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Three-body breakup of 11Li with the eikonal method
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The 11Li breakup on a 208Pb target is studied in the Coulomb-corrected eikonal approximation by using a
9Li + n + n three-body description of the projectile. The 11Li wave functions are defined in the hyperspherical
formalism for bound and scattering states and are obtained from effective 9Li + n and n + n interactions. We first
determine 0+, 1−, and 2+ 9Li + n + n phase shifts, which suggest the existence of a narrow 1− resonance near
0.5 MeV above threshold. The calculated breakup cross sections show a peak at low energies, in agreement with
the data. The influence of monopole and quadrupole components is analyzed and shown to be non-negligible. We
discuss the derivation of dipole strengths from experimental breakup cross sections and suggest that the simple
Coulomb dipole approximation, traditionally used in the literature, should be replaced by more elaborate models.
We also show that 11Li + 208Pb elastic scattering measurements would provide an indirect test of the model.
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I. INTRODUCTION

Breakup reactions represent an efficient tool for the ex-
perimental investigation of exotic nuclei [1]. In particular,
reactions involving a radioactive 11Li beam on various targets
have been carried out in recent years (see Ref. [2] and
references therein). An accurate theoretical description of the
breakup process requires a reaction theory complemented
by a precise description of the projectile wave function.
At low energies, the continuum discretized coupled channel
(CDCC) formalism [3] is known to provide reliable cross
sections, not only for elastic scattering, but also for breakup
cross sections. At higher energies, that is, much higher
than the Coulomb barrier, the number of partial waves in
the CDCC approach may become prohibitive. Under those
conditions, the eikonal approximation [4–6] is well adapted
and simpler than the CDCC theory. As the traditional eikonal
is known to diverge for the Coulomb potential, we use here
a recent extension, the Coulomb-corrected eikonal method
[7–9], which avoids the convergence problem in breakup cross
sections.

The second ingredient for the calculation is the projectile
wave function. The 11Li nucleus is weakly bound [10] and
presents a marked halo structure [11]. Its unusually large
rms radius can be well reproduced by three-body models,
involving a 9Li core surrounded by two neutrons, forming
a halo. In addition to the ground state, 0+ and 1− resonances
have been predicted by different authors [12–14], but not yet
firmly established experimentally.

In the present work, we describe 11Li in the three-body
hyperspherical formalism [15,16]. This theoretical framework
for the projectile can be implemented in the eikonal theory
[17]. The hyperspherical model provides the 11Li ground state,
but also 9Li + n + n three-body scattering states [18,19]. This
property allows a simultaneous and consistent description of
elastic scattering and of breakup reactions.

The goal of the present work is to investigate recent breakup
data of 11Li on a 208Pb target at 70 MeV/nucleon [2]. These
cross-section data present a maximum near 0.3 MeV above the
9Li + n + n threshold, which could be associated with a dipole

resonance in 11Li [20]. The present eikonal model does not
make any assumption on the Coulomb or nuclear character of
the breakup process. Although dipole transitions are expected
to be dominant, other multipoles are included. The 11Li wave
functions are expanded over a Lagrange basis [21] which
allows simple determinations of the matrix elements. For
scattering states, the variational calculation is extended to an
R-matrix approach [19,22] which provides continuum wave
functions with correct asymptotic behavior. These continuum
states are used as final states in the calculation of breakup cross
sections.

In the literature, the scattering wave functions are often
simplified to approximate square integrable functions, defined
at discrete energies. As discussed in Ref. [23], this approach,
referred to as the pseudostate method [20], must be comple-
mented by a folding procedure to define a continuous energy
dependence of the cross section. This additional smearing
introduces some ambiguity through the width of the folding
function. The present calculations offers the opportunity to
assess this simplified method for 11Li breakup.

Assuming a dipole Coulomb process, the breakup cross sec-
tion can be expressed in terms of a dipole strength distribution
[5]. This approximation provides much simpler calculations
because only E1 excitations of the projectile are necessary.
Dipole distributions have been derived by Nakamura et al. [2]
from their experimental breakup cross sections and are often
used for comparison with the theory [14,20,24]. The present
approach makes it possible to compute the E1 distribution and
the breakup cross section independently.

The paper is organized as follows. In Sec. II, we present
a brief outline of the three-body model in the hyperspherical
formalism. We emphasize the description of scattering states
within the R-matrix theory. Section III is devoted to the
calculation of elastic and breakup cross sections at the
eikonal approximation. The conditions of the calculations are
presented in Sec. IV, and the results are presented in Sec. V.
In Sec. VI, we discuss the experimental determination of the
E1 strength from breakup cross sections. Concluding remarks
and an outlook are presented in Sec. VII.
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II. THREE-BODY MODEL OF THE PROJECTILE

A. The hyperspherical method

The hyperspherical formalism is an efficient tool that
makes it possible to calculate bound and scattering states
of Borromean systems. For details, we refer the reader to
Refs. [15,16,19,25,26]. Let us formulate the three-body prob-
lem of a core + n + n system, with a structureless zero-spin
core, in hyperspherical coordinates. We start by defining the
set of scaled Jacobi coordinates as

x = 1√
2

(r3 − r2), y =
√

2A1

A1 + 2

(
r1 − r2 + r3

2

)
, (1)

where r1 is the core coordinate with mass A1 and charge Z1e,
and r2 and r3 are the neutron coordinates, respectively.

For a total angular momentum JM and parity π , we solve
the time-independent Schrödinger equation

H3b�
JMπ = E�JMπ, (2)

where E is the three-body energy. After removal of the center-
of-mass motion, the Hamiltonian is given by

H3b = − h̄2

2mN

(�x + �y) + V12 + V13 + V23, (3)

where V12 and V13 are effective potentials, usually taken as
Woods-Saxon or Gaussian potentials, and V23 is a nucleon +
nucleon interaction. In Eq. (3), mN is the nucleon mass.

We solve Eq. (2) by writing the Hamiltonian in terms of
hyperspherical coordinates

ρ2 = x2 + y2, α = arctan
y

x
; 0 � α � π

2
, (4)

and by expanding the wave function as

�JMπ = ρ−5/2
∞∑

K=0

∑
γ

χJπ
γK (ρ)YJM

γK

(
	5ρ

)
. (5)

In this definition, index γ represents the set of quantum num-
bers γ = (lx, ly, L, S), where L is the total orbital momentum,
S = 0, 1 is the total intrinsic spin, and lx and ly are the orbital
momenta associated with x and y. In practice, the sum over
the hypermomentum K is limited to a maximum value Kmax,
and the parity π = (−1)K of the three-body relative motion
restricts the sum to even or odd values. The hyperspherical
harmonics YJM

γK depend on a set of five angles [15] 	5ρ =
(	x,	y, α) and are obtained from the coupling of a space
component and of a spin state. The unknown hyper-radial
wave functions are denoted as χJπ

γK (ρ).
Expansion (5) provides the set of coupled differential

equations,{
− h̄2

2mN

[
d2

dρ2
− (K + 3/2)(K + 5/2)

ρ2

]
− E

}
χJπ

γK (ρ)

+
∑
K ′γ ′

V Jπ
γK,γ ′K ′(ρ) χJπ

γ ′K ′(ρ) = 0, (6)

where V Jπ
γK,γ ′K ′(ρ) stands for the potential matrix elements

between hyperspherical harmonics [16]. These potentials are

known to behave, at large ρ values, as

V Jπ
γK,γ ′K ′ (ρ) ∼ 1/ρ3, (7)

and therefore extend to large distances. This property is
important for the treatment of three-body scattering states.

The hyper-radial wave functions are determined with
the Lagrange-mesh technique [21,27], which approximately
corresponds to a variational treatment on a mesh. In other
words, we expand the hyper-radial wave function on N

square-integrable basis functions ui(ρ) as

χJπ
γK (ρ) =

N∑
i=1

cJπ
γKiui(ρ). (8)

A Lagrange basis is a set of indefinitely differentiable
orthonormal functions that vanish at all points except one of
an associated mesh. The Lagrange-mesh technique leads to
simple calculations when the matrix elements are calculated
at the Gauss approximation corresponding to the mesh. It
provides analytical matrix elements of the kinetic energy
and diagonal potential matrix elements obtained by a simple
evaluation of the potential at the mesh points. As basis
functions ui(ρ), we choose Lagrange-Legendre functions
defined in a finite interval [22]. This basis is used to describe
continuum as well as bound states of the system.

B. Scattering states

We wish to find solutions of Eq. (2) for energies E > 0
with the correct boundary conditions. A scattering state with
outgoing boundary conditions is defined as [26]

�
(+)
kx kySν(E, kx, ky)

= (2π )−3ρ−5/2
∑
JM

∑
l′x l′yL′K ′

(L′SM ′
Lν|JM)YL′M ′

L∗
l′x l′yK ′ (	5κ )

×
∑
γK

YJM
γK

(
	5ρ

)
χJπ

γK(γ ′K ′)(E, ρ), (9)

where h̄k = h̄
√
k2
x + k2

y = √
2mNE is the hypermomentum,

with h̄kx and h̄ky the canonical conjugate momenta of the
Jacobi coordinates x and y. Indices γ ′K ′ label the entrance
channel. Here, we explicitly display the dependence of
the scattering wave function with the excitation energy E of the
three-body projectile (defined from the three-body threshold).

The hyper-radial wave functions fulfill the boundary con-
ditions χJπ

γK(γ ′K ′)(0) = 0 and, at large distances, tend to

χJπ
γK(γ ′K ′)(E, ρ) −→

ρ→∞ iK
′+1(2π/k)5/2

[
H−

γK (kρ)δγ γ ′δKK ′

−UJπ
γK,γ ′K ′H

+
γK (kρ)

]
, (10)

where H±
γK (x) are Hankel functions [28] and UJπ

γK,γ ′K ′ is the
three-body collision matrix. We use the R-matrix method
to calculate those states with appropriate boundary condi-
tions [19].
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C. The R-matrix method

The R-matrix theory provides an efficient way of solving
the Schrödinger equation at positive energies. Here, we briefly
discuss the R-matrix formalism to find three-body scattering
states with the correct asymptotic conditions [18,19]. An
extensive review is presented in Ref. [22].

The basic idea of the R-matrix method is to divide the
configuration space into two regions: an internal region with
ρ within the interval [0, a], where nuclear, Coulomb, and
centrifugal interactions act, and an external region, from the
channel radius a, where the nuclear interaction is negligible.
The internal wave function is expanded on a variational basis
as in Eq. (8), and it is matched at ρ = a with the external wave
function (10).

For three-body systems, it is known that the nuclear
interaction is not negligible until large ρ values [see Eq. (7)],
which are typically of several hundreds of fm (see Ref. [19]).
Therefore, the internal region is split into two regions. In the
interval [0, a0] the numerical values of the potential are used,
and the wave functions are expanded over basis (8). In the
intermediate region [a0, a], approximations of the potentials
make it easier to use propagation methods [22]. In this way
there is no need for large variational bases. The collision
matrix is calculated from the R-matrix evaluated at the channel
radius a.

For three-body scattering, because the particles can share
the angular momentum in an infinite number of ways, the
dimension of the scattering matrix is infinite. In practical
calculations, the dimension depends on Kmax. For large values,
the typical dimension of the collision matrix is of the order of
∼100−200.

D. Pseudostates

The R-matrix method provides an efficient way to deal with
two-body continuum states with the correct boundary condi-
tions. However, R-matrix calculations for three-body systems
in hyperspherical coordinates are tedious because of the long
range (7) of the nuclear potentials. An alternative method that
avoids the introduction of the three-body scattering conditions
is the pseudostate method [29]. It is an approximate method
where the continuum is discretized, and it is based on the
extension of variational calculations to positive energies.

In the present case, we expand the hyper-radial wave
function (8) on a square integrable basis, and we introduce this
expansion into the coupled differential equations (6) to end up
with an eigenvalue problem from which we get the coefficients
cJπ
γKi for each eigenvalue. Therefore, from the diagonalization

of H3b we find the ground state �J0M0π0 at E0 < 0 and a set of
pseudostates �Jπ

λ (EJπ
λ ) defined at positive energies.

E. Forbidden states

Forbidden states appear in microscopic cluster models
from the full antisymmetrization of the wave function. Those
states are typically simulated in nonmicroscopic models
by additional bound states in the effective core + nucleon

interaction. These unphysical forbidden states introduce spuri-
ous eigenvalues in the spectrum of the three-body Hamiltonian,
and therefore they have to be removed.

In the literature, essentially two methods are available
to remove forbidden states [18]: the projection technique
[30] and the supersymmetric transform [31] of the core + n

interaction. The former consists of adding a projector operator
to the two-body potential to project out the forbidden states
and then solving the Schrödinger equation in the allowed
space. In the supersymmetric transform, the deep core + n

interaction is replaced by a shallow potential with the same
scattering properties, but without the forbidden states.

The projection technique is difficult to apply to three-body
scattering states. The nonlocality of the projector makes
difficult the implementation of propagation techniques in the
R-matrix formalism described above. Therefore, to find three-
body bound and scattering states we use a supersymmetry
transform of the core + n potential.

F. E1 strength

The E1 strength distribution for transitions from the
ground state with energy E0 < 0, total angular momentum
J0, projection M0, and parity π0, through the electric dipole
M(E1)

μ operator, to a continuum final state, is defined as

dB(E1)

dE
= 1

2J0 + 1

×
∑

SνM0μ

∫
dkxdky δ

[
E − h̄2

2mN

(
k2
x + k2

y

)]

×|〈�(−)
kx ,ky ,Sν(E, x, y)|M(E1)

μ |�J0M0π0 (x, y)〉|2,
(11)

where the dipole operator reads

M(E1)
μ = eZ1

(
2

A1(A1 + 2)

)1/2

yY
μ

1 (	y). (12)

Here �
(−)
kx ,ky ,Sν is a three-body scattering state with ingoing

boundary conditions. This state is related to the scattering
state defined in Eq. (9) through a time-reversal operation [17].

In the discretized-continuum approximation, the B(E1)
strength distribution becomes

dB(E1)

dE
≈

∑
Jπλ

f
(
E,EJπ

λ

)
BE1

(
J0π0 → Jπ,EJπ

λ

)
, (13)

where

BE1 = 2J + 1

2J0 + 1

∣∣〈�Jπ
λ

(
EJπ

λ

)||ME1||�J0π0〉∣∣2
(14)

is the reduced E1 transition probability from the ground state
�J0π0 to a pseudostate �Jπ

λ (EJπ
λ ). The function f (E,EJπ

λ )
is a smearing function introduced to smooth the discrete BE1

values. This function is, in general, a Gaussian or a Lorentzian
(see Ref. [23] for more detail).
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III. REACTIONS IN THE FOUR-BODY EIKONAL
METHOD

A. Wave functions

We closely follow the formalism described in Ref. [17]
to study the elastic breakup and the elastic scattering of a
Borromean nucleus in a four-body eikonal model. Let us
consider the four-body Schrödinger equation

H4b�(R, x, y) = ET �(R, x, y), (15)

with

H4b = − h̄2

2μPT

�R + H3b + VPT (R, x, y). (16)

Here H3b is the internal Hamiltonian (3) of the three-body
projectile, R = (b, Z) is the relative coordinate between the
center of mass of the projectile and the center of mass of the
target, and μPT is the projectile-target reduced mass. The total
energy of the four-body system is defined from the ground-
state energy of the projectile E0 as

ET = h̄2

2μPT

K2 + E0, (17)

where K is the initial wave vector of the projectile-target
relative motion along Z. The projectile-target interaction that
considers nuclear, as well Coulomb interactions, is taken as
VPT = ∑3

i=1 ViT (R, x, y), where i = 1 labels the core, and
i = 2, 3 the external neutrons. Those interactions are simulated
with complex optical potentials.

The standard procedure in the eikonal approximation is to
factorize the wave function as

�(R, x, y) = eiKZ�̂(R, x, y). (18)

This factorization is introduced in Eq. (15) with the adiabatic
approximation that consists of replacing H3b by E0 [5]. The
eikonal wave function, valid at high energies, is given by

�̂eik.(R, x, y) = exp

[
− i

h̄v

∫ Z

−∞
dZ′ VPT (b, Z′, x, y)

]
×�J0M0π0 (x, y), (19)

where v is the relative velocity between the target and the
projectile.

B. Elastic and breakup cross sections

The breakup cross section is related to transition matrix
elements. In eikonal calculations, one introduces the wave
function given by Eqs. (18) and (19) in the transition matrix
element, and one assumes that the transferred wave vector
q = K ′ − K is orthogonal to the initial wave vector K . This
procedure leads to

Tf i = ih̄v

∫
d2b e−iq·bSSν(E, kx, ky, b), (20)

with the eikonal breakup amplitudes described by

SSν =
(

A1 + 2

A1

)3/4

〈�(−)
kx ,ky ,Sν |eiχ(b,bx ,by )|�J0M0π0〉, (21)

and depends on the initial three-body bound state �J0M0π0 and
on the final three-body scattering state �

(−)
kx ,ky ,Sν . The dynamics

information is contained in the eikonal phase

χ (b, bx, by) = − 1

h̄v

∫ ∞

−∞
dZ

3∑
i=1

ViT (b, Z, bx, by), (22)

where bx and by are the transverse components of x and y,
respectively. For i = 1, V1T does not depend on bx .

From the above definition we see that the eikonal phase
can be separated into its nuclear and Coulomb contributions.
Therefore, we rewrite this equation as

χ = χN + χC
PT + χC. (23)

Here χN is the nuclear eikonal phase, and χC
PT is the Coulomb

eikonal phase between the target and the projectile. The tidal
Coulomb eikonal phase χC is attributable to the distortion of
the projectile and reads

χC = − 1

h̄v

∫ ∞

−∞
dZ

(
V C

1T − ZT ZP e2

R

)
, (24)

where V C
1T stands for the core-target Coulomb interaction, and

where ZP e and ZT e are the charges of the projectile and target,
respectively.

The Coulomb eikonal phase leads to two divergence prob-
lems. The first divergence comes from the integral defining
χC

PT . It has been fixed by introducing a cutoff [4,5] and this
phase is given by

χC
PT = 2η ln(Kb), (25)

plus an additional term which becomes just a phase factor
playing no role in the cross sections (η is the Sommerfeld
parameter). The second divergence is related to the term χC

because it behaves as 1/b at large distances, and therefore the
breakup cross section diverges logarithmically [5].

The adiabatic approximation is responsible of the diver-
gence associated with the term χC . In fact, it is the first order
of the expansion in eiχC

which leads to the aforementioned
divergence. Hence, a valid method to avoid it is to replace
the first-order term of this expansion by the first order of the
perturbation theory [7,8]. This provides

eiχ → eiχN

(eiχC − iχC + iχFO)eiχC
PT . (26)

As the adiabatic approximation is not performed in pertur-
bation theory, the term χFO does not diverge. This method is
referred to as a Coulomb-corrected eikonal approximation and
has been applied to describe breakup reactions involving halo
nuclei in Refs. [9,17].

In practice, the eikonal phase factor eiχ of Eq. (21) is
expanded in multipole components to calculate transition
matrix elements, from which differential cross sections are
derived (see Ref. [17]).

Elastic scattering cross sections in a four-body eikonal
model are deduced in a similar way. The elastic scattering
amplitude is given by

fM ′
0,M0 = iK

2π

∫
d2be−iq·b[δM ′

0M0 − S
J0

M ′
0M0

(b)
]
, (27)
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where

S
J0

M ′
0M0

(b) = 〈�J0M
′
0π0 |eiχ(b,bx ,by )|�J0M0π0〉. (28)

As before, the factor eiχ is expanded in multipoles and as
usual, a rearrangement of the Coulomb terms has been done
for the numerical calculations (see Ref. [17] for detail).

IV. CONDITIONS OF THE CALCULATIONS

A. 11Li structure

We assume a three-body model with a spinless 9Li core.
To calculate bound and continuum states, we need core + n

and n + n interactions. As 9Li + n potential we choose that
of Ref. [32], which contains central and spin-orbit terms with
a Woods-Saxon shape. This interaction generates a core + n

s-wave scattering length of −5.7 fm. It also reproduces a p1/2

resonance near 540 keV, in agreement with Ref. [33]. This
interaction contains two forbidden states (s1/2 and p3/2) which
are eliminated through supersymmetric transformations. The
n + n potential is the central part of the Minnesota interaction
with the standard value u = 1 [34]. It reproduces the binding
energy of the deuteron and the n + n scattering length.

The 9Li + n and n + n interactions give a 11Li ground-state
energy of E0 = −0.29 MeV. To reproduce the most recent
experimental value of −0.378 MeV [10], we slightly modified
the core + n optical potential by multiplying it by a factor
λcn = 1.0051. This factor is very close to unity and does
not affect the properties of the 9Li + n system (the scattering
length is −6.3 fm). The same potential has been used for all
partial waves. Using a core radius of 2.43 fm [35], the rms
radius of 11Li is 3.2 fm, in agreement with the experimental
value of 3.16 ± 0.11 fm [36].

We follow Ref. [19] to calculate continuum states and
eigenphases. Adopting the same notations, the common
parameters that involve ground-state and continuum wave
functions are those defining the Lagrange-Legendre functions:
the channel radius a0 and the number of Lagrange functions
N . In all cases, the propagation technique is implemented
up to a channel radius a = 400 fm. We performed various
tests to check the stability of the results (phase shifts and E1
strengths) when these parameters vary. The sum over K in the
0+ ground state is truncated at Kmax = 40. For continuum
scattering states, we consider the most dominant partial
waves J = 0+, 1−, 2+ with corresponding Kmax = 32, 25, 22,
respectively. The corresponding numbers of channels [i.e., the
numbers of coupled equations in system (6)] are 153, 260, and
319 for J = 0+, 1−, and 2+, respectively.

B. Reaction framework

To study the elastic scattering and breakup of 11Li on
208Pb at 70 MeV/nucleon, we need 9Li + 208Pb and n + 208Pb
nuclear optical potentials at the corresponding energies. For
the n + 208Pb interaction, we consider the central part of the
complex optical potential given in Ref. [37] at 70 MeV.

The choice of the core-target interaction is more com-
plicated because of the lack of elastic-scattering data in the

literature. To estimate this potential, we proceed as in Ref. [38].
In this reference, the 10Be-208Pb potential needed to study the
breakup of 11Be was taken as the α-208Pb optical potential
with a scaled radius. We follow here the same procedure,
and use the α-208Pb of Bonin et al. [39] at 699 MeV. For
the 9Li + 208Pb potential, the scaled radii for the real and
imaginary components are Rr = 7.36 fm and Ri = 7.12 fm,
respectively. The conditions to calculate elastic, breakup
and double differential cross sections are identical to those
described in Ref. [17] for 6He.

V. RESULTS AND DISCUSSION

A. 9Li + n + n eigenphases

Figure 1 displays the dominant 0+, 1−, and 2+ eigenphases
[19] of 9Li + n + n. The 0+ and 2+ curves exhibit a wide
rise in energy with a resonantlike behavior. Particularly, the
0+ phase shifts show two bumps around 0.2 and 1.0 MeV
that may indicate overlapping resonances. A low-lying 0+
resonance has also been predicted in Refs. [12,13]. The 1−
eigenphase shows a sharp resonant behavior around 0.5 MeV.
This energy is consistent with the maximum observed in
the breakup experimental data (see below) and suggests the
existence of a low-lying resonance in 11Li.

B. E1 strength distributions

In Fig. 2, we test the convergence of the E1 strength
distributions (11), and show the results for different Kmax

values. We can observe enhanced E1 strength distributions
with a peak position near 0.5 MeV for Kmax = 25. This peak
is consistent with the 1− eigenphase and supports the existence
of a 1− resonance close to threshold. The comparison between
Kmax = 23 and Kmax = 25 shows that the convergence is fairly
good. Low Kmax values are illustrated with Kmax = 13. Under
those conditions, the resonance energy is shifted to 0.65 MeV.

Figure 3 displays convoluted E1 strength distributions.
We also show the E1 strength distributions calculated with
the pseudostate method [Eq. (13)]. It is widely employed in
the literature (see, for example, Ref. [20]). As in Ref. [23],

2+0+

1−

δ

FIG. 1. Dominant 0+, 1−, and 2+ eigenphases of the 9Li + n + n

system.
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2
2

FIG. 2. E1 strength distribution calculated with the R-matrix
method for Kmax = 25 (solid line), Kmax = 23 (dashed line), and
Kmax = 13 (dotted line).

we use a Lagrange-Laguerre basis with N = 70 and a scaling
factor h = 0.3 fm. Various tests have been performed to check
the stability of the results with respect to these parameters. To
be consistent with R-matrix results, we eliminate the forbidden
states through supersymmetric transforms of the core + n

potential.
The convolution of the theoretical E1 strength and breakup

cross sections are done by considering a Gaussian response
function [2]. Three typical σ values are chosen: σ = 0.05 MeV,
which is close to zero but allows the use of the PS method;
σ = 0.17

√
E MeV (normalized in energy between 0 and ∞),

which corresponds to the energy resolution quoted in Ref. [2];
and σ = 0.31 MeV, which provides the optimal fit to the data.

With the experimental resolution σ = 0.17
√

E MeV, we
overestimate the E1 strength derived by Nakamura et al. [2]
from their experimental breakup cross sections below 1 MeV,
and the peak position of our prediction is slightly shifted with
respect of the experimental data. Our results are similar to
those obtained by Esbensen et al. [24], who use different
interactions. We do not predict a possible bump near 1.2 MeV,
as suggested by experiment. Beyond 1.5 MeV, the present

0.17
√

E

2
2

FIG. 3. E1 strength distribution calculated with the R-matrix
(solid lines) and pseudostate (dashed lines) methods. The calculations
are convoluted with a Gaussian function and with three different σ

values (labels, in MeV). Experimental data are taken from Ref. [2].
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FIG. 4. Total breakup cross section (solid line) of 11Li on 208Pb at
70 MeV/nucleon and its partial-wave decomposition (dashed lines).

model does reproduce the experimental energy dependence,
but slightly underestimates the data. This problem might be
attributable to inelastic-breakup events, which are not included
in the calculation.

The R-matrix and pseudostate approaches are in very good
agreement with each other, except for the artificial oscillations
in the pseudostate method, caused by a folding with small
σ values. In the peak region, the difference between both
methods is less than 1% and the amplitude varies with σ .
The value σ = 0.31 MeV gives a good fit of the experimental
data but introduces a nonzero dipole strength at E = 0 MeV.
However, the choice of this value is somewhat artificial and is
not directly related to the detector resolution.

The good agreement between both methods indicates that
the difference between the theoretical convoluted curve of
Fig. 3 and the experimental data does not come from the
R-matrix calculation. In contrast with breakup cross sections,
E1 strengths are not directly measurable. Therefore, their
determination is partly model dependent. We come back in
Sec. VI to the model assumptions used for the experimental
determination of the B(E1) distribution.

C. Breakup cross sections and angular distributions

In this section, we study the elastic breakup of 11Li on
208Pb at 70 MeV/nucleon with a four-body eikonal model.
The total eikonal cross section dσ/dE and its partial wave
decomposition are shown in Fig. 4. They are calculated with
Eqs. (51) and (52) of Ref. [17]. As expected for a breakup
dominated by the Coulomb field, the total cross section is
mainly of 1− character. It presents a peak around 0.5 MeV,
which is also seen in the 1− partial cross section. It corresponds
to the resonance in the 1− eigenphase and to the narrow peak
of the dipole strength distribution. Beyond this peak, the 0+
and 2+ contributions are not negligible. In particular, the 2+
component represents more than 10% of the total cross section
at 4 MeV.

The behavior of the partial cross sections is better illustrated
in Fig. 5. For the 0+ partial wave, we can see a narrow peak
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×20

×20

1−

2+

0+

σ

FIG. 5. Breakup cross sections of the 0+, 1−, 2+ partial waves.
The dashed curves correspond to a modified 9Li-target potential as
described in Sec. V D.

around 0.25 MeV and a second wider structure around 1 MeV.
Those peaks coincide with the positions of the bumps observed
in the eigenphases of Fig. 1. A similar prediction for the 0+
excitation energy spectrum was suggested by Ershov et al.
[40] from the study of the excitation energy spectrum of 11Li
colliding on a proton target at 68 MeV/nucleon. The 2+ partial
cross section exhibits two broad peaks, near 1.2 and 2.5 MeV,
in agreement with the 2+ eigenphases of Fig. 1.

Figure 6 displays the total and 1− breakup cross sections of
Fig. 4 convoluted with the detector response and compared
with the experimental data of Ref. [2]. We observe a fair
agreement for energies above 1.5 MeV, but the peak energy is
slightly too high in the model. The conditions of the calculation
have been determined on the 0+ ground state, and no fitting
procedure is applied to the 1− partial wave. Including the 0+
and 2+ contributions increases the total cross section beyond
1 MeV, in better agreement with the experimental data. In
the literature, calculations of breakup cross sections of halo
nuclei often use the equivalent photon method [41]. This
approximation assumes a dipole breakup process and ignores

σ

FIG. 6. Total breakup cross section (solid line) and 1− contribu-
tion (dashed line) convoluted with the detector response. Experimen-
tal data are taken from Ref. [2].
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FIG. 7. Double differential cross sections (solid lines) as a
function of the scattering angle with their partial-wave decomposition
at different excitation energies (top labels in MeV). The dashed,
dotted, and dash-dotted lines correspond to the 0+, 1−, and 2+ partial
waves, respectively.

other contributions. In contrast, the present eikonal description
of the breakup reaction is more accurate, because it allows a
quantitative evaluation of other partial wave contributions.

A further investigation of the excitation multipoles and
mechanism is shown in the double differential cross sections,
d2σ

dθdE
(Eq. (50) of Ref. [17]), as a function of the scattering

angle, and at different excitation energies. In Fig. 7, we
display the cross section and its partial-wave decomposition
for four excitation energies: 0.2 MeV, near the 0+ narrow peak;
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θ

σ
Ω

103

102

101

100

FIG. 8. Total angular distribution (thin solid line) for the breakup
of 11Li on 208Pb at 70 MeV/nucleon in the range 0 � E � 4 MeV,
and its decomposition in the dominant partial waves 0+ (dashed),
1− (dotted), and 2+ (dash-dotted). The thick solid line shows the
total angular distribution convoluted with the detector resolution.
The experimental data are taken from Ref. [2].

0.45 MeV, close to the 1− narrow peak; 1.05 MeV, around the
0+ wide peak; and 2.95 MeV, presumably far from resonances.

At all energies the 0+ partial cross section presents
diffraction patterns at large angles (θ � 1◦). At 0.2 MeV, for
very forward angles (θ � 1◦), the total double differential cross
section is practically of 1− character, but at larger angles, there
is a strong influence of the 0+ partial contribution supporting
the indication of a 0+ resonance. As expected, at 0.45 MeV,
the dipole contribution is strongly dominant. Conversely, at
E = 1.05 MeV, the 0+ and 2+ contributions are not negligible
at large angles. Around 3 MeV the 2+ and 1− components
have the same order of magnitude at large angles.

Energy-integrated cross sections are available experimen-
tally. They are defined as

dσ

d	
=

∫ Emax

0

d2σ

d	dE
dE. (29)

In Fig. 8 we show this total angular distribution for Emax =
4 MeV, which corresponds to the experimental conditions [2].
The theoretical cross section is convoluted by a Gaussian
function (with a width of 0.44◦) to simulate the experimental
angular resolution. For all scattering angles the 1− partial wave
dominates, and the total angular distribution is mainly 1− at
very small angles. The agreement between the experimental
data and the convoluted theoretical curve is quite good for
almost all angles, even though there is no free parameter in
our calculations.

Figure 9 presents double differential cross sections with
respect to two-body energies (see Ref. [17] for detail). In the
top panel, E21 and Ec(21) are the energies between the external
neutrons and between their c.m. and the core. These energies
correspond to the “dineutron” or “T” configuration. The “Y”
configuration is characterized by E1c, the relative energy
between a neutron and the 9Li core, and by E2(c1), the energy
between neutron 2 and the c.m. of the 10Li =9 Li + n system.
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FIG. 9. (Top) 1− component of the double-differential cross
sections d2σ/dE21dEc(12) in b/MeV2 as a function of partial energies
E21 and Ec(12) for 11Li breakup on 208Pb at 70 MeV/nucleon. (Bottom)
Same as top panel for d2σ/dE1cdE2(c1).

These cross sections provide information about correlations in
11Li.

In the T configuration (top panel of Fig. 9), a maximum
is obtained near E21 = 0.15 MeV and Ec(21) = 0.3 MeV.
This peak might correspond to the neutron-neutron virtual
state. In the Y configuration (bottom panel of Fig. 9), there
is a maximum near E1c ≈ E2(c1) ≈ 0.2 MeV. Experimental
measurements would be helpful to clarify the structure of the
1− resonance.

D. Influence of the nucleus-target potentials

The 9Li-208Pb potential is poorly known and has been
determined here from a scaling of an optical α-208Pb potential.
To test the sensitivity of the breakup cross section to this
potential, we multiply it by a factor of two. The dependence is
illustrated by the dashed curves of Fig. 5. For all partial waves,
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FIG. 10. Elastic scattering angular distributions of 11Li and 9Li
on 208Pb in the present four-body eikonal model and in a two-body
eikonal model at 70 MeV/nucleon, respectively. The solid lines
correspond to the original 9Li-target potential, and the dashed and
dotted lines are obtained with the modified 9Li-target potential (see
text).

we do not get an appreciable dependence on the breakup cross
section by the choice of the core-target potential.

The same sensitivity is studied in Fig. 10 for elastic
scattering. We present the calculations for the 9Li-208Pb
and 11Li-208Pb collisions. In contrast with the breakup cross
section, the elastic scattering is more dependent on the core-
target potential. For a given potential, we find a reduction of
the elastic scattering of 11Li in comparison with the elastic
scattering of 9Li. This behavior may indicate a reduction of
the 11Li elastic scattering owing to flux going to the breakup
channel.

VI. DERIVATION OF THE E1 STRENGTH DISTRIBUTION

The experimental E1 strength distribution of 11Li is ex-
tracted from the breakup cross section by using the equivalent
photon method [41], which assumes a Coulomb-dominated
E1 breakup process. With this assumption, let us study the
sensitivity of the experimental data to the way the nuclear
contribution is excluded.

In a nonrelativistic regime, the electric dipole strength is
related with the breakup cross section by Ref. [5]

dB(E1)

dE
= 9

32π

(
h̄v

ZT e

)2 1

ξK0(ξ )K1(ξ )

dσ

dE
, (30)

with the adiabaticity parameter

ξ = E − E0

h̄v
bmin. (31)

The minimal impact parameter is

bmin = ZP ZT e2

2EPT tan(θc/2)
, (32)

where EPT is the projectile-target relative energy, and θc

stands for the maximal cutoff scattering angle up to which

θc = 1.46
θc = 2

θc = 0.9

2
2

FIG. 11. Dependence of the experimental B(E1) strength distri-
bution on θc (in degrees). The circles correspond to the conditions of
Ref. [2], and the triangles and squares correspond to other choices of
θc (the lines are to guide the eye). The solid line corresponds to the
present model with the experimental energy resolution.

the breakup process is Coulomb dominated. It is chosen from
the experimental breakup angular distribution [2]. According
to Figs. 8 and 10, the present model suggests a Coulomb
dominated angular range for θ � 0.9◦. We therefore adopt
θc = 0.9◦.

To estimate the dependence of the B(E1) strength distribu-
tion on θc, we recalculate the dipole strength using Eq. (30) and
the experimental breakup data of Ref. [2]. We choose the values
θc = 2◦ and θc = 0.9◦, above and below the value θc = 1.46◦
reported in Ref. [2]. Those values correspond to bmin values
of 14 and 31 fm, respectively. The results are displayed in
Fig. 11, from which we can observe an enhancement of the E1
strength distribution at low excitation energies for θc = 0.9◦.
This result is closer to our calculation (solid line in Fig. 11),
and the difference between theory and experiment is now
similar to the difference obtained in the breakup cross sections
(Fig. 4).

We therefore suggest that the experimental E1 strength
is underestimated. To get reliable dipole strengths, it is
necessary for the extraction of the B(E1) strength distribution
to consider more elaborate reaction models including nuclear
and Coulomb effects as well as their interference consistently.

VII. CONCLUSION

We have investigated the 11Li breakup in the eikonal ap-
proximation, with a 9Li + n + n three-body description of the
projectile. We use the hyperspherical formalism and expand
the hyper-radial functions on a Lagrange basis. Combined
with the R-matrix theory, the model provides a simultaneous
description of three-body bound and scattering states. This is
crucial for breakup calculations which involve both types of
wave functions.

The 9Li + n + n phase shifts suggest the existence of a
narrow 1− resonance near E = 0.5 MeV, corresponding to
Ex ≈ 0.9 MeV. Taking into account the 3/2− spin of the 9Li
core nucleus, this resonance should correspond to J = 1/2+,
3/2+, or 5/2+ in 11Li. The existence of such a resonance
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is supported by a low-energy maximum in the experimental
breakup cross section. At low energies, our resonance energy
is slightly higher than that seen experimentally, but there
is a qualitative agreement with the data. Beyond 1 MeV,
we underestimate the data, which contain inelastic breakup
events. The importance of this inelastic contribution is difficult
to evaluate, but is partly responsible for the difference
between theory and experiment. In this energy range we have
shown that the monopole and quadrupole components are not
negligible and may represent up to ≈15% of the total cross
section.

Surprisingly the agreement between theory and experiment
for the E1 strength distribution is less good in the resonance
region. We have addressed this apparent inconsistency by
redetermining the E1 strength from the experimental breakup
cross sections and by going beyond the simple dipole Coulomb
approximation. We have suggested that the E1 experimental
data of Nakamura et al. [2] are affected by this approximation.
Detailed comparisons between experiment and theory should

therefore be done on the breakup cross sections, rather than on
the E1 distributions.

The existence of a dipole resonance in the 11Li nucleus
seems now to be well established from experiment as well as
from theory. The situation is less clear in 6He [17], where a
1− resonance (broader than in 11Li) is predicted by most
theories, but not yet observed by experiment [42]. Let us finally
mention that elastic-scattering experiments at the same energy
would be very useful to assess the precision of the model and,
indirectly, of the predicted breakup cross sections.
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