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Large collection of astrophysical S factors and their compact representation
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Numerous nuclear reactions in the crust of accreting neutron stars are strongly affected by a dense plasma
environment. Simulations of superbursts, deep crustal heating, and other nuclear burning phenomena in neutron
stars require astrophysical S factors for these reactions (as a function of center-of-mass energy E of colliding
nuclei). A large database of S factors is created for about 5000 nonresonant fusion reactions involving stable
and unstable isotopes of Be, B, C, N, O, F, Ne, Na, Mg, and Si. It extends the previous database of about
1000 reactions involving isotopes of C, O, Ne, and Mg. The calculations are performed using the São Paulo
potential and the barrier penetration formalism. All calculated S data are parameterized by an analytic model for
S(E) proposed before [Phys. Rev. C 82, 044609 (2010)] and further elaborated here. For a given reaction, the
present S(E) model contains three parameters. These parameters are easily interpolated along reactions involving
isotopes of the same elements with only seven input parameters, giving an ultracompact, accurate, simple, and
uniform database. The S(E) approximation can also be used to estimate theoretical uncertainties of S(E) and
nuclear reaction rates in dense matter, as illustrated for the case of the 34Ne+34Ne reaction in the inner crust of
an accreting neutron star.
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I. INTRODUCTION

Nuclear burning is an important ingredient of stellar
structure and evolution [1–3]. Simulating the evolution and
observational manifestations of different stars (from main-
sequence to giants and supergiants, presupernovae, white
dwarfs, and neutron stars) requires the rates of many reactions,
involving different nuclei: light and heavy, stable and neutron-
rich. These rates are derived from respective reaction cross
sections σ (E), where E is the center-of-mass energy of
reactants.

The rates of many reactions which occur in the classical
thermonuclear regime—for instance, in main-sequence stars—
are well known. However, nuclear burning in dense plasma
of white dwarfs and neutron stars [4], which affects the
evolution and many observational manifestations of these
objects, may proceed in other regimes, under strong effects
of plasma screening and pycnonuclear tunneling through a
Coulomb barrier (e.g., Refs. [5–7]). The burning powers
nuclear explosions in surface layers of accreting white dwarfs
(nova events), in cores of massive accreting white dwarfs or
in binary white dwarf mergers (type Ia supernovae) [8–10],
and in surface layers of accreting neutron stars (type I x-ray
bursts and superbursts; e.g., Refs. [11–15]). Nova events and
type I x-ray bursts are mostly driven by the proton capture
reactions of the hot CNO cycles and by the rp process. This
burning is thermonuclear, without any strong effects of dense
plasma environment. Type Ia supernovae and superbursts are
driven by the burning of carbon, oxygen, and heavier elements
at high densities, where the plasma screening effects can be
substantial. It is likely that pycnonuclear burning of neutron-
rich nuclei (e.g., 34Ne+34Ne) in the inner crust of accreting
neutron stars in x-ray transients (in binaries with low-mass

companions; e.g., Refs. [14,16,17]) provides an internal heat
source for these stars. If so, it powers [18] thermal surface
x-ray emission of neutron stars observed in quiescent states
of x-ray transients (see, e.g., Refs. [14,19,20]) although other
energy sources can also be important there (e.g., Ref. [21]).

Therefore, in dense plasma of evolved stars, standard
classical thermonuclear reaction rates may be unavailable
and/or inapplicable. Accordingly, one needs to construct many
reaction rates, valid over all burning regimes, starting from
reaction cross sections σ (E). Here we focus on nonresonant
fusion reactions involving (A1, Z1) and (A2, Z2) reactants (Ai

and Zi stand for their mass and charge numbers), which may
occur in evolved stars. The cross section σ (E) is conveniently
expressed through the astrophysical S factor,

σ (E) = E−1 exp(−2πη) S(E), (1)

where η = α/(h̄v) = √
ER/E is the Sommerfeld parameter;

v = √
2E/μ is the relative velocity of the reactants at large

separations, α = Z1Z2e
2; ER = α2μ/(2h̄2) is analogous to

the Rydberg energy in atomic physics; and μ is the reduced
mass. The factor exp(−2πη) is proportional to the probability
of penetration through the pure Coulomb barrier U (r) = α/r

with zero angular orbital momentum, assuming that this pure
Coulomb barrier extends to r → 0 (as for pointlike nuclei);
E−1 factorizes out the well-known pre-exponential low-energy
dependence of σ (E). The advantage of this representation is
that S(E) is a more slowly varying function of E than σ (E).

For astrophysical applications, one needs S(E) at low
energies, E � a few MeV. Even for β-stable nuclei, exper-
imental measurements of σ (E) at such energies are mainly
not available because the Coulomb barrier becomes extremely
thick, making σ (E) exponentially small. It will be even more
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difficult to get such data for neutron-rich nuclei. Moreover,
the modeling of the processes at different astrophysical sites
(such as dynamic reaction network modeling of the neutron
star crust composition at high densities [22]) requires the
knowledge of S factors for a large variety of reactions, many
of which involve neutron-rich nuclei. The experimental study
of so many reactions is definitely beyond existing and near-
future capabilities. Therefore, one must rely on theoretical
calculations.

Previously [23] we calculated S(E) for 946 reactions
involving isotopes of C, O, Ne, and Mg. Also, we proposed [24]
a simple analytic model for S(E) and used it to fit calculated S

factors. The present paper significantly enlarges the database.
We have extended the calculations to incorporate new reactions
between even-even and odd(Z)-even isotopes. In particular, we
have calculated S(E) between isotopes of Be, B, C, N, O, F,
Ne, Na, Mg, and Si. Our new database of S(E) contains 4851
reactions. Moreover, we elaborate and simplify the analytic
S(E) model and use it to parametrize all S factors with
the minimum number of fit parameters producing, thus, an
ultracompact and uniform database convenient in applications.

II. CALCULATIONS

Consider a set of S factors for nonresonant fusion reactions
involving various isotopes of 10 elements, Be, B, C, N,
O, F, Ne, Na, Mg, and Si. The S factors for the reactions
involving even-even isotopes of C, O, Ne, and Mg have been
calculated recently in our previous paper [23]. Calculations
for other reactions are original and include even-even and odd
(Z)-even stable, proton-rich, neutron-rich, and very neutron
rich isotopes. Such isotopes can appear during nuclear burning
in stellar matter, particularly in the cores of white dwarfs
and envelopes of neutron stars. The calculations have been
performed using the São Paulo potential in the frame of
the barrier penetration model [25]. Nuclear densities of
reactants have been obtained in relativitic Hartree-Bogoliubov
(RHB) theory [26] employing the NL3 parametrization for
the relativistic mean-field Lagrangian [27] and the Gogny
D1S force for pairing. The model is based on the standard
partial-wave decomposition (� = 0, 1, . . .) and considers the
motion of reacting nuclei in the effective potential discussed
in Sec. III C [see Eq. (10) there]. The numerical scheme is
parameter free and relatively simple for generating a set of data
for many nonresonant reactions involving different isotopes.

The reactions in question are listed in Table I. All reactants
are either even-even or odd-even nuclei. We consider 55
reaction types, such as Si + Si and Be + B, with the range
of mass numbers for both species given in columns 2 and 3 of
Table I. For each reaction, S(E) has been computed on a dense
grid of E (with the energy step of 0.1 MeV) from 2 MeV to
a maximum value Emax (also given in Table I) covering wide
energy ranges below and above the Coulomb barrier. The last
column in Table I presents the number of considered reactions.

S(E) factors calculated using the São Paulo potential have
been compared previously [6,25,28] with experimental data
and with theoretical calculations performed using other models
such as coupled-channels and fermionic molecular dynamics

TABLE I. Fusion reactions (A1, Z1) + (A2, Z2) under considera-
tion. See text for details.

Reaction A1 A2 Emax Number
type MeV of cases

Be + Be 8–14 8–14 15.9 10
Be + B 8–14 9–21 16.9 28
Be + C 8–14 10–24 16.9 32
Be + N 8–14 11–27 17.9 36
Be + O 8–14 12–28 18.9 36
Be + F 8–14 17–29 18.9 28
Be + Ne 8–14 18–40 19.9 48
Be + Na 8–14 19–43 21.9 52
Be + Mg 8–14 20–46 22.9 56
Be + Si 8–14 24–52 23.9 60
B + B 9–21 9–21 15.9 28
B + C 9–21 10–24 16.8 56
B + N 9–21 11–27 17.8 63
B + O 9–21 12–28 18.8 63
B + F 9–21 17–29 18.8 49
B + Ne 9–21 18–40 19.8 84
B + Na 9–21 19–43 21.8 91
B + Mg 9–21 20–46 22.8 98
B + Si 9–21 24–52 23.8 105
C + C 10–24 10–24 17.9 36
C + N 10–24 11–27 19.8 72
C + F 10–24 17–29 20.8 56
C + O 10–24 12–28 17.9 72
C + Ne 10–24 18–40 19.9 96
C + Na 10–24 19–43 21.8 104
C + Mg 10–24 20–46 19.9 112
C + Si 10–24 24–52 24.8 120
N + N 11–27 11–27 17.8 45
N + O 11–27 12–28 19.8 81
N + F 11–27 17–29 20.8 63
N + Ne 11–27 18–40 21.8 108
N + Na 11–27 19–43 21.9 117
N + Mg 11–27 20–46 21.9 126
N + Si 11–27 24–52 24.8 135
O + O 12–28 12–28 19.9 45
O + F 12–28 17–29 21.8 63
O + Ne 12–28 18–40 21.9 108
O + Na 12–28 19–43 21.8 117
O + Mg 12–28 18–46 21.9 126
O + Si 12–28 24–52 24.8 135
F + F 17–29 17–29 19.8 28
F + Ne 17–29 18–40 21.9 84
F + Na 17–29 19–43 24.9 91
F + Mg 17–29 20–46 24.9 98
F + Si 17–29 24–52 29.9 105
Ne + Ne 18–40 18–40 21.9 78
Ne + Na 18–40 19–43 29.9 156
Ne + Mg 18–40 20–46 24.9 168
Ne + Si 18–40 24–52 29.8 180
Na + Na 19–43 19–43 21.8 91
Na + Mg 19–43 20–46 29.9 182
Na + Si 19–43 24–52 37.9 195
Mg + Mg 20–46 20–46 29.9 105
Mg + Si 20–46 24–52 39.8 210
Si + Si 24–52 24–52 39.8 120
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ones. Let us stress that the calculated values of S(E) are
uncertain due to nuclear physics effects—due to using the São
Paulo model with the NL3 nucleon density distribution. As
shown, for instance, in Ref. [28], typical expected uncertainties
for the reactions involving stable nuclides are within a factor
of 2, with maximum up to a factor of 4. For the reactions
involving unstable nuclei, typical uncertainties can be as large
as one order of magnitude, reaching two orders of magnitude at
low energies for the reactions with very neutron rich isotopes.
These uncertainties reflect the current state of the art in our
knowledge of S(E).

III. ANALYTIC MODEL

A. General remarks

Let us recall the main features of the analytic model for
S(E) proposed in Ref. [24] and used there to fit the initial set
of 946 S factors. We will elaborate and simplify the model and
fit a much larger set of data.

The model [24] is based on semiclassical consideration of
quantum tunneling through an effective potential U (r) (which
is purely Coulombic at large separations r but is truncated by
nuclear interactions at small r when colliding nuclei merge).
The reaction cross section at E < EC (where EC is the barrier
height) is taken in the form,

σ (E) = S0

E
exp

[
−2

h̄

∫ r2

r1

dr
√

2μ(U − E)

]
, (2)

where r1 and r2 are classical turning points and S0 is a slowly
varying function of E treated as a constant; it has the same
dimension as S(E) but should not be confused with it.

To obtain tractable formulas for S(E), in Ref. [24] we
employed the natural and simplest approximation of U (r),

U (r) = α

r
at r � RC1,

(3)

U (r) = EC

[
1 − β

(r − RC)2

R2
C

]
at r < RC1,

which is a pure Coulomb potential at r � RC1 and an inverse
parabolic potential at smaller r (see Fig. 1 in Ref. [24]). The
parabolic segment truncates the effective interaction at small
separations; EC = U (RC) is the maximum of U (r), that is,
the barrier height. We required U (r) and its derivative to be
continuous at r = RC1. Instead of β we will often use δ =
(RC1 − RC)/RC , which characterizes the width of the peak
maximum of U (r). Then U (r) is specified by two parameters,
EC and δ, with [24]

RC = α(2 + 3δ)

2EC(1 + δ)2
, β = 1

δ(2 + 3δ)
,

(4)

RC1 = RC (1 + δ), EC1 = U (RC1) = EC

2 + 2δ

2 + 3δ
.

The potential U (r) passes through zero at r = RC0 = RC(1 −
β−1/2); its behavior at smaller r is unimportant (in our
approximation). Realistic models should correspond to β � 1
[the small-r slope of U (r) should be sharp; RC0 should

be positive] which translates into δ � 1
3 (because β = 1

corresponds to δ = 1
3 ).

B. Sub-barrier energies

With the potential of Eq. (3) at E < EC one has

S(E) = S0 exp 	(E), (5)

where 	(E) is taken analytically and has a rather complicated
form given by Eq. (9) in Ref. [24]. Notice that in our
semiclassical approximation 	(EC) = 2πηC , where ηC =
η(EC) is the Sommerfeld parameter at E = EC .

In this paper we propose a simplified expression for S(E)
at E < EC . Let us recall that 	(E) at E < EC is accurately
approximated [24] by the Taylor expansion 	(E) = g0 +
g1E + g2E

2 + . . .. The explicit expressions for the expansion
coefficients g0, g1, and g2 in terms of EC and δ are given by
Eqs. (14) and (15) of Ref. [24]. At E < EC we suggest the
approximation

	(E) = g0 + g1E + g2E
2, (6)

g2 = (2πηC − g0 − g1EC)/E2
C. (7)

The expressions for g0 and g1 will be taken from Ref. [24],
while g2 is introduced in such a way to satisfy the condition
	(EC) = 2πηC . Our polynomial approximation (6) is much
simpler than the exact expression (9) of Ref. [24] but
gives nearly the same accuracy in approximating all S(E)
factors considered in Sec. II. Nevertheless, it is still not very
convenient in applications because Eqs. (14) and (15) of
Ref. [24] for g0 and g1 are rather complicated. Therefore,
we further simplify these equations by adopting the limit of
δ � 1, which is sufficient for applications in Sec. IV. In this
limit we have [24]

g0 =
√

ER

EC

(8 − π
√

2δ − 2δ), (8)

g1 = −
√

ER

E3
C

(
4

3
− π

√
2δ − δ

)
. (9)

Thus, Eqs. (5)–(9) give simple and practical expressions for
S(E) at E < EC . In our model, S(E) is determined by the three
parameters, EC , δ, and S0; EC and δ determine the shape of the
potential U (r); S0 specifies the efficiency of fusion reaction.

C. Contribution of � > 0 waves

The proposed model is phenomenological, being based on
s-wave semiclassical tunneling through a spherical potential
barrier U (r). The actual reaction cross section σ (E) contains
contribution of different � waves, with � = 0, 1, 2, . . .. For
a given multipolarity �, we have a quantum mechanical
scattering problem of two nuclei moving in an effective
potential,

Veff(r) = U (r) + V�(r), V�(r) = h̄2�(� + 1)

2μr2
, (10)
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where V�(r) is the centrifugal potential. The cross section then
is (e.g., Refs. [29,30])

σ (E) = π

k2

∞∑
�=0

(2� + 1)T�(E) P�(E), (11)

where k is the wave number (E = h̄2k2/2μ), T�(E) is the
transmission coefficient, and P�(E) is the fusion probability
for the penetrating wave. At the low energies of our interest,
one traditionally assumes P�(E) = 1.

Let us return to our S(E) model at E < EC . In accordance
with Eq. (11), we have S(E) = ∑

� S(�)(E), where S(�)(E) is
an �-wave contribution to S(E) to be calculated using the
effective potential Veff(r). At E < EC , all � waves refer to
sub-barrier motion, and the transmission coefficient T�(E)
decreases evidently with the growth of �. Then S(E) can be
written as

S(E) = S(0)(E) J (E), J (E) = 1 +
∞∑

�=1

(2� + 1)
T�(E)

T0(E)
.

(12)

Here, S(0)(E) is the s-wave contribution, and the sum in J (E)
is the correction due to waves with � � 1.

A simple analysis shows that S(E) is typically determined
by several lowest � at E < EC for reactions considered in
Sec. II. The correction factor J (E) appears to be essentially
higher than 1 (values � > 0 are important) but is a slowly
varying function of E. In other words, the transmission
coefficients T�(E) at these � are similar functions of E.
Their main energy dependence is the same as for the s

wave, S(0)(E). A crude estimate at E noticeably below
EC gives J (E) ∼ 1 + √

EC/E0, where E0 = h̄2/(2μR2
C) is

the characteristic quantum of centrifugal energy (typically,
E0 � EC). To simplify the model, at E < EC we suggest the
approximation,

S(E) = S0sJ0 exp(g0 + g1E + g2E
2), (13)

J0 = 1 + j0

√
EC/E0. (14)

Here, S0s is the s-wave contribution to S0, J (E) is approxi-
mated by the energy-independent constant J0 (that is specified
by a constant j0); J0 (or j0) can be treated as a parameter
which characterizes the importance of higher multipolarities
� > 0. One often states in quantum mechanics that the main
contribution to scattering at low E comes from � = 0. This
statement does not apply to the potential considered here,
which has strong attraction at r = 0. In this case, higher �

are important even at very low E.
Finally, at E = EC , the s-wave barrier is removed and we

have T0(EC) = 1 in Eq. (11). The s-wave partial cross section
then is σ0(EC) = π/k2

C , where kC is the wave number referring
to E = EC . From this σ0(EC) and Eq. (1) we immediately get

S0s = πh̄2

2μ
= 0.6566

A1 + A2

A1A2
MeV barn. (15)

Therefore, S0s is specified by A1 and A2. The astrophysical S

factor at E < EC is determined by the parameters EC and β

(or δ) of the U (r) potential and by the factor J0 (or j0).

D. Above-barrier energies

At E > EC the effective barrier is transparent for some low-
� waves. In this case, we adopt the simplest barrier-penetration
model with T�(E) = 1 if the Veff(r) barrier is transparent at a
given E, and with T�(E) = 0 otherwise. The cross section is
then given by Eq. (11) with T� = 1 and P� = 1, where the sum
is taken from � = 0 to some maximum �0(E) at which Veff(r)
becomes classically forbidden. To be transparent at lower �, the
Veff(r) potential should have a pocket (with a local minimum)
and a barrier (with a local peak) at r < RC ; let r = r0 < RC

be the peak point. It is well known that in this case at E > EC

the cross section becomes (e.g., Ref. [29])

σ (E) = π

k2
(�0(E) + 1)2. (16)

With increasing E, the range of � � �0(E) widens. In the
spirit of semiclassical approximation, at E > EC we can treat
�0(E) as a continuous variable. As long as E is not too
much higher than EC , the local peak point r0 of Veff(r) is
close to RC . To locate this peak, it is convenient to introduce
x = (RC − r)/RC instead of r and linearize V�(r) in terms of
x, keeping constant and linear terms. The peak occurs at x =
x0 = (� + 1)�E0/(ECβ) at which dVeff/dx = 0. The peak
height is Veff(r0) = EC + (� + 1)�E0 + (� + 1)2�2E2

0/(ECβ).
At a given E the barrier becomes classically forbidden when
Veff(r0) = E, which gives a quadratic equation for (�0 + 1)�0.
Solving this equation, we have

(�0 + 1)�0 =
√

E2
Cβ2 + 4ECβ(E − EC) − ECβ

2E0
. (17)

Now we can easily find �0(E). Substituting it into Eq. (16)
gives a closed expression for σ (E) at E > EC .

However, such a solution seems overcomplicated. It can
be further simplified if we notice that at not too high E we
typically have E − EC � βEC and expand the expression
containing square root. This gives

y(E) ≡ (�0 + 1)�0 = E − EC

E0

(
1 − E − EC

βEC

)
, (18)

the second term in the parentheses being a small correction.
One has �0(E) � 1 very soon after E exceeds the barrier

EC ; then (�0 + 1)�0 ≈ �2
0. On the other hand, at E = EC in

the adopted approximation we should have �0(EC) = 0 and
σ0(EC) = π/k2

C . Naturally, our approximation of continuous
�0(E) is inaccurate just near the threshold (E → EC), where
s-wave nuclear collisions proceed above the threshold, while
higher-� collisions operate either in the sub-barrier regime or in
the transition regime (emerging from under respective barriers
with growing E). It is a complicated task to describe accurately
σ (E) and S(E) at E ≈ EC . In order to preserve the simplicity
of our S(E) model we propose writing the cross section σ (E)
at E > EC as

σ (E) = π

k2

√
y2(E) + J 2

0 , (19)

where y(E) is given by Eq. (18) and J0 by Eq. (14). At E = EC

this equation then matches the cross-section model proposed
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for sub-barrier energies (Sec. III B) while at E − EC � J0E0

it reproduces the semiclassical cross section (16).
Translating the cross section (19) into S(E), at E > EC we,

finally, have

S(E) = S0s exp(2πη)
√

y2(E) + J 2
0 . (20)

At E − EC � J0E0 the leading term in the astrophysical S

factor is S(E) ≈ S0s exp(2πη) (E − EC)/E0. In the previous
work we described S(E) by a phenomenological expression
(Eq. (6) in Ref. [24]). It reproduces this leading term at
J0E0 � E − EC � EC (see the term containing ξ in Eq. (6)
of Ref. [24]) but diverges from it at higher E. Although we
do not intend to propose an accurate approximation of S(E) at
high energies (few barrier energies EC and higher), we remark
that the phenomenological expression (6) for S(E) at E > EC

in Ref. [24] is now replaced by Eq. (20) which reproduces the
correct semiclassical behavior of S(E) above the barrier. Our
new expression (20) is self-sufficient, it contains no extra input
parameters in addition to those introduced for describing S(E)
at E < EC in Sec. III B.

E. How to calculate S(E)

For any fusion reaction, S(E) is determined by three input
parameters, EC , β [or δ, see Eq. (4)] and J0 [or j0, see
Eq. (14)]. The first two parameters specify the shape of the
effective potential U (r), Eq. (3); J0 (or j0) takes into account
the contribution of higher � = 1, 2, . . . to S(E). At E < EC the
astrophysical factor S(E) is given by Eq. (13), and at E � EC

it is given by Eq. (20). The factor S0s entering these equations
is defined by Eq. (15). The parameters g0, g1, and g2 in Eq. (13)
are given by Eqs. (8), (9), and (7).

By construction, our S(E) model can be accurate at E up
to a few EC . Although the model is generally based on first
principles, it is phenomenological in a narrow energy range
near the barrier (|E − EC | � J0E0). Our current S(E) model
is simpler than its previous version [24] and contains three
input parameters instead of 4 in Ref. [24]. We will see that the
current model is more accurate than the previous one.

Let us stress that our new version implies δ � 1 (actually,
δ � 0.1), meaning that the maximum of the effective potential
U (r) [see Eq. (3)] is rather sharp. For broader maximum (0.1 �
δ � 1/3), it would be more appropriate to use the same Eq. (20)
at E � EC but replace our Eq. (13) at E < EC by Eqs. (5)
and (9) of Ref. [24], setting S0 = S0sJ0 in (9). Although this
would complicate the expression for S(E) at E < EC , the fit
parameters would preserve their meaning.

IV. FITS

Let us approximate all calculated S(E) using the analytic
model of Sec. III. In Ref. [24] we approximated S(E) for the
946 reactions involving C, O, Ne, and Mg isotopes with the
first version of the model. That approximation is sufficiently
accurate, but we approximate those data again together with
the new data using the elaborated S(E) model to obtain a
uniform database with minimum number of input parameters.

We consider reactions of each type (each line in Table I)
separately and apply the analytic model of Eqs. (13) and
(20) to every reaction. In this manner we determine three fit
parameters, EC , δ, and j0, for every reaction. For instance,
we have 3 × 120 = 360 parameters for Si + Si reactions.
However, we notice that we can set δ and j0 constant for all
reactions of a given type (for example, δ = 0.0409 and j0 =
2.8162 for all Si + Si reactions) without greatly increasing the
fit errors. Such constant δ and j0 are given in Table II. Notice
that while j0 is constant for a given reaction type, J0 is given
by the scaling relation of Eq. (14) and differs from one reaction
to another.

Still, we need to specify the barrier height EC for every
reaction. Collecting the values of EC for all reactions of each
type, we were able to fit them by the same analytic expression
as in Ref. [24]:

EC = α/R12,
(21)

R12 = R + �R1 |A1 − A10| + �R2 |A2 − A20|,
where A10 = 2Z1 and A20 = 2Z2 are mass numbers of most
stable isotopes; �R1 = �R1a at A1 � A10; �R1 = �R1b at
A1 < A10; �R2 = �R2a at A2 � A20; �R2 = �R2b at A2 <

A20. This gives five new fit parameters R, �R1a , �R2a , �R1b,
�R2b (also given in Table II) for each reaction type and, hence,
seven parameters in total.

As in Ref. [24], our fit procedure is based on standard
relative deviations of calculated (calc) and fitted (fit) S(E)
factors. The absolute value of such a deviation in a point
E is η(E) = |1 − Sfit(E)/Scalc(E)|. Fitting has been done by
minimizing root-mean-square (rms) deviation ηrms over all
energy grid points for all reactions involved in a fit. Column
9 of Table II lists ηrms for all reactions of a given type over
all energy grid points (e.g., over 120 × 379 = 45 480 points
for the Si + Si reactions). Column 10 presents the maximum
absolute value of the relative standard deviations, ηmax,
over all these reactions and points. Root-mean-square values
ηrms are reasonably small; they vary from ηrms ≈ 0.07 for
B + B, B + C, and B + N reactions to ηrms ≈ 0.28 for Si + Si
reactions. Maximum relative deviations are larger, reaching
ηmax ≈ 1.12 for Si + Si. Such large values of ηmax hide the
proper maximum difference of Sfit(E) to Scalc(E) in a fit.

To visualize this difference, in column 11 we list the max-
imum value of the parameter η̃(E) that we define as η̃(E) =
Sfit(E)/Scalc(E) − 1 for Sfit(E) > Scalc(E) and as η̃(E) =
Scalc(E)/Sfit(E) − 1 for Sfit(E) � Scalc(E). Thus defined, we
have η̃ = η at Sfit > Scalc but η̃ > η at Sfit < Scalc. For η � 1
we always have η̃ ≈ η, but for η � 1 the value of η̃ can be
much larger than η. One can see that η̃max + 1 is the maximum
value among ratios Sfit/Scalc (at Sfit > Scalc) and Scalc/Sfit (at
Sfit � Scalc) in a fit sample. For our Si + Si reactions we
have η̃max + 1 ≈ 5.40. This relatively large difference between
Scalc and Sfit occurs at one energy point in one of the 120
Si + Si reactions. Specifically, it happens for the 48Si + 48Si
reaction (at E = 12.1 MeV) which involves very neutron-rich
nuclei. Although η̃max + 1 is quite large, our fits are still
acceptable because the expected nuclear physics uncertainties
associated with calculating S(E) for such nuclei are larger
(Sec. II). Notice that ηmax and η̃max in Table II can occur
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TABLE II. Fit parameters of S(E) for reactions (A1, Z1) + (A2, Z2).

Reaction R �R1a �R2a �R1b �R2b δ j0 ηrms ηmax η̃max

type fm fm fm fm fm

Be + Be 7.5010 0.2480 0.2480 0.1557 0.1557 0.0330 0.7453 0.08 0.37 0.59
Be + B 7.5065 0.2547 0.2223 –1.7469 0.0635 0.0370 0.7814 0.08 0.40 0.54
Be + C 7.6982 0.2543 0.1877 2.0844 –0.0012 0.0441 0.7349 0.09 0.47 0.67
Be + N 7.9324 0.2523 0.1546 7.7591 –0.0233 0.0484 0.7446 0.10 0.41 0.70
Be + O 8.0708 0.2507 0.1346 –0.0738 –0.0271 0.0509 0.7699 0.11 0.44 0.80
Be + F 8.1585 0.2510 0.1201 –0.6214 –0.0272 0.0509 0.8117 0.12 0.48 0.82
Be + Ne 8.1485 0.2510 0.1270 –1.5671 0.0007 0.0513 0.8697 0.13 0.59 1.26
Be + Na 8.2139 0.2494 0.1161 –1.3477 –0.0059 0.0505 0.9065 0.13 0.52 1.10
Be + Mg 8.2734 0.2481 0.1067 –0.5794 –0.0128 0.0499 0.9528 0.14 0.57 1.30
Be + Si 8.3390 0.2462 0.0937 1.8651 –0.0126 0.0481 1.0538 0.16 0.62 1.26
B + B 7.6600 0.2175 0.2175 0.0511 0.0511 0.0459 0.7772 0.07 0.51 0.51
B + C 7.8155 0.2155 0.1839 0.0414 –0.0148 0.0511 0.7919 0.07 0.40 0.43
B + N 8.0004 0.2132 0.1522 0.0334 –0.0359 0.0523 0.8523 0.07 0.37 0.37
B + O 8.1037 0.2117 0.1331 0.0338 –0.0378 0.0520 0.9001 0.08 0.47 0.47
B + F 8.1700 0.2114 0.1188 0.0349 –0.0379 0.0502 0.9575 0.09 0.48 0.51
B + Ne 8.1755 0.2088 0.1244 0.0113 –0.0098 0.0501 1.0353 0.12 0.57 1.08
B + Na 8.2418 0.2075 0.1137 0.0082 –0.0160 0.0492 1.0885 0.11 0.56 0.85
B + Mg 8.3033 0.2064 0.1047 0.0061 –0.0211 0.0485 1.1431 0.12 0.58 1.03
B + Si 8.3977 0.2048 0.0921 0.0035 –0.0201 0.0472 1.2073 0.14 0.59 1.05
C + C 7.8843 0.1836 0.1836 –0.0107 –0.0107 0.0524 0.8476 0.08 0.49 0.49
C + N 8.0464 0.1816 0.1516 –0.0181 –0.0375 0.0515 0.9341 0.08 0.45 0.45
C + O 8.1523 0.1806 0.1324 –0.0173 –0.0393 0.0507 0.9647 0.10 0.51 0.59
C + F 8.2103 0.1804 0.1184 –0.0164 –0.0383 0.0487 1.0425 0.10 0.53 0.58
C + Ne 8.2146 0.1790 0.1239 –0.0293 –0.0089 0.0487 1.1230 0.15 0.64 1.34
C + Na 8.2839 0.1780 0.1132 –0.0306 –0.0165 0.0479 1.1797 0.14 0.63 1.01
C + Mg 8.3785 0.1772 0.1043 –0.0305 –0.0214 0.0477 1.1405 0.16 0.61 1.24
C + Si 8.4392 0.1763 0.0916 –0.0320 –0.0205 0.0461 1.3190 0.16 0.66 1.28
N + N 8.2069 0.1504 0.1504 –0.0415 –0.0415 0.0503 1.0043 0.08 0.37 0.44
N + O 8.2988 0.1494 0.1316 –0.0425 –0.0425 0.0492 1.0732 0.10 0.45 0.62
N + F 8.3606 0.1493 0.1176 –0.0423 –0.0403 0.0473 1.1550 0.09 0.44 0.53
N + Ne 8.3526 0.1485 0.1227 –0.0539 –0.0112 0.0472 1.2964 0.15 0.58 1.31
N + Na 8.4329 0.1477 0.1121 –0.0559 –0.0190 0.0466 1.3367 0.14 0.53 0.97
N + Mg 8.5052 0.1471 0.1032 –0.0572 –0.0235 0.0462 1.3764 0.18 0.53 1.14
N + Si 8.5820 0.1463 0.0907 –0.0595 –0.0222 0.0448 1.5534 0.16 0.63 1.08
O + O 8.3972 0.1309 0.1309 –0.0439 –0.0439 0.0483 1.1199 0.13 0.47 0.87
O + F 8.4602 0.1306 0.1169 –0.0430 –0.0395 0.0464 1.2118 0.12 0.46 0.81
O + Ne 8.4521 0.1304 0.1219 –0.0524 –0.0107 0.0464 1.3703 0.18 0.64 1.67
O + Na 8.5366 0.1297 0.1113 –0.0540 –0.0192 0.0460 1.4007 0.17 0.59 1.42
O + Mg 8.5962 0.1292 0.1025 –0.0553 –0.0238 0.0453 1.4973 0.18 0.63 1.68
O + Si 8.6699 0.1286 0.0900 –0.0573 –0.0224 0.0440 1.7240 0.20 0.67 1.61
F + F 8.5607 0.1169 0.1169 –0.0355 –0.0355 0.0452 1.1785 0.12 0.46 0.69
F + Ne 8.5166 0.1169 0.1221 –0.0471 –0.0077 0.0449 1.4636 0.19 0.66 1.85
F + Na 8.5808 0.1164 0.1113 –0.0484 –0.0184 0.0441 1.6063 0.16 0.63 1.25
F + Mg 8.6505 0.1159 0.1024 –0.0489 –0.0232 0.0437 1.6786 0.18 0.61 1.53
F + Si 8.7286 0.1154 0.0899 –0.0497 –0.0220 0.0424 1.9341 0.18 0.71 1.43
Ne + Ne 8.4649 0.1214 0.1214 –0.0145 –0.0145 0.0441 1.8709 0.25 0.91 4.00
Ne + Na 8.5397 0.1205 0.1106 –0.0185 –0.0263 0.0435 2.0638 0.21 0.82 2.95
Ne + Mg 8.6277 0.1200 0.1020 –0.0189 –0.0297 0.0433 2.0390 0.27 0.80 3.53
Ne + Si 8.7139 0.1192 0.0896 –0.0193 –0.0273 0.0423 2.3281 0.26 0.99 3.17
Na + Na 8.6464 0.1100 0.1100 –0.0265 –0.0265 0.0434 1.9895 0.25 0.77 2.52
Na + Mg 8.7081 0.1093 0.1013 –0.0285 –0.0309 0.0429 2.1976 0.22 0.79 2.52
Na + Si 8.7972 0.1086 0.0890 –0.0296 –0.0284 0.0419 2.4993 0.23 0.88 2.68
Mg + Mg 8.7791 0.1009 0.1009 –0.0311 –0.0311 0.0425 2.2903 0.24 0.80 3.01
Mg + Si 8.8704 0.1002 0.0886 –0.0326 –0.0290 0.0416 2.6253 0.24 0.90 3.08
Si + Si 8.9765 0.0880 0.0880 –0.0292 –0.0292 0.0409 2.8162 0.28 1.12 4.40
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FIG. 1. (Color online) S factors for six C + Si reactions A1 +
A2 (A1 and A2 are given in parentheses). Solid dots are original
calculations (on a rarefied grid of E points); solid lines are our fits
(Table II); open dots show the fit values of EC .

for the same reactions and in the same energy points, and
they can even coincide there. This happens, for instance, for
B + N reactions (ηmax = η̃max = 0.37 for 11B + 13N at E =
6.1 MeV). However, they can also occur for different reactions
and at different E (for instance, in case of Si + Si we have
ηmax = 1.12 for the 40Si + 40Si reaction at E = 14.2 MeV).
We could have changed the fit algorithm and obtain somewhat
smaller η̃max (for instance, by minimizing η̃rms instead of ηrms)
but it would give somewhat larger ηrms.

A graphical comparison of the previous fits with
calculations for many reactions is presented in Figs. 3 and 4
of Ref. [24]. The comparison with the new fits looks the same.
For instance, in Fig. 1 we compare the fitted S(E) (solid lines)
with calculations (dots on a rarefied grid of E points) for
six C + Si reactions. The reactions are labeled by (A1, A2),
where A1 and A2 are mass numbers of C and Si isotopes,
respectively. The lower line corresponds to the 10C + 24Si
reaction involving the lightest (proton rich) nuclei from our
collection (Table I). The upper line is for the 24C + 52Si
reaction involving our most massive (neutron rich) C and Si
isotopes. Other lines refer to intermediate cases, including
the 12C + 28Si reaction of most stable nuclei. We see that
the S factors for C + Si reactions vary over many orders of
magnitude but the fit accuracy remains acceptable.

The fit errors for the new S(E) model are generally lower
than for the previous one [24]. For instance, for the O + O
reactions we now have the maximum relative fit error ηmax ≈
0.47 and the rms relative fit error ηrms ≈ 0.13 while in Ref. [24]
we had ηmax ≈ 0.50 and ηrms ≈ 0.14 (and we now have seven
fit parameters instead of nine). The fit accuracy is especially
improved for reactions involving lower-Z nuclei.

For some reaction types (e.g., for C + C), the fit errors
of individual fits (made separately for every reaction) are

noticeably lower than for all reactions of a given type. This
indicates that the fit formula (21) for EC can be further
improved. Also, we expect that the fit quality can be improved
by introducing some slowly varying function J (E) instead
of constant J0 at sub-barrier energies in Eq. (14) and by
elaborating the description of S(E) at near-barrier energies
|E − EC | � J0E0. However, we think that the accuracy of the
new fits is quite consistent with the quality of the present data
(Sec. II). The fits give a compact and uniform description of
calculated S(E) for many reactions. They give reliable S(E)
in a wide range of energies E because they are based on first
principles. In addition, they are convenient for including into
computer codes. We warn the readers that the calculated and
fitted S(E) do not take into account resonances. Therefore,
one should add the resonance contribution in modeling nuclear
burning which involves essentially resonant reactions.

Let us remark that our analytic model for S(E) can also
be used to reconstruct the interaction potential U (r) by fitting
the S(E) data available from experiment or from calculations.
Some examples have been presented in Ref. [24]. Another
example will be given below.

V. STUDYING UNCERTAINTIES OF S(E)

This section illustrates another advantage of our analytic
S(E) model—its ability to study possible uncertainties of
astrophysical reaction rates.

Clearly, any calculation of S(E) contains some uncertain-
ties. First, they can be associated with specific theoretical
model. In our case (Sec. II) they are due to using the São
Paulo potential, the barrier penetration model, and the NL3
parametrization for deriving nuclear densities in the RHB
theory. These uncertainties influence an effective potential
U (r) and, hence, S(E). Fitting any given S(E) with our model,
one can estimate the effective potential U (r) [find β and EC

in Eq. (3)]. Assuming reasonable uncertainties of β and EC

and using our S(E) model again, one can easily estimate the
expected range of S(E) variations.

The S(E) model can also be useful to estimate possible
effects of dense matter. Consider, for instance, the heating of
the inner crust of accreting neutron stars in x-ray transients (the
so-called deep crustal heating [14,16,17]). These transients
are compact binary systems containing a neutron star and
a low-mass companion. The deep crustal heating is thought
to occur mainly due to pycnonuclear reactions in accreted
matter when it sinks in the inner crust under the weight
of newly accreted material. The heating can power [18]
thermal surface emission of these neutron stars that is observed
in quiescent states of transients (see, e.g., Refs. [14,20]).
Pycnonuclear reactions occur due to zero-point vibrations
of atomic nuclei in a crystalline lattice. Their physics is
described, for instance, by Salpeter and Van Horn [5] and
applied in later work (e.g., Refs. [6,7,25,31] and references
therein). Pycnonuclear reactions occur at high densities and
involve very neutron-rich nuclei [16,17], immersed in a sea of
free neutrons available in the inner crust. For example, con-
sider the powerful 34Ne+34Ne→68Ca reaction at ρ ≈ 1.7×
1012 g cm−3 in the scenario of Haensel and Zdunik [16].
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(a) (b)

FIG. 2. (Color online) Effective potentials U (r) [left panel (a)]
and respective astrophysical S(E) factors [right panel (b)] for the
34Ne+34Ne reaction. The dot-dashed line on the left panel is the
original São Paulo effective potential used in calculations (it slightly
depends on E and is taken at E = 10 MeV); dots on the right panel
are original calculated S(E) on a rarefied grid of E points. Thick solid
lines show fitted S(E) and U (r) reconstructed from these fits. The
three thin solid lines present appropriate effective potential Veff (r)
including the centrifugal term, Eq. (10), for � = 5, 10, and 15 (from
bottom to top). Long-dashed, short-dashed, and dotted lines refer to
three models 1, 2, and 3, which illustrate possible effects of dense
matter on the 34Ne+34Ne reaction (see text for details).

The fractional number of free neutrons among all nucleons
in the burning layer is 0.39. The calculations of S factors are
performed for fusion of nuclei unaffected by dense fluid of
free neutrons. However, such a fluid can compress the nuclei,
modify their interaction potential U (r) and, hence, S(E).

Accurate calculations of S(E) under these conditions have
not been performed; they are complicated and do deserve
a special study. Nevertheless, the S(E) model allows us to
estimate the range of expected S(E) changes. This is illustrated
in Fig. 2, which shows the model effective potentials [Fig. 2(a)]
and respective astrophysical factors S(E) for the 34Ne+34Ne
reaction [Fig. 2(b)] without and with possible effects of dense
matter.

The solid dots in the right panel of Fig. 2 are our calculated
S(E) on a rarefied grid of energies E and the thick solid
line is our fit (just like in Fig. 1 for some C + Si reactions).
The dot-dashed line in the left panel is the effective potential
U (r) used in calculations. According to the São Paulo model,
the theoretical effective potential slightly depends on E. In
Fig. 2 it is taken at E = 10 MeV. The thick solid line
is our model effective potential U (r), which is given by
Eq. (3) and plotted for the parameters EC = 12.137 MeV
and δ = 0.0441 inferred from the fit (Table II). We see that
fitting the available (here calculated) S(E) data with our
analytic model allows us to reconstruct U (r) with sufficiently
good precision. More examples of successful reconstructions
are given in Ref. [24]. The three thin solid lines in Fig. 2
illustrate our discussion on the contribution of � > 0 waves
to nuclear fusion (Sec. III C). These solid lines represent
the reconstructed effective potential, Veff(r), including the
centrifugal terms � = 5, 10, 15 (bottom to top). A few lowest
� waves penetrate the barrier almost with the same efficiency
as the s wave and contribute to S(E) even at low E.

Other curves in Fig. 2 demonstrate possible effects of dense
matter. Nuclear reaction rates are proportional to the value of
S(E) at a typical reaction energy E. In pycnonuclear reactions
the energy E is rather low [5], so the reaction rate is actually
determined by S(0). It is reasonable to expect that the presence
of free neutrons between the reacting nuclei broadens and/or
lowers the maximum of U (r). In Fig. 2 we consider three
models of this phenomenon labeled as 1, 2, and 3. Model 1
(long-dashed lines) assumes extra broadening of the U (r) peak
at the same height (EC = 12.137 MeV as before but larger
δ = 0.1). The barrier U (r) becomes thicker (left panel), which
lowers S(0) by about eight orders of magnitude. The reaction
rate will be strongly suppressed which may cause [32] a
delayed 34Ne burning after accretion stops in an x-ray transient.
Model 2 (short dashed lines) assumes the same curvature of the
U (r) peak (δ = 0.0441) as for the initial potential but lower
maximum, EC = 11 MeV. The lower barrier is naturally more
transparent, which increases the initial value of S(0) by about
three orders of magnitude; the 34Ne burning will react quicker
to variations of accretion rate. This possibility has also been
considered in Ref. [32]. Finally, model 3 (dotted lines) assumes
that the medium effects simultaneously lower and broaden
the barrier (EC = 11 MeV, δ = 0.1). The lowering makes
the barrier more transparent while the broadening makes it
more opaque. In this example, the broadening wins so S(0) is
about two orders of magnitude smaller than the initial value.
Therefore, we may expect that the medium effects can greatly
enhance or suppress pycnonuclear reaction rates and the net
effect is not clear. Also, the presence of free neutrons between
the reacting nuclei may change U (r) in such a way that the
approximation (3) becomes poor. In addition, the theoretical
expression for the pycnonuclear reaction rate through S(E)
contains serious uncertainties [6,32] which complicate the
problem. Further studies are required to clarify these points.

Let us add that nuclear reaction rates in dense stellar
matter (especially, in the cores of white dwarfs and envelopes
of neutron stars [4]) can be greatly affected not only by
the transition to pycnonuclear burning regime but also by
plasma screening of the Coulomb interaction. The plasma
effects were described by Salpeter and Van Horn [5] (also
see Refs. [6,7,25,31,33] and references therein). They modify
the interaction potential U (r) but mainly at sufficiently large
r , typically larger than nuclear scales, whereas we discuss
the nuclear physics effects which influence U (r) at smaller r .
It is commonly thought that the plasma physics and nuclear
physics effects are distinctly different and can be considered
separately. However, as we noticed in Ref. [24], in dense and
not very hot stellar matter both effects become interrelated and
should be studied together.

VI. CONCLUSIONS

We have performed new calculations and created a large
database of the S factors for about 5000 fusion reactions
(Sec. II) involving various isotopes of Be, B, C, N, O, F, Ne,
Na, Mg, and Si located between proton and neutron drip lines.
Note that the drip lines are obtained in the RHB calculations
with the NL3 parametrization. The S factors were calculated
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using the São Paulo method and the barrier penetration model
with nuclear densities obtained in the RHB calculations. We
have elaborated and simplified (Sec. III) our model [24]
for describing the astrophysical S factor as a function of
center-of-mass energy E of reacting nuclei for nonresonant
fusion reactions. Our main results are as follows:

(i) For any reaction, we present S(E) in a simple analytic
form in terms of three parameters (Sec. III E). They
are EC , the height of the Coulomb barrier; δ, which
describes the broadening of the peak of the effective
barrier potential U (r); and j0, which measures the
contribution of � > 0 waves at sub-barrier energies.
Analytic fits are expected to be sufficiently accurate for
energies below and above EC (up to a few EC).

(ii) We succeeded to fit all our S(E) data with only seven
fit parameters for any group of reactions involving
isotopes of the same elements (Sec. IV, Table II). The
fit accuracy is well within estimated nuclear-physics
uncertainties of calculated S(E) (Sec. II).

(iii) In this way we obtain a simple, accurate, uniform,
and ultracompact database for calculating S(E); the
instructions for users are given in Sec. III E. It is easy to
implement the database into computer codes (especially
in network-type ones) which calculate nuclear reaction
rates and simulate various nuclear burning phenomena
in the astrophysical environment.

(iv) In comparison with our previous S(E) model [24],
the present version is simpler and more accurate and
reliable. We have simplified the analytic expression
for S(E) at sub-barrier energies (Sec. III B). We have
clarified the contribution of � > 0 waves to S(E) and
introduced the parameter (J0 or j0) that accounts
for this contribution (Sec. III C). We have replaced
a phenomenological analytic expression for S(E) at
energies above the barrier by a rigorous semiclassical
expression (Sec. III D). These modifications have al-
lowed us to reduce the number of fit parameters (now
three parameters instead of four for any given S(E)
and seven parameters instead of nine for any group of
reactions involving isotopes of the same elements).

(v) We have discussed (Sec. V) the possibility of using our
model for estimating uncertainties of S(E) values and
for studying the effects of dense matter on S(E). For
illustration, we have analyzed the range of variations of
S(E) due to in-medium deformations of interaction po-
tential U (r) for the pycnonuclear 34Ne+34Ne reaction
in the inner crust of an accreting neutron star (with the
conclusion that the variations can reach several orders
of magnitude).

As detailed in Ref. [24], the analytic S(E) model is
practical for describing large uniform sets of S(E) data.
The parameters of the model can be interpolated from one
reaction to another, which can be useful in the case when
some S(E) data are not available. The functional form of
our analytical S(E) is flexible enough to describe different
behaviors of S(E) at low energies [24]. Fitting a given
S(E) (computed or measured in laboratory) with our analytic
model can be used to reconstruct the effective potential U (r)
(Sec. V; also see Ref. [24]). There is no doubt that the present
model can be improved (Sec. III E; Ref. [24]), particularly
by complicating the interaction potential U (r). However, this
would require the introduction of new parameters which would
complicate the model. This will improve the description of
S(E) in some particular cases but the most attractive features
of the model—its simplicity and universality—would be lost.
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