg, m, m’, and m. Scat-
tering observables can then be calculated from the scattering
amplitude. For instance, the cross section would be given by

do 1

=225,
@Js+ 1)

L(0—0') I8+ /
Xl( )e( ”/)TaJAljJR,Ul’J,;K,j,JéYl/m/l(k )

Z |(fc>aa’81AaMA,JAa’MA
oo’ M, M),
2
+ (f)owM,\,ot’a’Mi\ s (19)

where ( f.)oo 1s the relativistic Coulomb scattering amplitude
[5], taken to be diagonal in the target states.

III. RELATIVISTIC CONTINUUM SHELL MODEL

The random-phase approximation and TDA equations for
QHD were derived in Ref. [14] following Ref. [15] and
appeared the same as the nonrelativistic equations. The TDA
equation is

(&r—¢eu—8)Copu+ Z [{BAIV]au) — (BA|V|pna)]Cop =0.
op
(20

To apply QHD to finite nuclei, the meson fields are taken
as classical fields and a set of Dirac equations solved in the
Hartree approximation [9,16]. The o and @ coupling constants
were fit to the saturation properties of equilibrium nuclear
matter, and the p coupling constant was determined from the
bulk symmetry energy. The o mass was determined so as
to reproduce the rms radius of 40Ca, and for the Coulomb
potential, one uses the contribution to the baryon density of
protons only, whereas, for the p, one uses half the difference
between the proton and the neutron densities. To implement the
QHD results in a TDA equation, the classical meson fields are
replaced with one-meson exchange potentials as in Ref. [14],

2 ,—mgr 2 ,—mgr
—8:¢ 7 A w€
V = —_
e + ¥ V2A47T
2 —m,r 2
. T Ty 8, e 0. 0€
— —, 21
triva—g ym +trin (21)

where the Coulomb interaction has been included. The
coupling constants employed are the same as those from
QHD calculations, although it is not clear that these should
be appropriate in structure calculations. The finite-Hartree
(FH) coupling constants of Ref. [9] are shown in Table I.
In addition, the hole SPEs, ¢,, and the wave functions are
taken as those from the FH, QHD calculation, generated with
the code TIMORA [16]. (A nucleon mass is added to the actual
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TABLEI Coupling constants. FH is finite Hartree; HF is Hartree-
Fock.

Meson Mass (MeV) FH, g? HF, g2
o 520 109.6 89.6
w 783 190.4 102.6
P 770 65.2 12.4
T 138 0 181

output of the code to obtain ¢,.) However, the particle SPE,
&y, are replaced by the interaction of the particle with the core
nucleons,

occe

. y Lo
Ejj = (jla:p+mBlj)+ ) (Vi voie(DIV
Jesd

2j+1

X [17je( D)) — (=Y T (I,

where the sum j. is over proton and neutron states below
the Fermi surface. The integrals extend only to the R matrix
radius. The notation is that (yyj| is @ = u™y, with angular
momentum j. A similar SPE definition could be made for the
hole states with | j) and |j’) replaced with | j;,) giving E}, j, .

Equation (20) is now an equation to be solved for the particle
wave functions for a given energy. The basis functions, the|\)
of Eq. (3), are particle-hole functions where the |j) are Dirac
oscillators specified by |nfjx) and hole states are the QHD
states generated with parameters FH as used to construct the
targets in Ref. [5]. Hole states are the target states with spin
Jn = Ja. A matrix element of the Hamiltonian (excluding the
Bloch operator) within the R matrix radius is

(J ® jn(UpIHI] & ji(Jp))

= Ejj —£,8j,, — > Q]+ DW(ijnjwi's JsJ)
J

X (Yo jw Yo i (DIVILjnj (1)) — (=Y jj(IN],

The particle wave functions are orthogonal to the hole states,
and the exchange terms are calculated exactly in the method
of Ref. [5].

To check whether replacing the classical fields with one-
meson exchange potentials is appropriate, one can compare
the single-particle energies of the hole states calculated from
QHD and those calculated by the interaction of the hole state
with particles in the core E}, j,. The comparison is performed
for two nuclei '°0 and *Zr. One is interested in '°0 because
it is the subject of numerous (e,e’x) experiments and the
question of the role of relativity in these reactions, however,
only six SPEs can be compared for this nucleus. Therefore,
a comparison is first made for *°Zr, which has 21 SPEs. The
0Zr comparison is shown in Table II for EY;, = E;; — My.
The first column lists the QHD output from TIMORA. The
second column is from the one-pion exchange calculation with
the same coupling constants. Although the SPEs calculated
with the potential are shifted upward slightly and have some
difficulties with the spin-orbit splitting, the agreement between
the two calculations is surprising. In Table III is shown the SPE
comparison for '°0 where the agreement is similar. Also shown
in this table are the experimental SPEs and those from a recent

(22)

(23)
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TABLE II. Single-particle energies for °Zr in MeV. Column 1 is the QHD finite-Hartree result; column 2 is the one-meson exchange with
finite-Hartree parameters; column 3 is the same as column 2 plus pseudoscalar pions; column 4 is the same as column 2 plus pseudovector
pions in the effective mass approximation; column 5 is the one-meson exchange with QHD Hartree-Fock parameters plus pseudoscalar pions.

State FH, QHD FH, E7, FH, E, ps FH, E3, M* HF, E%,, ps
0s12(p) —52.43 —49.11 37.17 —30.32 —16.59
0p3/2(p) —42.06 —40.32 36.42 —20.99 — 1424
0p12(p) —39.54 —35.30 47.47 —19.04 —6.96
0ds»(p) —30.15 —29.96 36.26 —~10.33 —~9.99
151/2(p) —20.93 — 1625 52.86 —2.60 3.22
0ds»(p) —24.86 —19.88 54.27 —6.56 1.39
0 f72(p) —17.62 —18.73 36.54 0.52 —4.04
1p32(p) —6.92 —2.54 52.25 7.92 10.96
0f52(p) 955 —4.13 57.14 5.99 9.17
1p12(p) —5.11 0.10 53.94 8.96 13.02
0s1/2(n) —62.72 —54.55 30.44 —38.20 —26.78
0p3)2(n) —51.04 —44.17 30.79 —27.80 —23.70
0p1)2(n) —48.80 —39.92 42.77 —2541 — 1531
0dls () —38.18 —32.82 30.52 —16.53 —19.40
151 () —30.30 —21.19 45.05 —~9.59 —-733
0ds)5(n) —33.20 —23.53 51.24 —11.64 —5.49
0 f5/2(n) —25.07 —21.34 30.02 —5.60 —13.63
1p30(n) —15.94 —7.84 44.53 0.73 0.65
0f52(n) —17.23 —7.22 54.56 1.67 3.03
1p1)2(n) —14.03 —4.94 47.39 2.33 3.58
0go/2(n) —12.26 —10.08 29.53 427 —6.47

nonrelativistic Hartree-Fock [17] calculation. These last two
columns demonstrate that the original QHD, FH calculation
has some difficulty with the spin-orbit splitting.

The R matrix is now calculated for '°O, and the R matrix
level energies for J* = 2~ are plotted in Fig. 1. In a
nonrelativistic calculation, one would have R matrix levels
below threshold corresponding to bound states, levels above
threshold corresponding to resonances, and levels very much
above threshold that comprise the continuum. These levels
appear in the relativistic calculation as well, however, a nearly
equal number of negative energy levels appear approximately
one nucleon mass below threshold. These levels are absolutely
necessary for the cross-sectional calculations.

In Fig. 2, the solid line represents the calculated 39.84-MeV
elastic-scattering cross section for protons on >N with the FH
parameter set, the same set used to calculate the bound-state
wave functions and bound-state SPEs. Hole states |j;,) are

TABLE III. Single-particle energies for '°0 in MeV. Column 1 is
the QHD finite-Hartree result; column 2 is the one-meson exchange
with finite-Hartree parameters; column 3 shows experimental values;
column 4 shows results of a nonrelativistic Hartree-Fock calculation.

State FH,QHD  FH, E}, Exp. Ref. [17]
Lsi2(p) -372 -36.2 —-37+4 —354
1p32(p) —-16.7 —17.8 —174 —18.6
1p12(p) —-8.8 —4.0 —12.1 —125
Ls1/2(n) —41.4 —-39.0 —40 £ 4 —386
1p3a(n) —-20.6 —-20.8 —-21.8 —-21.8
1p1)a(n) —125 —-6.7 —15.7 —15.6

limited to the p shell, and their energies are taken as those
from the QHD calculation. No pions are included in the
FH interaction. The agreement with the data [18] is again
surprisingly good. With only four core states, no absorption,
and such a simple interaction, one does not expect the calcu-
lation to fit the backangle data. However, based on equivalent
nonrelativistic calculations, one does expect a reasonable fit to
forward angles, and this is accomplished. Included in Fig. 2
as a dotted line is the equivalent nonrelativistic calculation
with the recoil corrected continuum shell model [19] and the

1000 —
0 — — —
~—~~
= L
q) [
= L
~— L
T —1000 —
> L
2
= i
—2000 —
—3000 —

FIG. 1. R matrix levels for J* =2".
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FIG. 2. Cross section for 39.84-MeV protons on *N. The solid
line uses FH parameters; the dashed line uses FH parameters plus
pseudoscalar w N coupling; the dot-dashed line uses effective mass
approximation to pseudovector 7w N coupling; the dotted line is
nonrelativistic calculation. Data are from Ref. [15].

M3Y [20] interaction. The agreement with the data is about
the same. The relativistic continuum shell model with the
FH interaction is, therefore, a simple relatively self-consistent
physically justified model in which to investigate relativistic
contributions in knockout reactions.

IV. PIONS

If one looks at the solid line in Fig. 2 as if it were
scattering from a Woods-Saxon potential, one would consider
altering the diffuseness to obtain a better fit. Indeed, QHD,
FH has no pions whose longer range would alter the surface
properties of an equivalent Woods-Saxon. Therefore, a brief
look at the possible role of pions is worthwhile. The pions can
be added by making the instantaneous approximation to the
one-meson exchange propagator. In the case of pseudoscalar
coupling, the energy transferred is settozero,and A(x’ — x) =

o—iq(' —x) 2 .
| G MO0 [ ml, — ie)d(r

— t). The onurler transform ylelds a Yukawa, and the term
Yy TITa e
looks quite adequate if the energy transferred is reasonably
small. However, the procedure is less satisfactory in the case
of pseudovector coupling. The vertex function( f; /m)ys4t;
includes a term with the energy transferred. Setting this
term to zero is very different than setting it to zero in the
denominator of the propagator. However, a simple approx-
imation was proposed in Ref. [14] in which pseudovector
coupling is approximated by using an effective nucleon mass
in the pseudoscalar matrix elements. The prescription is

becomes — [ £ el

PHYSICAL REVIEW C 85, 054617 (2012)

that one uses the Yukawa interaction above, multiplied by
[M*(x))/M][M*(x2)/M], where M* = M — gs¢(r) and
gso(r) is the scalar potential for the hole states. The effective
mass approximation provides a density dependence for the
interaction, although a severe one, the interior pion potential
being reduced by approximately 75%.

The N (p,p) "®N cross section with the FH coupling
constants and pseudoscalar coupling with g% = 181 appears
as a dashed line in Fig. 2. The cross section is more diffractive,
but the fit is poor. This is reflected in the enormous increase
in the *°Zr single-particle energies as shown in column 3 of
Table II. This increase shows that, for these coupling constants,
the pions are producing repulsion, just as they did in the
Hartree-Fock calculations of QHD [9]. Also shown in Fig. 2,
as a dot-dashed line, is the cross section with the effective mass
approximation to pseudovector coupling. This addition has a
smaller effect as one would expect from derivative coupling. It
also improves the diffraction peak locations, but the severity of
the density dependence produces unusual backangle behavior.
The effective mass approximation produces the SPEs in
column 4 of Table II, and they are certainly an improvement
over the full pseudoscalar results. It is now clear why the
structure calculations in Ref. [14] preferred this approximation
to pseudovector coupling over pseudoscalar coupling.

Additional sets of coupling constants were obtained in
the Hartree-Fock calculations of QHD, which included pions
in the coupling constant fit [9]. The n N coupling was
pseudovector. One set of these coupling constants is given
in Table I under the title HF. The SPE results of this
representative set are shown in column 5 in Table II for
pseudoscalar coupling. These SPEs are underbound. Use of
the effective mass approximation to pseudovector coupling

10t — 3
E | ‘ ‘ ‘:
co b
r 15 15 -
I N(p,p)~°N ]
103 - F E =39.84 MeV —
£ S+ p =
B £ 3
C + ]
/N | \ _

& +
L10R = ' —
te § ]
) B ]
c i ++4 N >~
Dot Tt E
5 C + 3
< L + ]
i n ]
100 jEa —
g + E
B + L]
i N ]
10t IT
£ | ‘ | ‘ | | | ‘:
0 50 100 150

0, (deg)

FIG. 3. Cross section for 39.84-MeV protons on *N. The dashed
line uses HF parameters plus pseudoscalar 7 N coupling; the solid
line is the same but without pions. Data are from Ref. [15].
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produced extremely underbound SPEs and is considered
unacceptable. The cross section with pseudoscalar coupling is
shown as the dashed line in Fig. 3, and the cross section with
no pions is shown as a solid line. The inclusion of the pions
improves the cross section considerably, especially the location
of the diffraction peaks, but the cross section still rises at
backangles.

One can conclude that pions have the capability to alter the
cross section, especially in a manner normally associated with
surface effects. However, it would be very beneficial to have a
better approximation for calculating the pseudovector matrix
elements to adequately judge its effect.

V. CONCLUSION

This paper provided the final derivations for a R matrix
formalism so that the many-coupled-channel problem may be
solved for systems in which binary breakup channels satisfy

PHYSICAL REVIEW C 85, 054617 (2012)

a relative Dirac equation. Expressions for the collision matrix
and the scattering amplitude are presented, and from these, one
may calculate scattering observables. In addition to providing
scattering states, this R matrix formalism may also be used to
calculate resonances and bound states.

The formalism is applied to relativistic continuum TDA
calculations for '°0 with interactions derived from relativistic
mean-field theory. It was determined that even the simple
o + w + p exchange with QHD coupling constants provides
reasonable agreement with experimentally determined SPEs
and the experimental >N (p, p) '°N cross section at 39.84 MeV.
This is, therefore, a simple physically justifiable interaction for
later use in knockout reactions.
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