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The universal experimental data for the energy-integrated angular distribution and the angle-integrated energy
spectra for protons emitted from the (n,p) reactions at 14.8 MeV incident energy were analyzed earlier using
the computer code PRECO-D2, developed on the basis of Kalbach’s semiempirical model for the preequilibrium
reactions. The results of the analysis provided the semiempirical systematics of the single-particle level densities
gR(exp) (effective in the residual nuclei) and gc(exp) (effective in the composite system). In order to interpret
these results, we have carried out the theoretical calculations with Shlomo’s theory developed on the basis of
the Green’s function approach. The theoretical values based on Shlomo’s theory for gT h

Rn(εRn) and gT h
Rp(εRp)

for the residual nucleus and gT h
cn (εcn) and gT h

cp (εcp) for the composite systems, respectively, were calculated
at various excitation energies by using a reasonable single-particle nuclear potential strength V0, available
from systematics in literature. Here, εRn and εRp are the single-particle excitation energies for single-particle
level densities for the residual nucleus, and εcn and εcp are the single-particle excitation energies of effective
single-particle level densities for the composite system for neutrons and protons, respectively. The Coulomb
interaction potential Vc was included for protons over and above the nuclear potential V0. The total theoretical
values were taken as gT T h

R (εR) = gT h
Rn(εRn) + gT h

Rp(εRp) for residual nuclei and gT T h
c (εc) = gT h

cn (εcn) + gT T h
cp (εcp)

for the composite system. εR is the Fermi energy of the total effective single-particle level density for residual
nuclei, and εc is the excitation energy of the effective single-particle level density of the composite system.
Careful comparison of theoretical and experimental results shows that gR(exp) matches with gT T h

R (εf ) for V i
0 =

45 MeV where (εf ) is the Fermi energy. The theoretical values gT T h
R (εf ) also nearly agree with the previously

reported values by various groups, obtained through different approaches for a large number of cases. The values
of gc(exp) always are found to be greater than gR(exp) and match with gT T h

c (εc) at effective excitation energies εc,
which are found to be invariably much higher than the respective εf and are positive and follow the nuclear shell
model structure when plotted against A. This supports the concept that the values of effective gc(exp) are decided
mainly by dominant transition, which occurs during initial stages of the multistep statistical direct preequilibrium
process that involves unbound states. The values of gR(exp), on the other hand, are found to correspond to the
effective εR around the Fermi energies of the bound states of residual nuclei involved in the decay processes. The
ratios of gc(exp)/gR(exp) are found to follow the ( 〈εc〉

〈εf 〉 )1/2f description and to match Shlomo’s theory.
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I. INTRODUCTION

In an earlier paper [1], the authors analyzed the universal
experimental data on protons emitted in (n,p) reactions at
14.8 MeV nominal neutron energy, the angle-integrated energy
spectra and the energy-integrated angular distributions (EIAD)
of protons for E � 3 MeV (EIAD) on the basis of the Kalbach
model of preequilibrium, which used the PRECO-D2 computer
code [1,2]. Apart from other information, it yielded the
semiempirical values for the effective single-particle level den-
sities gR(exp) for the bound states for residual nuclei and for
gc(exp) for the composite system, which participate in the ini-
tial dominant stages of the preequilibrium process. The PRECO-
D2 computer code fitted the exact shapes of the energy spectra,
especially at the high-energy side and the shapes of angular
distribution especially in the forward direction, by varying the
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values of gR(exp) and gc(exp), which were fed into the PRECO-
D2 computer program by using a trial-and-error procedure.

After our data were published in Ref. [1], Shlomo and
co-workers [3–6] derived expressions for single-particle level
densities on the basis of the Green’s-function approach
under the Thomas-Fermi (TF) approximation by using finite
and infinite single-particle potential wells. They derived
closed expressions for gTF(ε), the semiclassical Thomas-Fermi
single-particle level densities, for the trapezoidal (TR) finite
potential for nuclear reactions. Also, expressions for g(free)
were derived for the correction due to free single-particle level
densities for ε > 0. The values of effective single-particle level
densities g(ε) then, can be calculated for excitation energy ε,

specified with respect to zero energy as

g(ε) = gTF(ε) − gfree(ε). (1)

In the present paper, we have compared our semiempirical
values of gR(exp) and gc(exp), for cases with gross variations
with A as derived in Ref. [1], with the theoretically expected
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values from Shlomo’s theory in order to develop excitation
energy systematics for gR(exp) and gc(exp).

Below, we give the perspective of the Kalbach model as
applied in the analysis of experimental data while extracting
the values of gR(exp), gc(exp), and the Shlomo model as used
for the calculation of the excitation energies of single-particle
level densities.

II. THEORETICAL CONSIDERATIONS

A. Kalbach model

The logic of the Kalbach model as used in the computer
PRECO-D2 program is based intrinsically on the quantum-
mechanical treatment of the preequilibrium statistical pro-
cesses as used by Feshbach et al. [7]. They divided the reaction
cross section into two parts: the first part, which exhibits
forward-peaked angular distributions and high-energy-peaked
energy spectra as due to preequilibrium-based multistep
statistical direct (MSD) processes, and the second part as the
symmetric angular distributions term and low-energy-peaked
energy spectra as the multistep statistical compound (MSC)
processes. The quantum-mechanical treatment basically is
based on the exciton model of Griffin [8].

The preequilibrium process represents a continuum of a few
step processes (through n̄ steps) between direct and compound
nuclei to form a composite nucleus at excitation energy εc

from the base state of the nucleus, which decays through
light-particle evaporation to the residual nucleus at excitation
energy εR .

In nuclear reactions with neutrons at an incident energy
of 14.8 MeV, the preequilibrium processes become important
where the entrance channel undergoes only one- and two-
body residual interactions for En � 10 MeV. In the exciton
model [8–10], a cascade of residual two-body interactions
takes the projectile target composite nucleus from the initial
single state specified by the exciton number (n0 = p0 + h0)
through progressively more complex configurations to the final
compound nucleus equilibrium states (n̄ = p̄ + h̄). Each stage
of the binary state is specified by the number p of the particles
excited and the number h of the holes.

In the early stages of the cascade [11–14], the particle-hole
creation constitutes the dominant binary residual interaction,
and if the excitation energy of the intermediate nucleus is
large enough, it results in unbound states for particle emission.
The preequilibrium emission can take place from any of
these unbound states at excitation energies εc through MSD
processes, which dominate for unbound states for h̄ � 2 by
leaving the residual nucleus at excitation energies of εR .

In later stages of the cascade, the states grow in complexity,
and some of the states may be bound. Particle-hole annihilation
and scattering due to residual interaction and the statistical
fluctuations may change some bound states to unbound states,
which results in preequilibrium emission through the MSC
process.

The cross sections of the energy spectra of the preequilib-
rium ejectiles can be expressed [15] as

σPRE(E) = σMSD(E) + σMSC(E), (2)

where σPRE(E) and σMSD(E) are calculated from the following
expressions:

σPRE(E) = σABS

p̄∑
n=p0

SU (p, h)TU (p, h)λU
c (p, h,E), (3a)

and

σMSD(E) = σABS

p̄∑
n=p0

Sd (p, h)TU (p, h)λU
c (p, h,E), (3b)

so that

σMSC = σPRE(E) − σMSD. (4)

Here, σABS is the absorption cross reaction of the projectile on
the target. The symbol p0 stands for the number of particles
excited for the first stage of the binary cascade, and p̄ is
the number of particles excited in the most probable states
at equilibrium. SU (p, h) denotes the probability of reaching
an unbound configuration with p excited particles and h

holes from either bound or unbound previous states. However,
Sd (p, h) is confined to that (p,h) configuration that has evolved
through only unbound configurations and leads to the MSD
process. TU (p,h) is the mean life of the (p,h) configuration,
and λU

c (p,h,E) is the emission rate of the ejectile. Then,
σPRE(E) and σMSD(E) are evaluated from Eqs. (2) and (3b),
and σMSC is obtained from Eqs. (4), (3a), and (3b). Then,

σComp = σev + σMSC, (5)

where σev for evaporation is obtained from the Weisskopf-
Ewing evaporation model calculations [15].

As described by Kalbach [16], the above relationships are
included in the computer program PRECO-D, which is based on
a modification of their code PRECO-B, developed in 1977 and
1978 [13,16]. In PRECO-D, the contribution due to the MSD and
MSC reaction mechanisms also were calculated separately as
shown above.

The calculation of λU (p, h,E) in Eqs. (3a) and (3b)
involves particle state densities ρ(p, h,E) of the simple (of a
few quasiparticle) bound and unbound states in the composite
system and the particle density of simple bound states in the
residual nucleus. The expression for particle state densities
of simple unbound and bound states involves the values of
effective single-particle level densities in the composite system
and residual nuclei.

However, in Ref. [1], we have used the computer code
PRECO-D2 in which a provision is made to choose the effective
single-particle level densities g1, g2, g3, and g4 by a trial-and-
error method to fit the experimental data where g1 = gc(exp)
corresponds to the composite system and g2 = g3 = g4 =
gR(exp) belong to the residual nuclei for preequilibrium
particle decay processes. We have used the same gR(exp)
for the residual nuclei for protons, neutrons, and α decay of
composite systems. We have adjusted gc(exp) and gR(exp)
by the trial-and-error method to reproduce the experimental
data of the energy spectrum of protons corresponding to the
high-energy end and the angular distribution in the forward
direction in the (n, p) reaction at 14.8 MeV incident energy as
shown in Ref. [1].
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TABLE I. The experimental values of gc(exp) and gR(exp) from
composite and residual nuclei from the (n,p) reaction at an incident
energy of 14.8 MeV extracted by using the Kalbach model [1,2].

Number Target gc(exp) gR(exp)

1 19F 2.49 1.52
2 24Mg 2.78 2.01
3 27Al 2.87 2.37
4 28Si 2.49 1.52
5 31P 2.80 2.49
6 32S 2.49 2.43
7 40Ca 4.50 2.98
8 47Ti 4.50 2.01
9 48Ti 4.07 2.01
10 50Ti 4.07 2.98
11 56Fe 5.47 4.01
12 59Co 4.99 4.01
13 58Ni 6.02 4.50
14 65Cu 5.47 2.98
15 64Zn 4.99 2.98
16 66Zn 5.47 4.01
17 89Y 9.00 6.54
18 103Rh 10.30 7.54
19 106Pd 11.00 7.55
20 108Pd 10.40 7.54
21 107Ag 10.09 7.93
22 109Ag 10.52 7.56
23 115In 11.00 7.93

Many attempts of the trial-and-error procedure finally
reproduced the experimental data, which yield the correct
values of gR(exp) and gc(exp). We have given these values
in Table I, reproduced from Ref. [1].

B. Shlomo’s theory

According to Shlomo and co-workers [3–6], one calculates
the exact values of the single-particle level densities gB(ε)
for bound and continuous states using a Green’s-function
[6,17,21] approach with the Strutinski smoothing [17]
procedure. They have considered, in particular, the methods
of TF [18,19] approximation. By taking the single-particle
Hamiltonian H as

H = p2/2m + V (r), (6)

for the bound states, they have written

gB(ε) =
∑

i

δ(ε − εi), (7)

where energies εi of the bound states are given by

H	i = εi	i, (8)

and for the finite well, the continuum contributions are
determined [6] from the scattering phase shifts. By writing
the single-particle level density in terms of the Green’s [20]
function G(r̄ , r̄, ε + ia) as

g(ε) = 1

2π

∫
d3r[(G(�r, �rε + ix))]�r=�r =

∑
n

δ(εn − ε),

(9)

and by following the above procedure, the level densities of
the single-particle states were calculated earlier [20,21] in the
framework of the TF approximation as

gTF(ε) =
(

2m

h̄2

)3/2
Dg

4π2

∫
(ε − V )1/2�(ε − V )dr3, (10)

where Dg is the degeneracy of the single-particle levels and

�(X) =
{

1, x � 0,

0, x � 0.
(11)

Shlomo [3] used only the volume part of the expression and
obtained

gTF(ε) =
(

2m

h̄2

)3/2 1

2π2

∫
d3r(E − V )1/2�(ε − V ). (12)

According to Bogila et al. [4], the trapezoidal finite
potential for nuclear interaction is given by

V (r) =
{

V0 for r < R − D,

1/2 [1 − (r−R)/D] V0 for R − D < r < R+D

(13)

for which the expression for gTF(ε) is given by

gTF(ε) = 1/2π2(2m/h̄2)3/2 [4π (R − D)3]

3
× (ε − V0)1/2[1 + 2x + (8/15)x2 + (16/35)x3],

(14)

where x = −[2D(ε − V0)]/[(R − D)V0)]. Here, the excitation
energy ε is measured from the ground-state energy, which
is zero. According to the authors, for the case of ε > 0,
the corresponding semiclassical expression gTF(ε) for the
finite-depth trapezoidal potential well should be corrected
by subtracting the contribution due to the free level density
gfree(ε) for obtaining the single-particle level density g(ε).
The expression for gfree(ε) is given by [3,4]

gfree(ε) = 1/2π2(2m/h̄2)3/2 [4π (R + D)3]

3
× ε1/2[1 + 2y + (8/15)y2 + (16/35)y3, (15)

with

y = −2Dε/[(R + D)V0]. (16)

Furthermore, the following parameters were used for the
single-particle potential well:

V0 = −V i
0 + 33t3(N − Z)/A(MeV),

D = πd (d = 0.7 fm), (17)

R = R0

/[
1 +

(
D

R

)2]1/3

, R0 = 1.12A1/3 + 1.0(fm),

V i
0 = 40, 45, 50, or 54 MeV, (18)

where N and Z are the number of neutrons and protons, t3 = 1
for neutrons and −1 for protons. The value of R is determined
by the iteration method.

The potential V (r), as given in Eq. (13) with V0 given in
Eqs. (17) and (18), corresponds to a pure nuclear interaction,
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which, if used in Eqs. (13)–(16), corresponds to the excitation
of neutrons. For the excitation of protons, we will have to take
the Coulomb potential Vc(r) into account over and above the
nuclear potential Vn(r). Then, one may write [3]

V (r) = Vn(r) + Vc(r), (19)

where

Vc(r) = [Ze2/2Rc](3 − (r/Rc)2 r � Rc

= Ze2

r
r � Rc (20)

whereas, Vn(r) is given by Eqs. (13) and (17).
The closed expression for the value of the single-particle

level density with Coulomb interaction is not available in
literature with the values of V (r) as given in Eqs. (19) and
(20). However, we have used an approximation where we have
replaced the value of V0 in Eqs. (13)–(17) by

V0 + Vc, where Vc = Ze2/Rc, (21)

so that Vc is taken as the Coulomb potential at radius Rc. We
have used Rc = R. As the value of V0 is negative, whereas, the
value of Vc is positive, it reduces the effective value of V (r) in
Eq. (13). Then, gT T h

c (ε) = gTF(ε) − gfree(ε).
Below, we describe the results of our comparison of the

experimental values with those calculated on the basis of
Shlomo’s theory:

(i) For energies εR of the residual nuclei and
(ii) for composite excited states at excitation energies εc.

III. ANALYSIS OF DATA: CALCULATIONS

A. For residual nuclei

We have calculated the values of single-particle level dens-
ities gT h

Rn(εRn) for neutron excitation by using the expres-
sion for gTF

Rn(εRn) in Eq. (14) and by obtaining the relation
(εn − V0)1/2 = [|V0| − (BE)n]1/2, where V0 is taken from
Eq. (17) with V i

0 = 40, 45, 50, 54 MeV, t3 = 1, and (BE)n is
the binding energy of neutrons. The value of gn(free) is taken
to be zero.

Similarly, for proton excitation, we have used the rela-
tion (εp − V0)1/2 = [|V0| − (BE)p − |Vc|]1/2 in the expression
for gT h

Rp(εRp) in Eq. (14) where (BE)p is the binding energy
of protons. Of course, Vc is the Coulomb potential as given
in Eq. (21). Also, in other parts of the expression, we have
replaced |V0| by |V0| − |Vc| in the expression where V0 is taken
to be t3 = −1. Also, gp(free), again, is taken to be zero.

We finally express the relation,

gT T h
R (εR) = gT h

Rn(εRn) + gT h
Rp(εRp), (22)

where

εRn = (|V0| − |(BE)n|) = εnf ,

and

εRp = (|V0| − |(BE)p|) − |Vc| = εpf ,

and εR is the excitation energy of the total effective single-
particle level density around the effective Fermi energy εf

of the residual nucleus, expressed as εf = (εnf + εpf )/2. The

values of gT h
Rn(εnf ) for neutrons, gT h

Rp(εpf ) for protons, total
value gT T h

R (εf ), and the values of the Fermi energy εf are

TABLE II. The theoretical values of single-particle level densities
for excitation for neutrons gT h

Rn(εnf ), for protonsgT h
Rp(εpf ), and for

the total gT T h
R (εf ) = gT h

Rn(εnf ) + gT h
Rp(εpf ), based on Shlomo’s model

where εpf is the Fermi energy for the proton, εnf is the Fermi energy
for the neutron, and εf is the average Fermi energy, i.e., εf = εpf +εnf

2 .

Z A gT h
Rn(εnf ) gT h

Rp(εpf ) gT T h
R (εf ) εf (MeV)

(a)
V i

0 = 40 MeV
9 19 0.79 0.80 1.59 29.54
12 24 0.96 0.83 1.78 27.96
13 27 1.00 0.97 1.97 29.02
14 28 1.01 0.86 1.86 27.05
15 31 1.12 1.07 2.20 29.14
16 32 1.13 0.99 2.13 28.18
20 40 1.41 1.20 2.61 28.14
22 44 1.49 1.28 2.76 28.22
22 47 1.58 1.49 3.07 26.99
22 50 1.79 1.71 3.49 27.28
26 56 1.90 1.72 3.62 27.23
27 59 1.99 1.90 3.89 28.32
28 58 1.85 1.62 3.47 27.25
29 65 2.26 2.21 4.47 28.78
30 64 2.13 1.95 4.08 28.10
30 66 2.26 2.11 4.38 28.02
39 89 2.92 2.82 5.74 27.97
45 103 3.34 3.19 6.53 27.86
46 106 3.59 3.32 6.91 26.76
46 108 3.49 3.19 6.69 26.81
47 107 3.41 3.25 6.66 27.77
47 109 3.51 3.37 6.88 27.66
49 115 3.66 3.53 7.19 27.36

V i
0 = 45 MeV

9 19 0.90 0.91 1.81 34.54
12 24 1.08 0.96 2.04 32.96
13 27 1.14 1.11 2.26 34.02
14 28 1.15 1.01 2.16 32.05
15 31 1.28 1.23 2.51 34.14
16 32 1.29 1.16 2.45 33.18
20 40 1.60 1.40 3.00 33.14
22 47 1.69 1.49 3.18 33.22
22 48 1.80 1.71 3.51 31.99
22 50 2.01 1.94 3.95 32.28
26 56 2.15 1.97 4.13 32.23
27 59 2.25 2.17 4.41 33.32
28 58 2.11 1.89 3.99 32.25
29 65 2.54 2.49 5.03 33.78
30 64 2.40 2.24 4.64 33.10
30 66 2.55 2.40 4.95 33.02
39 89 3.28 3.19 6.48 32.97
45 103 3.75 3.61 7.36 32.86
46 106 4.02 3.76 7.78 31.76
46 108 3.91 3.63 7.54 31.81
47 107 3.84 3.68 7.52 32.77
47 109 3.94 3.81 7.75 32.66
49 115 4.11 3.99 8.10 32.36
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TABLE II. (Continued.)

Z A gT h
Rn(εnf ) gT h

Rp(εpf ) gT T h
R (εf ) εf (MeV)

(b)
V i

0 = 50 MeV
9 19 1.01 1.01 2.02 39.54
12 24 1.20 1.08 2.29 37.96
13 27 1.28 1.24 2.52 39.02
14 28 1.29 1.15 2.44 37.05
15 31 1.43 1.38 2.81 39.14
16 32 1.44 1.32 2.76 38.18
20 40 1.77 1.59 3.36 38.14
22 47 1.88 1.70 3.57 38.22
22 48 2.01 1.92 3.93 36.99
22 50 2.23 2.15 4.38 37.28
26 56 2.38 2.21 4.60 37.23
27 59 2.49 2.41 4.90 38.32
28 58 2.35 2.14 4.48 37.25
29 65 2.80 2.75 5.55 38.78
30 64 2.66 2.50 5.16 38.10
30 66 2.81 2.67 5.48 38.02
39 89 3.62 3.53 7.16 37.97
45 103 4.13 4.00 8.13 37.86
46 106 4.41 4.17 8.58 36.76
46 108 4.30 4.03 8.33 36.81
47 107 4.23 4.09 8.32 37.77
47 109 4.34 4.22 8.56 37.66
49 115 4.53 4.42 8.95 37.36

V i
0 = 54 MeV

9 19 1.08 1.09 2.17 43.54
12 24 1.29 1.18 2.47 41.96
13 27 1.38 1.35 2.72 43.08
14 28 1.39 1.25 2.64 41.05
15 31 1.54 1.49 3.03 43.14
16 32 1.55 1.43 2.99 42.18
20 40 1.90 1.73 3.63 42.14
22 47 2.02 1.85 3.87 42.22
22 48 2.16 2.08 4.25 40.99
22 50 2.39 2.31 4.70 41.28
26 56 2.56 2.39 4.95 41.23
27 59 2.67 2.60 5.27 42.32
28 58 2.53 2.33 4.85 41.25
29 65 3.00 2.95 5.94 42.78
30 64 2.85 2.71 5.56 42.10
30 66 3.01 2.88 5.89 42.02
39 89 3.88 3.79 7.67 41.97
45 103 4.42 4.30 8.71 41.86
46 106 4.71 4.47 9.18 40.76
46 108 4.59 4.34 8.93 40.81
47 107 4.53 4.39 8.92 41.77
47 109 4.64 4.53 9.17 41.66
49 115 4.85 4.74 9.59 41.36

given in Table II for V i
0 = 40, 45, 50, and 54 MeV for various

targets.
We found, by comparison with gR(exp), that the values of

gT T h
R (εR) that correspond to V i

0 = 45 MeV matched well with
gR(exp) as shown in Fig. 1. From Fig. 1, it is quite evident that
theoretical values of single-particle level densities for V i

0 =

FIG. 1. (Color online) The values of gT T h
R (εf ) at V i

0 = 54, 45,
and 40 MeV and the value of gR(exp) as a function of mass number
A (Table I and Table II).

54 MeV are higher and theoretical values for V i
0 = 40 MeV are

lower than the values of gR(exp). We, therefore, conclude that
εR calculated by using V i

0 = 45 MeV in Eq. (17) corresponds
to the Fermi energy for incident neutrons at 14.8 MeV if we
take both neutron excitation as well as proton excitation into
account.

The values of compound nuclear level density parameter a

are related to the single-particle level density g at the Fermi
energy by

a = π2

6
g.

The values of a have been calculated by Behkami et al.
[22] for a large number of nuclei (A = 20 to A = 250) by
using the Bethe formula and the BCS model. Also, Al-Quraishi
et al. [23] have calculated the values of a on the basis of
two formulas (i) a =∝ A and (ii) a =∝ A/exp[β(N − Z)2]
over a wide range of A (from A = 24 to A = 200). Also, in
the same year, Bency John et al. [24] measured α emission
spectra from a number of heavy-ion-induced reactions, which
populate compound nuclei in the range of A = 108–208. The
data were analyzed by a statistical model code, which yielded
K = A

a
where a is the same nuclear level density parameter as

described above.
We have given these values of g, obtained from the above

calculations, in Table III and have plotted them in Fig. 2. We
also have compared these values of g from literature with
gT T h

R (εf ) obtained from Shlomo’s model with V i
0 = 45 MeV.

These seem to nearly match.
We, therefore, conclude that Shlomo’s model with V i

0 =
45 MeV explains both the experimental values of gR(exp),
effective for residual nuclei derived from the Kalbach model,
and the values of single-particle level density at the Fermi
energy εf as reported earlier by many other authors of the
compound nuclei process. Also, the excitation energy of the
single-particle level densities gR(exp) of the residual nuclei
derived from the Kalbach model for preequilibrium processes
is close to the Fermi energy.

B. For the composite state

To calculate the single-particle level density for the com-
posite nuclear system at high excitation energies εc, we use
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TABLE III. The semiempirical values of g(εf ) as calculated by Behkami et al. on the basis of the BCS model (gs) and Bethe’s model (gB )
and by Al-Quraishi et al. and Bency John et al. for various targets along with theoretical values of single-particle level densities gT T h

R (εf ) at
the Fermi energy based on the Shlomo model for V i

0 = 45 MeV.

Serial no. A gT T h
R (εf ) Behkami et al. [22] A Al-Quraishi et al. [23] Bency John et al. [24]

V i
0 = 45 MeV A gB gS

1 19 1.81 20 1.50 2.40 24 1.60
2 24 2.04 22 1.00 1.70
3 27 2.26 24 1.00 1.80 28 1.87
4 28 2.16 24 2.60 1.80
5 31 2.51 25 1.50 1.60
6 32 2.45 26 1.30 1.80
7 40 3.00 28 1.80 2.00 40 2.67
8 47 3.18 28 1.80 2.00
9 48 3.51 28 2.60 2.10
10 50 3.95 29 2.90 2.10
11 56 4.13 30 1.50 2.20 56 3.73
12 58 3.99 31 2.00 2.40
13 59 4.41 34 2.10 2.60
14 64 4.64 40 2.20 3.10
15 65 5.03 41 2.90 3.20
16 66 4.95 55 3.10 4.10 70 4.67
17 89 6.48 60 4.10 4.50
18 103 7.36 61 3.60 4.60 100 6.69
19 106 7.54 67 4.70 3.90 6.81
20 107 7.52 106 7.80 8.10
21 108 7.78 109 7.90 8.40
22 109 7.75 116 9.00 8.50 108 8.19 8.46
23 115 8.10
24 108 7.78 8.20 8.23
25 122 8.02 8.85 9.20 122 8.19 8.46
26 128 8.36 8.31 9.66
27 134 8.71 134 7.80 10.06 134 10.30
28 151 9.53 151 11.54 11.51 151 6.69
29 168 10.36 168 10.23 12.29 11.48
30 172 10.70 172 10.70 13.24 171 13.5
31 178 11.00 178 11.14 12.50 172 12.96
32 190 11.58 190 11.41 13.59 173 11.4
33 198 12.39 198 9.29 13.58 177 13.4
34 200 12.22 200 8.10 13.86 180 13.6
35 207 12.69 207 5.80 12.31 188 14.2
36 231 231 15.92 12.84 200 13.38
37 240 14.51 240 14.09 13.62 204 13.77
38 244 15.05 244 16.23 18.10 240 15.29
39 250 15.12 250 13.97 17.09 16.49

the relation,

gT T h
c (εc) = gT h

cn (εcn) + gT h
cp (εcp), (24a)

where

εcn = ε + |V0| and εcp = εcn − |Vc|, (24b)

where ε is the excitation energy of neutrons from zero
level. The symbol ε in Eq. (24b) is the same as used in
Eqs. (14)–(16). Then, εcn is the neutron-excitation energy of
the single-particle level density from the base of square-well
potential V0, and similarly, εcp is the proton excitation energy
of the single-particle level density from a base that is higher

than the base of square well V0 by Vc. Then, εc is the excitation
energy of the total effective single-particle level density for
the composite system.

We have carried out calculations for the single-particle
level density at the excitation energies that correspond to
εf (Fermi energy), ε = 0, ε = 14.8, 30, 50, and 80 MeV for
V i

0 = 45 MeV (Table VI), whereas, for ε = 14.8 MeV,
calculations also were carried out for V i

0 = 40 and 54 MeV
(Table IV).

As discussed earlier, Eqs. (14) and (15) have been used for
calculating the values of gT h

cn (εcn) and gT h
cp (εep) for neutron

excitation energy and proton excitation energy, respectively,
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FIG. 2. (Color online) The values of gT T h
R (εf ) at V i

0 = 45 MeV
and comparison with the values calculated by Behkami et al. by using
Bethe’s model (gB ), the BCS model (gs), and g from other authors as
a function of the atomic number A (Table III).

so that, for neutron excitation energy,

gT h
Cn(εcn) = gT h

cn (εcn) = gTF
cn (εcn) − gfree

cn (εcn). (25)

Operationally, for neutron excitation energy εcn, the term
(ε − V0)1/2 in Eq. (14) is replaced by (εcn)1/2 = (εn + |V0|)1/2,
and ε in Eq. (15) for gcn(free) is replaced by εn.

FIG. 3. The value of gT h
cp (εp), gT h

cn (εn), and gT T h
c (εc) = gT h

cp (εcp) +
gT h

cn (εcn) at ε = 14.8 MeV and their comparison with gc(exp) as a
function of mass number A at V i

0 = 45 MeV (Table IV).

On the other hand, for proton excitation energy, we write
for gT h

cp (εcp),

gT h
cp (εcp) = gTF

cp (εcp) − gfree
cp (εcp), (26)

where the operational term (ε − V0)1/2 in Eq. (14) is replaced
by (εcp)1/2 = [εn + |V0| − |Vc|]1/2 and εp in Eq. (15) for
gfree

cp (εp) is replaced by [εn − |Vc|]. In Fig. 3, we have plotted
the values of gT h

cn (εcn), gT h
cp (εcp), and gT T h

C (εc) = gT T h
c (εc) =

TABLE IV. Theoretical values of single-particle level densities gT h
cn (εcn) for the excitation of neutrons, gT h

cp (εcp) for the excitation of
protons, and gT T h

c (εc) for the total for the (n,p) reaction, which use the 14.8 incident energy of neutrons as the excitation energy so that
gT T h

c (εc) = gT h
cn (εcn) + gT h

cp (εcp) for V i
0 = 54, 45, and 40 MeV based on Shlomo’s model εn = εinc + |V0| and εp = εn − |Vc|. Also given are

the experimental values of gc(exp).

S. number A gc(exp) V i
0 = 54 MeV V i

0 = 45 MeV V i
0 = 40 MeV

gT h
cn (εcn) gT h

cp (εcp) gT T h
c (εc) gT h

cn (εcn) gT h
cp (εcp) gT T h

c (εc) gT h
cn (εcn) gT h

cp (εcp) gT T h
c (εc)

1 19 2.49 0.71 1.24 1.95 0.61 1.22 1.82 0.54 1.23 1.77
2 24 2.78 0.87 1.57 2.44 0.75 1.57 2.32 0.68 1.60 2.28
3 27 2.87 0.94 1.73 2.67 0.81 1.72 2.53 0.73 1.75 2.48
4 28 2.49 0.99 1.82 2.81 0.85 1.82 2.68 0.77 1.87 2.64
5 31 2.80 1.06 1.98 3.04 0.91 1.98 2.89 0.82 2.02 2.84
6 32 2.49 1.10 2.07 3.17 0.95 2.10 3.05 0.86 2.14 3.00
7 40 4.50 1.33 2.59 3.92 1.14 2.62 3.76 1.04 2.69 3.73
8 47 4.50 1.44 1.86 4.30 1.24 2.89 4.13 1.12 2.98 4.11
9 48 4.07 1.48 3.00 4.48 1.27 2.99 4.26 1.14 3.03 4.18
10 50 4.07 1.51 3.07 4.58 1.28 3.04 4.30 1.15 3.08 4.23
11 56 5.47 1.70 3.54 5.24 1.46 3.55 5.01 1.31 3.62 4.93
12 58 6.02 1.77 3.71 5.48 1.51 3.71 5.22 1.36 3.78 5.14
13 59 4.99 1.79 3.75 5.54 1.59 3.79 5.32 1.39 3.89 5.28
14 64 4.99 1.90 4.06 5.96 1.62 4.06 5.68 1.46 4.12 5.57
15 65 5.47 1.92 4.10 6.02 1.64 4.13 5.77 1.49 4.22 5.71
16 66 5.47 1.94 4.17 6.11 1.66 4.18 5.84 1.49 4.25 5.75
17 89 9.00 2.48 5.67 8.05 2.11 5.68 7.79 1.90 5.77 6.67
18 103 10.30 2.82 6.69 8.91 2.40 6.71 9.11 2.16 6.83 8.99
19 106 11.00 2.89 6.89 9.78 2.46 6.90 9.36 2.21 7.02 9.23
20 107 11.09 2.91 6.96 9.87 2.47 6.96 9.43 2.22 7.06 9.28
21 108 10.40 2.93 7.02 9.95 2.49 7.05 9.54 2.24 7.18 9.43
22 109 10.52 2.95 7.09 10.04 2.51 7.10 10.61 2.25 7.22 9.48
23 115 11.09 3.08 7.50 10.58 2.62 7.50 10.12 2.35 7.62 9.97
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FIG. 4. (Color online) The values gT h
n (εcn), gT h

p (εcp), gT h
c (εc) =

gT h
np (εcp) + gT h

cn (εcn), gTF
p , gTF

n , gp(free), and gn(free) versus the exci-
tation energy ε from negative energy εf (Fermi) up to ε = 80 MeV
for 40Ca as the target.

gT h
cn (εcn) + gT h

cp (εcn) as a function of A for V i
0 = 45 MeV

along with gc(exp) for εn = 14.8 MeV. It is obvious that
points that correspond to gc(exp) are, in general, higher than
the corresponding values of gT T h

c (εc). The calculations at
εn = 14.8 MeV served as a test case for the energy dependence
of the single-particle level density for excitation to positive
energies that correspond to the composite system. It led to the
calculations for gT T h

cn (εc) at other energies ε to finally arrive at
the correct value of (εc) for which gc〈exp〉 is equal to gT T h

c (εc).

C. Physical interpretation

To get an insight into the general trends of the values
of g’s from theoretical calculations, we have plotted in
Fig. 4 and given in Table V, the theoretical contributions
to the overall curve of gT T h

c (εc) versus excitation energies
of ε at εFermi , ε = 0, ε = 14.8, 30, 50 , and 80 MeV for,
40Ca with V i

0 = 45 MeV. We have plotted in the figure the
value of gT h

cn (εcn), gT h
cp (εcp), gT h

cn (εcn) + gT h
cp (εcp) = gT T h

c (εc),
gnfree(ε > 0), gpfree (ε > 0), gT F

n (εcn), and gT h
cp (εcp) as a

function of ε. We find that gT h
cn (εcn), gT h

cp (εcp), and gT h
cn (εcn) +

gT T h
cp (εcp) = gT T h

c (εc) have peaks at ε = 0; but whereas,
gcn(εcn) goes down at higher energies beyond 14.8 MeV, the
values of gcp(εcp) slowly go up. This difference in behavior
of gT h

cp (εcp) and gT T h
cn (εcn) arises due to Coulomb effects

on gp(free) and gTF
p (εcp). Such general trends are evident

for all the cases discussed in our paper. However, these
trends do not affect our results as we have considered only
gT h

cn (εcn) + gT h
cp (εcp) = gT T h

c (εc). As, for example, the value of
gc(exp) = 4.5 is explained only by gT T h

c (εc) for neutron-plus-
proton excitation. Our effective experimental values of gc(exp)
lie at ε between 0 and 14.8 MeV excitation as expected on the
basic physical picture of a few steps that involve (h � 2) in
the preequilibrium process in the reactions, such as (n,p,γ ),
(n,np,γ ), or (n,p,n,γ ), which are expected to contribute to
proton spectra in experimental data.

In Fig. 5, we have plotted the values of gT T h
c (εc) by using

Eq. (24a) as a function of ε where, as mentioned earlier, we
specifically have calculated gT T h

c (εc) for the Fermi energy
εf and for ε = 0, 14.8, 30, 50, and 80 MeV for V i

0 = 45 MeV
(Table VI). We also have indicated the values of gR(exp) at the
Fermi energy and gc(exp) at ε = 14.8 MeV. It is interesting to
note that, as previously described, the values of gR(exp) agree
reasonably well with the values of gT T h

c (εf ) obtained from
Shlomo’s model with V 0

i = 45 MeV at the Fermi energy. But
the values of gc(exp) are, in general, higher than gT T h(εc) for
ε = 14.8 MeV lower than expected at ε = 0.

From Shlomo’s model, it is possible to get the exact
value of excitation energy εc that corresponds to gc(exp)
by interpolation between the values of gT T h

c (εc) at ε = 0 to
ε = 14.8 MeV (Fig. 5). It will be given by

εc = 14.8

gT T h
c (ε = 0 MeV) − gT T h

c (ε = 14.8 MeV)

× [
gT T h

c (ε = 0 MeV) − gc(exp)
]
. (27a)

Then,

εc = V0 + εc, (27b)

whereas, for neutron excitation, V n
0 = V0n [Eq. (17)]

with t3 = 1 with V i
0 = 45 MeV so that εcn = V n

0 + εc but for
proton excitation V

p

0 = V0p − Vc with V i
0 = 45 MeV so that

TABLE V. The values of gT h
cn (εcn), gT h

cp (εcp), gT T h
c (εc) = gT h

cn (εcp) + gT h
cn (εcn), gp(free), gn(free)gTF

n , and gTF
p for 40

20Ca at different excitation
energies.

For εf ε = 0 MeV ε = 14.8 MeV ε = 30 MeV ε = 40 MeV ε = 50 MeV ε = 60 MeV ε = 70 MeV ε = 80 MeV

gT h
cn (εcn) 1.6 2.75 1.14 0.89 0.80 0.78 0.68 0.63 0.60

gT h
cp (εcp) 1.39 2.54 2.62 3.17 3.8 4.59 5.53 6.6 7.6

gT h
cp (εcp) + gT h

cn (εcn) 3.0 5.29 3.16 4.07 4.60 5.32 6.21 7.25 8.45

= gT h
c (εc)

gn(free) 0 0 3.96 8.29 12.09 16.82 22.62 29.6 38.04

gp(free) 0 0 2.60 6.91 10.85 15.96 22.4 30.45 40.30

gT F
n 1.6 2.75 5.10 9.19 12.90 17.55 23.30 30.1 40.90

gT F
p 1.39 2.54 5.22 10.08 14.66 20.54 28.94 37.05 48.18

gR(exp) = 2.98, gc(exp) = 4.5, εc = 47.30 MeV, εc = 5.5 MeV

εc = 1
2 [(45.0 + 5.50) + (45.0 − 6.39 + 5.5)] = 47.30 MeV
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FIG. 5. The value of gT T h
c (εcn) as a function of excitation energy ε from negative values of ε up to values of ε = 80 MeV calculated by

using Shlomo’s model, which include the values of gT T h
c (εf ) at Fermi energy along with gc(exp) at ε � 14.8 MeV and gR(exp) at the Fermi

energy (Table I).

εcp = V
p

0 + εc. V0p is given by Eq. (17), which uses t3 = −1.
Then,

〈εc〉 = εcn + εcp

2
= V n

0 + V
p

0

2
+ εc = 〈V0〉 + εc. (27c)

We have assumed that gT T h
c (εc) decreases from ε = 0 to

ε = 14.8 MeV linearly, which only is approximately correct.
As evident from Fig. 5, we also found that the experimental

values of single-particle densities gc(exp) involved in the
excitation in the composite system not only match with the
expected theoretical values of gT T h

c 〈εc〉 that correspond to
positive values of εc, but also match with negative values of εB

below the zero-ground energy. We have calculated 〈εB〉 from
the relation,

〈εB〉 = V n
0 + V

p

0

2
− εB, (27d)

where εB denotes the energy below ground energy by matching
the experimental values of gc(exp) with gT T h

c (ε) for ε = −εB.

In Table VII, we have summarized the values of
εc, εcn, and εcp and 〈εc〉, εB , and 〈εB〉 as calculated
from Eqs. (27a)–(27d) and the values of V n

0 , V
p

0 , 〈V0〉 =
(V n

v + V
p

0 )/2, V
p

0 , 〈V0〉 = (V n
0 + V

p

0 )/2, and Vc. In calcu-
lating the values of εc, we have taken the values of
gT T h

c (ε = 0 MeV) and gT T h
c (ε = 14.8 MeV) from Table VI,

whereas, the values of gc(exp) used in Eq. (27a) are taken from
Table I. In Eq. (27c), the values of Vc are given in Table VII.

The values of 〈εc〉 and 〈εB〉 correspond to the same
value of single-particle level density gc(exp). However, 〈εc〉
corresponds to single-particle level density for unbound states
and may be interpreted more appropriately as being involved
in the MSD contribution to the preequilibrium process, which
is observed experimentally.

Similarly, gc(exp), which corresponds to 〈εB〉, may be
interpreted as a single-particle level density for bound single-
particle states that represent the MSC process. It seems that
the effect of single-particle level density increases successively
from the Fermi energy 〈εf 〉 to the bound state at 〈εB〉 and then
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TABLE VI. Theoretical values of total single-particle level densities gT T h
c (εf ) based on Shlomo’s model for V i

0 = 45 MeV for εf (for the
Fermi energy) and excitation energies [Eq. (24a)] where εi = 0, 14.8, 30, 50, and 80 MeV for V i

0 = 45 MeV. The value of εf is taken as

εf = V n
0 +V

p
0

2 − εf . The values of
V n

0 +V
p
0

2 are taken from Table VII, and εf is taken from Table II.

S. number Target εf (Negative) gT T h
R (εf ) gT T h

c (ε0) gT T h
c (ε1) gT T h

c (ε2) gT T h
c (ε3) gT T h

c (ε4)
for εf ε0 = 0 MeV ε1 = 14.8 MeV ε2 = 30 MeV ε3 = 50 MeV ε4 = 80 MeV

1 19F 8.61 1.81 2.89 1.82 1.83 2.54 3.38
2 24Mg 8.54 2.04 3.40 2.32 2.42 3.08 4.79
3 27Al 7.58 2.26 3.71 2.53 2.61 3.26 4.98
4 28Sc 9.45 2.16 3.81 2.68 2.81 3.59 5.61
5 31P 7.66 2.51 4.10 2.89 2.99 3.77 5.79
6 32S 9.02 2.45 4.20 3.05 3.20 4.12 6.45
7 40Ca 7.66 3.00 5.29 3.76 4.07 5.32 8.45
8 47Ti 7.38 3.18 5.32 4.13 4.42 5.75 9.01
9 48Ti 9.21 3.51 5.71 4.26 4.39 5.34 9.17
10 50Ti 8.42 3.95 5.89 4.30 4.39 5.54 9.84
11 56Fe 9.57 4.13 6.42 5.01 5.21 6.54 9.23
12 59Co 8.88 4.41 6.69 5.22 5.41 6.75 10.18
13 58Ni 8.75 3.99 6.58 5.32 5.65 7.26 11.29
14 65Cu 7.22 5.03 7.22 5.68 5.82 7.20 10.72
15 64Zn 7.80 4.64 7.11 5.77 6.05 7.68 11.77
16 66Zn 8.88 4.95 7.30 5.84 6.04 7.54 11.36
17 89Y 7.23 6.48 8.25 7.79 7.99 9.88 14.71
18 103Rh 6.84 7.36 10.38 9.11 9.31 11.60 17.33
19 106Pd 7.94 7.54 10.62 9.36 9.54 11.74 17.33
20 108Pd 7.89 7.78 10.80 9.43 9.54 11.85 17.66
21 107Ag 6.83 7.52 10.70 9.54 9.77 12.23 18.36
22 109Ag 6.94 7.75 10.87 10.61 9.77 12.11 18.00
23 115In 6.64 8.10 11.38 10.12 10.23 12.63 18.69

to the unbound state 〈εc〉 with the excitation energy as the
reaction process develops from compound nucleus to MSC
and finally to the MSD process.

As we plotted 〈εc〉, 〈εB〉, and 〈εf 〉 versus mass number
A of the target nuclei, interesting structure effects appear as
described below.

As discussed earlier, we have derived the values of
excitation energies 〈εc〉 of the composite system by comparing
gc(exp) derived from the Kalbach model (in relation to
experimental data) with gT T h

c (εc) derived from Shlomo’s
model. It is extremely interesting to observe from Fig. 7,
where we have plotted the values of 〈εc〉 as a function
of A; that the excitation energies have a structure as a

FIG. 6. The values of 〈εc〉 as a function of A.

function of A that is related to nuclear shell structure. The
values of excitation energies 〈εc〉 are low for nuclei that
have (Z,A) = (8,20), (20,40), and (28,58), which not only
have magic proton numbers, but also have even numbers of
neutrons. The nucleus with (Z,A) = (39,89), i.e., 89Y, has
an odd number of protons but a magic number of neutrons
(N = 50). On the other hand, nuclei, which lie at nonmagic
numbers (Z,A) = (14,28), (22,48), and (30,66) have high
values of 〈εc〉.

Higher values of Vc for higher A and Z (from A = 89 to
A = 115) yield lower values of 〈εc〉 as shown in Fig. 7.

It is interesting that the values of 〈εB〉, when plotted against
A (Fig. 8), also seem to show shell structure but with higher

(28,58)

FIG. 7. The values of 〈εB〉 as a function of A.

054614-10



THEORETICAL INTERPRETATION OF THE SYSTEMATICS . . . PHYSICAL REVIEW C 85, 054614 (2012)

TABLE VII. The values of εc, V
n

0 , εcn, (V p

0 = Vp − Vc), εcp, 〈V0〉 = V n
0 +V

p
0

2 , 〈εc〉, Vc, εB , and εB in MeV as obtained from Shlomo’s model
as derived from Eqs. (27a)–(27d) for different target nuclei. Also, see the text that contains these equations.

Number Nucleus εc V n
0 = V0n εcn = V n

0 + εc V
p

0 = V0p − Vc εcp = V
p

0 + εc
V n

0 +V
p
0

2 = 〈V0〉 〈εc〉 Vc εB εB

(Z,A) (Negative)

1 19F 5.44 43.3 48.74 43.0 48.4 43.15 48.6 3.68 3.0 40.15
2 24Mg 8.3 45 53.3 41.5 49.8 43.3 51.6 4.54 6.7 36.6
3 27Al 10.3 43.8 54.1 41.5 51.2 42.6 52.9 4.73 6.06 36.6
4 28Sc 14.8 45 59.8 39.96 54.7 42.5 57.3 5.04 6.6 35.9
5 31P 14.8 43.09 58.9 40.83 55.8 42.8 57.6 5.22 5.7 37.1
6 32S 14.8 45.0 59.8 39.5 54.3 42.2 57.05 5.50 6.5 35.7
7 40Ca 5.5 45 50.5 38.6 44.1 41.8 47.3 6.39 3.4 37.4
8 47Ti 8.8 42.9 51.7 40.3 51.1 41.6 50.4 6.81 3.3 37.3
9 48Ti 14.8 42.3 57.1 41.10 55.9 41.2 56.0 6.61 5.9 35.3
10 50Ti 14.8 41.0 55.8 42.53 57.3 41.7 56.50 6.52 6.1 35.6
11 56Fe 9.2 43.9 53.1 39.7 48.88 41.8 51.0 7.42 5.0 36.8
12 59Co 14.8 42.3 57.5 40.1 53.0 41.2 56.0 7.58 6.5 34.7
13 58Ni 6.5 43.9 48.8 38.2 46.62 41.0 47.50 7.90 2.6 38.4
14 65Cu 14.8 41.0 55.8 41.1 55.01 41.0 55.8 7.88 5.4 35.6
15 64Zn 14.8 45 59.8 36.68 53.0 40.9 55.7 8.19 4.8 36.6
16 66Zn 14.8 45 56.8 40.09 55.69 42.9 57.7 8.11 6.2 35.7
17 89Y 0 41.0 41.0 39.5 39.46 40.2 40.2 9.54 0.0 40.2
18 103Rh 09 41.0 41.1 38.5 39.60 39.7 39.8 10.19 1.58 38.1
19 106Pd 0 40.5 40.5 38.5 38.98 39.7 39.7 10.52 0.0 39.7
20 108Pd 0 41.0 41.0 38.2 38.45 39.7 39.7 10.55 2.4 37.3
21 107Ag 3.8 41.0 44.8 39.3 41.98 39.6 43.4 10.82 2.3 37.3
22 109Ag 4.06 41.0 45.06 38.5 42.31 39.6 43.7 10.75 2.6 37.0
23 115In 4.4 41.0 45.4 38.2 42.40 39.0 43.4 11.01 3.3 35.7

values at magic members and lower values at nonmagic
numbers. This is opposite to the behavior of shell structure
for 〈εc〉. On the other hand, when the values of 〈εf 〉 are plotted
against A, as in Fig. 6, there is no strong indication of any shell
structure.

Furthermore, we have calculated the values of f (exp) in
the relation,

28
gc(exp)

gR(exp)
=

[ 〈εc〉
〈εf 〉

]1/2

f (exp), (28a)

and we have tabulated the same in Table VIII. The average
value of f (exp) for all targets comes out to be 1.2 ± 0.2. In
Fig. 9, the values of f (exp) are plotted as a function of A.
The value of εc is greater than 〈εf 〉 and corresponds to εc

FIG. 8. The values of 〈εf 〉 plotted against A of the target for
V i

0 = 45 MeV.

between εc = 0 and 14.8. Also, we have calculated the values
of f (Theor) from the relationship,

gT T h
c (εc)

gT T h
R (εf )

=
[ 〈εc〉
〈εf 〉

]1/2

f (Theor) (28b)

for values of εc = 0, 2, 5, 10, 14.8, 20, 25, 30, 40, 50, and
60 MeV for three targets (i) 40Ca, (ii) 64Zn, and
(iii) 115In.

It seems that the value of f (Theor) is nearly 1 for
ε = 15 to ε = 60 MeV. For ε � 15, the values of f (Theor)
are higher and extend up to f (Theor) ∼= 1.3 − 1.4 for ε =
0. The average f (exp) for all targets comes out to be

FIG. 9. The values of f (exp) in the relationship of gc (exp)
gR (exp) =

[ 〈εc〉
〈εf 〉 ]1/2f (exp) as a function of A.
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TABLE VIII. Values of gc(exp)
gf (exp) = ( 〈εc〉

〈εf 〉 )1/2f (exp). (b) Values of gc (exp)
gf (exp) = ( 〈εc〉

〈εf 〉 )1/2f (exp) for ε = 0, 2, 5, 10, 14.8, 20, 25, 30, 40, 50, 60, 70,

and 80 MeV, gT T h
c (εc)/gT T h

c (εf ) = (〈εc〉/εf )1/2f (Theor).

S. number Target gc (exp)
gf (exp) [〈εc〉/〈εf 〉]1/2 f (exp)

(a)
1 19F 1.64 1.17 1.40
2 24Mg 1.38 1.23 1.11
3 27Al 1.22 1.24 0.98
4 28Sc 1.62 1.34 1.20
5 31P 1.13 1.30 0.90
6 32S 1.03 1.30 0.79
7 40Ca 1.47 1.2 1.20
8 47Ti 2.24 1.24 1.86
9 48Ti 2.01 1.33 1.51
10 50Ti 1.36 1.33 1.02
11 56Fe 1.46 1.26 1.16
12 59Co 1.24 1.3 0.95
13 58Ni 1.5 1.21 1.24
14 65Cu 1.66 1.28 1.22
15 64Zn 1.68 1.3 1.28
16 66Zn 1.8 1.3 1.37
17 89Y 1.37 1.1 1.25
18 103Rh 1.37 1.1 1.25
19 106Pd 1.38 1.11 1.23
20 108Pd 1.47 1.12 1.33
21 107Ag 1.34 1.15 1.26
22 109Ag 1.39 1.26 1.10
23 115In 1.38 1.26 1.09

(b)
(1) 40Ca:gT T h

R (εf ) = 3.00, 〈εf 〉 = 33.14 MeV; f (exp) = 1.2, εc = 5.5 MeV.

Number ε(MeV) gT T h
c (εc) gT T h

c (εc)/gT T h
R (εf ) 〈εc〉 (〈εc〉/〈εf 〉)1/2 f (Theor)

1 0 4.95 1.65 41.8 1.2 1.37
2 2 3.47 1.25 43.8 1.25 0.97
3 5 3.86 1.29 46.8 1.20 1.07
4 10 3.94 1.31 51.8 1.25 1.05
5 14.8 3.74 1.25 56.6 1.30 0.96
6 20 3.71 1.25 61.8 1.35 0.90
7 25 3.84 1.29 66.8 1.41 0.91
8 30 4.01 1.37 71.8 1.47 0.93
9 40 4.51 1.50 81.8 1.53 0.98
10 50 5.19 1.73 91.8 1.64 1.06
11 60 6.04 2.01 101.8 1.75 1.13

(2) 64Zn:gT T h
R (εf ) = 4.64, 〈εf 〉 = 33.10 MeV; f (exp) = 1.28, εc = 14.8 MeV

1 0 7.11 1.53 40.9 1.1 1.41
2 2 5.72 1.23 42.9 1.14 1.08
3 5 4.82 1.04 45.9 1.18 0.90
4 10 6.20 1.33 50.9 1.23 1.08
5 14.8 5.72 1.23 55.7 1.30 0.94
6 20 5.70 1.23 60.9 1.4 0.82
7 25 5.82 1.25 65.9 1.41 0.89
8 30 6.05 1.24 70.9 1.42 0.87
9 40 6.74 1.45 80.9 1.56 0.93
10 50 7.68 1.65 90.9 1.60 1.03
11 60 8.8 1.9 100.9 1.7 1.11
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TABLE VIII. (Continued.)

(3) 115In:gT T h
R (εf ) = 8.10, 〈εf 〉 = 32.36 MeV; f (exp) = 1.09, εc = 4.9 MeV

Number ε(MeV) gT T h
c (εc) gT T h

c (εc)/gT T h
R (εf ) 〈εc〉 (〈εc〉/〈εf 〉)1/2 f (Theor)

1 0 11.38 1.40 39.0 1.1 1.29
2 2 10.10 1.25 41.0 1.1 1.14
3 5 6.42 0.79 44.0 1.17 0.68
4 10 10.18 1.08 49.0 1.22 0.88
5 14.8 10.10 1.24 53.8 1.30 0.95
6 20 9.81 1.21 59.0 1.18 1.03
7 25 9.92 1.22 64.0 1.4 0.87
8 30 10.23 1.26 69.0 1.07 1.18
9 40 11.23 1.38 79.0 1.47 0.93
10 50 12.63 1.6 89.0 1.56 1.02
11 60 14.35 1.77 99.0 1.9 0.93

f (exp) ∼= 1.2 ± 0.2 for which ε lies between 0 and 15 MeV.
We, therefore, conclude that Shlomo’s theory explains the
values of f (exp) in the relationship given in Eq. (28a). For
ε < 15 MeV, the Coulomb effect is important, and g(free)
for ε > 0 plays an important part. This also explains the
values of f (exp) for 40Ca, 69Zn, and 115In by using Shlomo’s
theory.

Blann [25,26] described an experiment at 200 MeV energy
of protons where authors measured the values of gc and gf and
showed that a relationship like Eq. (28) holds well for f = 1,
which corresponds to high values of excitation energy.

IV. SUMMARY OF RESULTS

(i) The analysis of the experimental data of the energy
spectrum and angular distribution of protons in the
(n,p) reaction at 14.8 MeV incident energy, as un-
dertaken earlier [1] by using the Kalbach model, has
resulted in extracting two values of single-particle
level densities for many targets that lie on a smooth
curve when plotted against A [1]; (i) gR(exp) for the
residual nuclei at the Fermi energy for bound states and
(ii) gc(exp)for the composite system for unbound states
(Table I). We found gc(exp) always is greater than
gR(exp).

(ii) We have calculated the theoretically expected values
gT T h

R (εf ) by using Shlomo’s model at the Fermi energy
by using both neutron excitation and proton excitation
processes for different values of V i

0 = 40, 45, 50, and
54 MeV (Table II). For proton excitation, we have used
an approximate model for the Coulomb interaction. We
found that the values of gR(exp) almost matched exactly
with gT T h

R (εf ) for V i
0 = 45 MeV (Fig. 1). This shows

that values of single-particle level density gR(exp),
which results from the decay after the preequilibrium
emission of the composite system in the nucleus in the
Kalbach model, are reproduced by Shlomo’s model at
the Fermi energy if we assume that excitation of both
neutrons and protons is involved.

Also, as shown in Table III and Fig. 2, Shlomo’s
model nearly reproduces the values of single-particle
level densities as derived by many authors by using

different methods for the decay of compound states at
the Fermi energy.

(iii) We have calculated the values of gT T h
c (εc) for

ε =14.8 MeV excitation energy as a test case by using
Shlomo’s model (Table IV and Fig. 3) to compare with
gc(exp). It is evident that the values of gc(exp) nearly
are somewhat higher than gT T h

c (εc) for all nuclei.
We also calculated gT T h

c (εc) for the excitation of
neutrons, protons, and the neutron plus proton for
40Ca at various energies. We found that the exper-
imental value of gc(exp) gave a proper excitation
energy 〈εc〉 if we used neutron-plus-proton excita-
tion (Table V and Fig. 4). Hence, our assumption
of neutron-plus-proton excitation for all nuclei is
valid.

(iv) To obtain the exact values of 〈εc〉, at which gc(exp)
matches with gT T h

c 〈εc〉, we have calculated the val-
ues of gT T h

c 〈εc〉 for εf (Fermi energy), ε = 0, 14.8,
30, 50, and 80 MeV for all the targets (Table VI and
Fig. 5). By interpolation between ε = 0 and ε =
14.8, we could obtain the exact value of εc so that
the exact value of 〈εc〉 could be obtained by using
Eqs. (27a)–(27c). The values of εc, εcn, εcp, and 〈εc〉,
thus, obtained are given in Table VII.

(v) In Fig. 7, we have plotted the values of 〈εc〉 as a
function of A. It is very interesting that there is a
shell structure for these values, which indicates the
relationship of excitation energies with the nuclear
structure. The values of the excitation energies (εc)
for target nuclei are low at magic numbers and high
at nonmagic numbers.

This supports the interpretation of interaction as required
for the preequilibrium in the Kalbach model of the MSD
process.

On the other hand, the values of 〈εB〉, which correspond
to the negative values of εB as given in Table VIII and
which are shown in Fig. 8, also show the shell structure,
which is complementary to the shell structure that corresponds
to the shell structure for 〈εc〉. This seems to lead to the
interpretation that energies 〈εB〉 correspond to the MSC
process.
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The values of 〈εf 〉 plotted as a function of A in Fig. 6 do
not seem to give any strong indication of such a shell structure.

V. CONCLUSION

Earlier Ref. [1], we analyzed the data of the experimental
values of the energy spectra and the angular distribution of
protons in the (n,p) reaction in terms of the Kalbach model for
the preequilibrium process to find the effective single-particle
level density gc(exp) for the composite system and the effective
single-particle level density gR(exp) for residual nuclei.

(i) We found that gc(exp) always is greater than gR(exp).
To understand this difference, for the variation in
magnitude of the single-particle level density with
excitation energy, we have carried out the calculations
by using Shlomo’s model.

From these calculations, we conclude that, for the
present excitation energy of 〈V0〉 + 14.8 MeV of the
composite system, the contribution of the MSD in
the preequilibrium process becomes dominant. The
excitation energies 〈εc〉 = V0 + εc, which correspond
to the single-particle level density gc(exp), are less than
〈V0〉 + 14.8 MeV for many cases; but in some cases,
they approach this value (Fig. 7). It is, however, always
more than the Fermi energy 〈εf 〉 as obtained from the
calculations based on Shlomo’s model to define gR(exp)
(Table II and Figs. 6 and 7).

(ii) The variation in gc(εc) with (εc) can be parametrized
by Shlomo’s theory as

gc(εc) = g(εf )

[ 〈εc〉
〈εf 〉

]1/2

f. (28c)

It seems that the values of f (Theor) below 〈εc〉 =
〈V0〉 + 15 MeV extend up to 1.3–1.4 for〈εc〉 = 〈V0〉.
The values of f (exp) for 40Ca, 64Zn, and 115In fall in
this range within the experimental error and, thus, are
explained by Shlomo’s theory (Fig. 10 and Table VIII).
The average values of f (exp) for all targets turns out
to be 10.2 + 0.2 for values of 〈εc〉 and 〈εf 〉, calculated
on the basis of Shlomo’s theory to fit the experimental
values of gc(exp) and gR(exp) (Fig. 9 and Table VIII).
This also seems to be in accord with Shlomo’s theory.
The values of f (Theor) for above 〈εc〉 = V0 + 15 MeV
are, in general, nearly close to 1.

(iii) Excitation energies 〈εc〉 for single-particle level den-
sities, when plotted versus A, exhibit strong nuclear
structure effects [such as even-odd, shell, or magic
number effects (Fig. 7)]. However, the values of 〈εf 〉,
when plotted against A, do not show any large tendency
for these structure effects (Fig. 6).

FIG. 10. The values of f (Theor) as a function of ε used in the

relationship gT T h
c /(εc )

gT T h(εf )
= ( 〈εc〉

〈εf 〉 )1/2f (Theor) for 40Ca, 64Zn, and 115In.

The f (exp) for these cases are indicated by the symbol X.

(iv) The alternate values of excitation energies 〈εB〉 for
the bound effective single-particle level density, as
suggested by the theoretical calculation for the com-
posite system, are expected to contribute to MSCs. The
excitation energy 〈εB〉 that lies between Fermi energy
〈εf 〉 and 〈V0〉 also shows nuclear structure effects when
plotted against A. However, these structure effects are
opposite to the structure effects for 〈εc〉 (Fig. 8).
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