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Refractive versus resonant diffraction scattering of loosely bound 6Li nuclei
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We present a complete analysis of 6Li + 16O elastic scattering at 4 and 5 MeV/nucleon. Using either
traditional Woods-Saxon or a range of semimicroscopic folding form factors we find that the data require
deep, highly transparent potentials. Physically relevant solutions are selected according to the dispersion relation.
The intermediate angle structures and the oscillatory increase of the cross section at large angles are interpreted
either as a pre-rainbow oscillation resulting from the interference of the barrier and internal barrier far-side
scattering subamplitudes or, equally well, as a resonant diffraction arising from two Regge poles located in
peripheral waves. Both semiclassical and Regge pole approaches allow a dynamical separation of the resonant
component of the S matrix.
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I. INTRODUCTION

The study of nucleus-nucleus elastic scattering has a
long history but remains of interest due to both successes
and failures that mark it (see, for example, Refs. [1,2] and
references therein). We are searching here for reliable ways to
predict optical model potentials for reactions with radioactive
nuclear beams (RNBs). In particular, our interest focuses
on finding reliable descriptions for transfer and breakup
reactions involving relatively light, loosely bound nuclei,
which are used in indirect methods in nuclear astrophysics.
A range of RNB studies were made at energies around
10 MeV/nucleon, where the reactions are peripheral, with the
intent to obtain information about stellar reaction rates. These
reactions use DWBA techniques to extract nuclear structure
information. However, the well-known existence of many
ambiguities in the optical model potentials (OMPs) extracted
from elastic scattering can raise questions about the reliability
and accuracy of these determinations. Experimental studies
using RNBs have, heretofore, not been suitable for detailed
elastic scattering analyses. The best information comes from
studying the elastic scattering of stable loosely bound nuclei
with similar mass. We chose here to study the elastic scattering
of 6Li at low energy, a fragile projectile (loosely bound),
with a pronounced cluster structure and with low Z that can,
therefore, exhibit a range of phenomena, involving absorption,
resonant diffraction, and refraction, mostly of nuclear nature.
We continue here the efforts started in Refs. [3,4] to find a way
to predict optical potentials for scattering involving radioactive
nuclei, or, at least, to have a good starting point for obtaining
them, after which they are only fine tuned using the available,
lower quality, scattering data with RNBs. We consider that in
order to reach this goal it is important to study and understand
in detail the mechanisms involved in the scattering of nuclei
with some similarities. This may help to eliminate some of the
ambiguities and interpretations that are known to plague the
description of elastic scattering with optical potentials. This
goal can be achieved only with very good data, covering well
a wide angular range, and at different bombarding energies.

Works by Ogloblin et al. [5] and by Szilner et al. [6]
have established that elastic scattering of light, tightly bound

heavy-ion systems such as 16O + 12C and 16O + 16O show
sufficient transparency for the cross section to be dominated by
the far-side scattering. Intermediate-angle structures appearing
in the elastic scattering distributions at angles beyond the
Fraunhofer diffractive region have been identified as Airy
minima of a nuclear rainbow, i.e., destructive interference
between two far-side trajectories which sample the interior
of the potential. A number of high-order Airy minima have
been identified by observing that such structures are largely
insensitive to an artificial reduction of the absorption in the
optical potential, and therefore they appear as a manifestation
of the refractive power of the nuclear potential. While at
high energy [7] this picture was well substantiated by a
semiclassical nonuniform decomposition of the scattering
function [8], at lower energies the situation is more difficult
to understand. It has been shown by Anni [9] that such
structures could be explained by the interference of two
amplitudes appearing in different terms of a multireflection
uniform series expansion of the scattering amplitude and
therefore the interpretation using rainbow terminology is not
appropriate.

For loosely bound nuclei at low energy the situation is even
more intricate.

The corresponding components in the optical potential are
expected to be more diffuse as compared to normal nuclei,
leading to a competition between the increased refractive
power of the real potential and the increased absorption at
the nuclear surface. The small separation energy implies also
that the dynamic polarization potential (DPP) [10] arising
from the coupling to breakup states may be strong and
have a complicated energy and radial dependence. Thus the
DPP cannot be treated as a small perturbation for loosely
bound nuclei and the usual phenomenological procedure
in renormalizing the folding potential form factor may be
questioned. It has been estimated that the DPP is strongly
repulsive at the nuclear surface in the case of 6Li [11]. This
prompted Mahaux, Ngo, and Satchler [12] to conjecture that
for loosely bound nuclei the barrier anomaly may be absent due
to the cancellation between the repulsive (DPP) and attractive
(dispersive) components of the optical potential.
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Folding model analysis using the complex, density- and
energy-dependent NN interaction of Jeukenne, Lejeune, and
Mahaux (JLM) [13], as well as other G-matrix effective
interactions, where corrections due to the strong DPP have
been included, confirmed that the elastic distribution could be
described using deep and extremely transparent potentials. The
intermediate-angle structures have been discussed using the
semiclassical uniform approximation for the scattering func-
tion of Brink and Takigawa [14]. We explain the intermediate-
angle structure as a coherent interference effect of two subam-
plitudes corresponding to trajectories reflected at the barrier
and interfering with trajectories which sample the nuclear
interior. Thus, this refractive effect appears as a signature of a
highly transparent interaction potential. A completely different
picture emerges using a phenomenological Regge pole analy-
sis [15], pointing to a resonant effect present in surface waves.

In this paper we present an analysis of elastic scattering
of 6Li on 16O at 4 and 5 MeV/nucleon. Accurate angular
distribution has been measured over an almost complete
angular range [16,17]. This angular distribution displays a
complex structure at intermediate and large angles, pointing
to strong refractive effects.

The paper is structured in the following way: after this
introduction, the analysis of the elastic scattering data using
phenomenological and microscopic optical model potentials
is discussed in Sec. II. In Sec. III we present a discussion
of the decomposition of the far-side scattering amplitude into
barrier and internal barrier components responsible for the
exotic structure at intermediate angles. Finally, we perform
a Regge pole analysis in Sec. IV and conclude our work in
Sec. V.

II. OPTICAL-MODEL ANALYSIS

A. Woods-Saxon form factors

The measured elastic scattering data at Elab = 25.7 MeV
and 29.8 MeV [16,17], shown in Fig. 1 as the ratio to
the Rutherford cross section, covers a large angular range.
These data show complex forms with characteristic rapid
oscillations at small angles followed by a marked change in
shape at intermediate angles: a bump develops at θ ≈ 100◦
(25.7 MeV) or a shallow minimum (29.8 MeV), which is
followed by a significant increase of the cross section at
larger angles, reminding the well-known anomalous large-
angle scattering (ALAS; see a review in [18]). Assuming
pure Fraunhofer scattering at forward angles, we extract a
grazing angular momentum, lg ≈ 12, from the angular spacing
�θ = π/(lg + 1/2).

The data are analyzed using optical potentials with con-
ventional Woods-Saxon (WS) form factors for the nuclear
term, supplemented with a Coulomb potential generated by
a uniform charge distribution with a reduced radius fixed
to rc = 1 fm. No preference has been found for volume-
or surface-localized absorption and throughout the paper
only volume absorption is considered. In the absence of any
spin-dependent observables, spin-orbit or tensor interactions
have been ignored. Ground-state reorientation couplings also
have been neglected. The potential is defined by six parameters
specifying the depth and geometry of the real and imaginary
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FIG. 1. Woods-Saxon optical model analysis (full lines) of elastic
scattering data (points) at 4 and 5 MeV/nucleon (Table I). Far-side
(dash-dotted line) and near-side (dash line) cross sections are also
shown as a ratio to the Rutherford cross section.

terms, with the standard notation, the same as used in Ref. [3].
The number of data points, N , is quite large, and consequently
the usual goodness-of-fit criteria (χ2) normalized to N has
been used.

The averaging associated with the finite experimental
angular resolution mostly affects the depth of sharp minima.
A few exploratory calculations showed that allowing the
overall normalization to vary did not result in any qualitative
changes and did not indicate that any renormalization of
the data by more than a few percent would be preferred.
Optical parameter sets obtained in our previous paper [4] were
used as starting values for the search procedure. Guided by
these potentials and by our earlier analysis [3] a number of
some 104 potentials with real volume integrals in the range
JV = 200–600 MeV fm3 have been generated, thus exploring
the functional Woods-Saxon space in full detail. Local minima
were identified and a complete search on all six parameters
determined the best-fit potentials. The complex structure at
intermediate angles and the increase of the cross section at
large angles could be described only with deep potentials
with real volume integrals (per pairs of interacting nucleons)
exceeding a critical value JV crit ≈ 240 MeV fm3. We did not
find any acceptable solution with JV < 200 MeV fm3 (see
Fig. 2). There is a consistent preference for potentials with very
weak imaginary parts, with values of W around 5–7 MeV. We
systematically find rV < rW and large diffuseness parameters
aV � 0.9 fm, in agreement with theoretical expectations for
loosely bound nuclei [19,20]. A grid search procedure on the
real depth of the potential allowed us to identify discrete
ambiguities. The best solutions which match quite well the
dispersion relations (see below) are given in Table I. For
each discrete solution we found an almost constant imaginary
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FIG. 2. Discrete ambiguities obtained from a grid search on the
real volume integral, using Woods-Saxon (WS) and double folding
form factors in the optical model. There are no acceptable solutions
with JV < 200 MeV fm3. Best solutions are tabulated in Table I.

volume integral. As a consequence, the total reaction cross
section seems to be a well-determined observable. Gridding
on other WS parameters revealed a continuous ambiguity of
the form JV RV ≈ const., where RV is the rms radius of the
potential. The larger the volume integral, the smaller the radius
that is required to fit the data. This is a clear manifestation
of a complicated radial dependence of the DPP, which may
lead to radii much smaller than the minimal value implied
by the folding model (e.g., R2

F = R2
1 + R2

2, for a zero-range
NN effective interaction). However, for each discrete family

rather precise values of the rms radii were required to fit both
forward- and intermediate-angle cross sections.

As mentioned already, it was shown in Refs. [5–7] that the
elastic scattering of light heavy ion systems such as 16O + 12C
and 16O + 16O shows sufficient transparency for the cross
section to be dominated by far-side scattering. Structures
appearing in the elastic scattering angular distributions at
intermediate angles have been identified as Airy minima of
a nuclear rainbow, due to destructive interference between two
far-side trajectories which sample the interior of the potential.
At 4 MeV/nucleon the 6Li scattering data show rapid, diffrac-
tive Fraunhofer oscillations at forward angles due to the strong
near-far amplitude interference (Fig. 1). At θ ≈ 40◦ the far-
side and near-side components of the scattering amplitude are
almost equal, producing the first Fraunhofer deep minimum.
Beyond this “crossover” the near-side amplitude makes a
negligible contribution and the cross section is dominated
by the far-side component. There is no dark-side exponential
decay of the far-side component. The deep minimum seen at
θ ≈ 60◦ in the far-side component is stable against the strength
of the absorption and may be interpreted as a primary Airy
minimum of a nuclear rainbow. It is followed by a broad
Airy maximum and a structureless increase of the far-side
cross section at large angles. Low-amplitude oscillation of the
elastic cross section at intermediate and large angles are due to
far-side/near side interference. The total cross section reaches
a maximum near θ = 180◦ where both components became
again equal. Clearly, far-side dominance may be interpreted
as a possible manifestation of refractive effects. However, this
simple dominance does not explain, by itself, the structure
of the far-side component. In fact, the above picture has
already been challenged by Anni [9] and by Michel et al. [21]
for the simple reason that the far-side amplitude has never
been decomposed into subamplitudes which would explain the
interference. We shall return to this topic in Sec. III. For the

TABLE I. Best-fit Woods-Saxon and folding potential parameters for 6Li + 16O which match the dispersion relation. The second header
line denotes parameters for folding potentials. Reduced radii are defined in the heavy-ion convention. All lengths are given in femtometers,
depths in MeV, cross sections in millibarns, and volume integrals in MeV fm3. RV and RW are the rms radii of the real and imaginary potentials,
respectively. The normalized χ 2 values are calculated by assuming a uniform 10% error.

Elab Potential V0 W0 rV rW aV aW χ 2 σR JV RV JW RW

NV NW tV tW

25.7 VO1 162.21 5.018 0.529 1.469 0.993 0.654 9.81 1434 248 4.087 63 5.502
VO2 224.00 5.988 0.541 1.415 0.911 0.687 9.27 1430 318 3.839 68 5.397
M3YZR 0.737 0.139 0.090 2.799 14.4 1499 352 3.908 62 5.208
M3YFR 0.492 0.105 0.364 2.904 13.3 1532 279 4.058 59 5.387
GOGNY1 0.426 0.092 0.383 2.944 12.6 1540 284 4.072 60 5.427
GOGNY3 0.520 0.114 0.083 2.844 12.3 1534 289 4.100 61 5.386
JLM1 0.543 0.428 0.646 2.795 11.5 1513 354 3.879 64 5.327
JLM3 0.588 0.532 0.733 2.763 11.6 1509 350 3.871 63 5.296

29.8 VZ2 237.51 7.268 0.506 1.338 1.006 0.607 7.35 1369 344 4.098 68 5.029
M3YZR 0.730 0.148 0.105 2.977 10.9 1578 345 3.909 66 5.356
M3YFR 0.705 0.132 0.385 2.849 11.6 1543 363 3.943 67 5.252
GOGNY1 0.610 0.109 0.279 2.634 12.8 1505 378 3.974 67 5.114
GOGNY3 0.750 0.139 0.098 2.549 13.0 1501 386 4.000 68 5.080
JLM1 0.555 0.439 0.824 2.638 11.4 1518 359 3.930 67 5.200
JLM3 0.595 0.548 0.865 2.711 10.9 1532 352 3.912 66 5.249
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FIG. 3. Argand diagrams for the WS and folding S matrix. Optical
potentials are from Table I. For low angular momentum l < 10, the
trajectory for the S matrix rotates clockwise several times around the
origin, suggesting the presence of several Regge poles.

moment we adopt the interpretation of Michel et al. [21] and
denote the complex structure at intermediate angles in the data
as pre-rainbow oscillations. A model-independent analysis in
which the diagonal S-matrix elements are extracted directly
from the data through a complex phase shift analysis confirms
that the Airy oscillation at θ ≈ 60◦ is a real effect. Further
information can be obtained by looking at the Argand diagrams
displayed in Fig. 3. It demonstrates that the potentials given
in Table I are fully equivalent since the Argand patterns are
almost identical for all potentials. This means that the Drisko
ambiguity [22], δl → δl + nπ , holds not only for low angular
momenta but for all momenta when going from one potential
to another. Furthermore, for low angular momentum l < 10,
the trajectory for the S matrix rotates clockwise several times
around the origin, suggesting the presence of several Regge
poles. We will return to this effect in the following sections.

B. Folding model analysis

In the this section we discuss the ability of the folding model
to describe the pre-rainbow oscillation seen in our data.

We start with a quite simple model in which the form factors
of the OMP are given by the double folding integral

Vfold(R) =
∫

d�r1d�r2 ρ1(r1)ρ2(r2)vM3Y (s), (1)

where vM3Y is the M3Y parametrization of the G matrix
obtained from the Paris NN interaction [23], and �s = �r1 +
�R − �r2 is the NN separation distance. In the simplest version

of this model, dubbed here as M3YZR, the knock-on exchange
component is simulated by a zero-range potential with a
slightly energy-dependent strength,

J00(E) = −276(1 − 0.005E/A). (2)

Then the OMP is given by

U (R) = NV V (R, tV ) + NWW (R, tW ), (3)

where NV,W are normalization constants and tV,W are range
parameters of a smearing function

g(�s) = 1

t3π3/2
exp(−s2/t2). (4)

With this function, the form factors of the OMP are given by

V (R, tV ) =
∫

d �R′ Vfold(R′)g( �R − �R′) (5)

and similarly for W (R, tW ). Note that the normalized function
g converges to a δ function in the limit t → 0. The rms radius
of the OMP form factor is given by

〈r2〉V = 〈r2〉ρ1 + 〈r2〉ρ2 + 〈r2〉v + (3/2)t2. (6)

Thus the volume integral of the form factor is controlled by
the parameters NV,W . Note that the normalization in Eq. (4)
ensures that only the rms radius of the bare folding potential is
changed by the transformation of Eq. (5). Based on Eq. (6) one
may estimate in an average way the importance of the dynamic
polarization potential and finite-range effects. Throughout
this paper we use single-particle densities obtained from a
spherical Hartree-Fock (HF) calculation based on the density
functional of Beiner and Lombard [24]. The obtained rms
charge radii are 〈r2〉1/2

6Li = 2.33 fm and 〈r2〉1/2
16O = 2.71, which

should be compared with experimental values of 2.53 and
2.70 fm, respectively [25]. A grid search on the real volume
integral reveals the same ambiguity obtained with the WS
form factors (see Fig. 2 and Table I). The best solutions are
displayed in Fig. 4. The real volume integrals match quite
well solutions found with the WS parametrization. Again
imaginary volume integrals are quite small, pointing to a large
transparency of the potential. Correction due to the finite-range
effects are quite large, of the order of �r ≈ 0.4 fm for the
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FIG. 4. Cross sections calculated with the zero-range (top) and
finite-range (bottom) versions of the M3Y effective interaction at
25.7 MeV (left panels) and 29.8 MeV (right panels). Renormalization
parameters and ranges are given in Table I.
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real potential and much larger for the imaginary potential.
Note that the minimum rms radius implied by Eq. (6) is
3.57 fm. Far-side/near-side decomposition of the scattering
amplitude reveals the same features: a minimum in the far-side
component develops at θ = 65◦, which becomes deeper with
the increased real volume integral of the interaction.

A more elaborate calculation leads to a nonlocal knock-on
exchange kernel,

Uex( �R+, �R−)

= μ3vex(μR−)
∫

d �X1 ρ1(X1)ĵ1

[
kf 1(X1)

(A1 − 1)A2

A1 + A2
R−

]

× ρ2

[
| �R+ − �X1|)ĵ1(kf 2(| �R+ − �X1|) (A2 − 1)A1

A1 + A2
R−

]
,

(7)

where A1,2 are mass numbers, μ is the reduced mass of
the system, kf 1,2 are Fermi momenta, R+,− are the usual
nonlocal coordinates, and vex is the exchange component of
the interaction including the long-range one-pion exchange
potential (OPEP) tail. In the lowest order of the Perey-Saxon
approximation, the local equivalent of the nonlocal kernel is
obtained by solving the nonlinear equation

UL(R) = 4π

∫
d�r1d�r2 ρ1(r1)ρ2(r2)

×
∫

s2ds vex(s)ĵ1(kf 1(r1)β1s)ĵ1(kf 2(r1)β2s)

× j0

(
1

μ
K(R)s

)
δ(�r2 − �r1 + �R). (8)

Here βi = (Ai − 1)/Ai are recoil corrections and ĵ1(x) =
3j1(x)/x and j0,1 are spherical Bessel functions. Local Fermi
momenta kf are evaluated in an extended Thomas-Fermi
approximation [26]. The local momentum for the relative
motion is given by

K2(R) = 2μ

h̄2 [Ec.m. − UD(R) − UL(R)] , (9)

where UD is the total direct component of the potential
including the Coulomb term. In Eq. (9) we assumed a purely
real local momentum of the relative motion since the absorptive
component of the OMP is small compared with the real part.
The effective-mass correction [27], μ


μ
= 1 − ∂U

∂E
, is of the

order of a few percent for this system and is absorbed in the
renormalization parameter NW . Some tens of iterations are
needed to solve Eq. (8) in order to obtain a precision of 10−7

in the entire radial range. Calculations with the finite-range
model are dubbed M3YFR. As in the case of other interactions
it is possible to find several solutions. However, a careful
calculation reveals that in fact there is a unique solution with
JV = 280 MeV fm3 (Fig. 2). At 29.8 MeV we found a unique
solution at about JV = 350 MeV fm3. Thus the more careful
calculation of the knock-on exchange component changes
completely the volume integral and the rms radius of the real
component such that a unique solution survives in the range
JV = 250–350 MeV fm3.

At this point we want to make a comment on the effect of
coupling with the breakup states. Sakuragi [11] performed a

continuum discretized coupled channels (CDCC) calculation
of 6Li scattering over a large range of incident energies and
target mass. He found that coupling with α-d breakup states
brings a repulsive DPP in the nuclear surface in such a way
that reasonable fits can be obtained by fixing the normalization
constant NV = 1 and NW = 0.4–0.7 when using the M3Y
effective interaction supplemented by a pseudo zero-range
knock-on potential as we did in our model M3YZR. First,
he assumes implicitly that M3Y is a perfect interaction and
the renormalization NV should be exactly one. This is not the
case for several reasons. The absence of any explicit density
dependence and of three-body effects leads to a collapse of
the equation of state of nuclear matter at least at the HF level.
The pseudo potential used for the knock-on exchange is a
poor approximation. The odd components (SO and TO) of
the interaction are largely ambiguous. We have seen that in a
single-channel calculation there are discrete ambiguities with
real volume integrals JV = 200–350 MeV fm3. The bare (un-
normalized) potential has a volume integral of 425 MeV fm3

and an rms radius of 3.86 fm. This means that the DPP coming
from coupling to breakup should correct simultaneously
the volume integral by �JV = 225, 165, and 80 MeV fm3

and for �RV = 0.1–0.2 fm, which is evidently impossible.
Furthermore, in line with our previous analyses [3,4] we found
systematically �R = RW − RV ≈ 1.4 fm and therefore it is
a bad approximation to use the same geometry for real and
absorptive components of the OMP.

Is this unique solution an accidental feature of the M3YFR
model? In a recent paper [28] we successfully described the
hindrance in the sub-barrier fusion of 48Ca with several targets
using optical potentials generated with two parametrizations
of the Gogny effective interaction. By neglecting the spin-orbit
component, the Gogny NN interaction can be expressed as a
sum of a central, finite-range term and a zero-range density-
dependent term,

v(�r12) =
2∑

i=1

(Wi + BiPσ − HiPτ − MiPσPτ )e
− r2

12
μ2

i

+ t3(1 + Pσ )ρα( �R12)δ(�r12), (10)

where �r12 = �r1 − �r2, �R12 = (�r1 + �r2)/2, and standard notation
has been used for parameter strengths and spin-isospin
exchange operators. The strengths and the ranges are taken
from [29]. The interest in this interaction resides in its excellent
description (at the HF level) of the saturation properties
of nuclear matter in line with modern estimation from the
isoscalar giant monopole [30] or dipole resonance [31] studies.
Antisymmetrization of the density-dependent term is trivial,
so that the sum of direct and exchange terms reads

v
ρ

D(r12) + vρ
ex(r12) = 3t3

4
ραδ(�r12). (11)

The local equivalent of the finite-range knock-on exchange is
calculated with Eq. (8). Two approximations were used for the
overlap density,

ρ = [ρ1(r1)ρ2(r2)]1/2 (12)
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FIG. 5. Cross sections calculated with the D1 parametrization of
the Gogny effective interaction. The curves in the top and bottom
panels are calculated using Eqs. (12) and (13), respectively, for the
overlap density. Renormalization parameters and ranges are given in
Table I.

and

ρ = 1
2 [ρ1(r1) + ρ2(r2)]. (13)

The first approximation, Eq. (12), has the merit that the overlap
density goes to zero when one of the interacting nucleons is
far from the bulk. The calculated OMPs are dubbed GOGNY1
and GOGNY3, respectively. Both definitions represent crude
approximations of the overlap density but are widely used
in the estimation of the density effects in the folding model.
Several solutions have been found with this model, but in fact
only one gives a fit comparable with the best solutions found
with other form factors (Fig. 5). Estimation with the overlap
density defined in Eqs. (12) or (13) do not make too much
difference (Table I). Both approximations lead to the same
volume integrals and rms radii.

We further examine the density-dependence effects by
using the nuclear matter approach of Jeukenne, Lejeune and
Mahaux (JLM) [13], which incorporates a complex, energy-
and density-dependent parametrization of the NN effective
interaction obtained in a Brueckner Hartree-Fock approxi-
mation from the Reid soft-core nucleon-nucleon potential.
The systematic study [3] of the elastic scattering between
p-shell nuclei at energies around 10 MeV/nucleon leads to
the surprising result that, on average, the imaginary part of
the folded JLM potential was perfectly adequate to describe
such reactions and did not need any renormalization (NW =
1.00 ± 0.09), while the real component needed a strong
renormalization, in line with other effective interactions used
in folding models. We do not expect this property to be
conserved at much lower energy (4–5 MeV/nucleon in this
case).

There are no exchange components included in this model
and, as a consequence, several discrete solutions are found. The
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FIG. 6. Cross sections calculated with the G-matrix JLM ef-
fective interaction. The curves in the top and bottom panels are
calculated using Eqs. (12) and (13), respectively, for the overlap
density. Renormalization parameters and ranges are given in Table I.

best solutions obtained with Eqs. (12) and (13) are displayed
in Fig. 6 and listed in Table I.

The JLM1 model provides a consistent description of the
rainbow pattern in a large range of energies between 8 to
53 MeV/nucleon (see Fig. 7). At the lowest energy shown in
Fig. 7, the broad hump at θ ≈ 90◦ is associated with a primary
rainbow peak. As the energy increases, the primary rainbow
moves forward and is followed by the exponential fall in the
classically forbidden angular range.

In the remainder of this section we examine the dispersive
properties of the optical potential for 6Li scattering. The
threshold anomaly which manifests itself as a sharp increase
of the real optical potential for energies close to the Coulomb
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FIG. 7. Cross sections calculated with the JLM1 model for
energies between 8 and 53 MeV/nucleon for the reaction 6Li + 12C.
The far-side component is shown by dash-dotted lines. See also
Ref. [4] for experimental data references.
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FIG. 8. Energy dependence of the real (solid points) and imag-
inary (open points) volume integrals obtained in the analyses with
Woods-Saxon and folding optical potentials. The stars show the
values obtained from the OM1 optical potential of Ref. [38].
Empirical values at high energy were taken from Ref. [4] for the
reaction 6Li + 12,13C, by assuming that the mass dependence of the
JV,W is weak. The curve for JW is obtained from a best fit with
Eq. (16) while the curve for JV is the result from the dispersion
relation, normalized to the empirical value at 20 MeV/nucleon.

barrier has been explained by Nagarajan, Mahaux, and Satchler
[32] as due to the opening of reaction channels with increasing
energy. Later on it was conjectured by Mahaux et al. [12] that,
for loosely bound nuclei, this anomaly may be absent. Recent
studies of the threshold anomaly in 6,7Li-induced reactions
lead to contradictory conclusions: a cancellation between the
attractive (dispersive) component and the repulsive dynamic
polarization potential [33,34], dynamic polarization potentials
of opposite sign for 6,7Li [35], and breakup suppression in
complete fusion above the barrier energies [36]. A recent
study of the 6Li interaction with heavy targets [37] showed
that prompt breakup triggered by neutron-stripping is more
likely than prompt breakup into projectile cluster constituents.
Therefore, the energy dependence of the 6,7Li optical potential
is far from clear and the competition between dispersive
(attractive) and coupling to continuum (repulsive) effects
needs to be studied more carefully. The real and imaginary
volume integrals for the optical potentials obtained in the
previous sections are plotted in Fig. 8. Both Woods-Saxon and
folding results have been included. These are supplemented
with values derived from the smooth OM1 potential of Trcka
et al. [38], from [4], and from an analysis of 6Li + 12C at 24 and
30 MeV [16], under the assumption that the mass dependence
of the normalized volume integrals JV,W is weak.

We assume that the local optical potential may be written
as V = V0 + �V (E), where V0 is independent of energy and
�V (E) is the energy-dependent DPP. We ignore the spurious
energy dependence of V0 arising from nonlocality which is
expected to be weak for heavy ions. We use the dispersion
relation connecting the imaginary and real volume integrals in

the subtracted form

J�V,Es
(E) = (E − Es)

P
π

∫
JW (E′)

(E′ − Es)(E′ − E)
dE′, (14)

which determines J�V up to a constant. Here Es is a reference
energy and P is the principal value of the integral. In principle
the evaluation of this equation requires the knowledge of
JW values at all energies. The above subtracted form takes
advantage of the fact that the energy dependence of JW far
from saturation energy is not very important and the unknown
contributions are absorbed by normalizing to the empirical
value at a convenient reference energy,

J�V,Es
(E) = J�V (E) − J�V (Es). (15)

The energy dependence of the imaginary volume integral is
approximated by

JW (E) = J 0
W [1 − β exp(−αE)]. (16)

Our calculation (see Fig. 8) suggests no sharp increase
of the real volume integral as the energy falls toward zero,
indicating a weak threshold anomaly. It also suggests that
optical potentials with JV ≈ 400 MeV fm3 would be preferred.

To conclude this section, we find that folding potentials
including finite-range, recoil, and density-dependence effects
describe well the cross section in the entire angular range,
comparable with the more flexible WS form factors. A realistic
description of the surface of the nucleon and charge single-
particle densities was essential for the procedure. Inclusion of
the more elaborate knock-on exchange potential reduces the
number of discrete ambiguities, while the dynamical content
of the S matrix remains the same, with a strong resonant effect
in the low l partial waves.

III. SEMICLASSICAL BARRIER AND INTERNAL
BARRIER AMPLITUDES

Once we have established the main features of the average
OMP, we turn now to study the reaction mechanism using
semiclassical methods. The far-side dominance observed in
the angular distributions does not explain the behavior of the
S-matrix elements at low angular momentum. The reason
is of course that the far/near (F/N) decomposition method
does not perform a dynamic decomposition of the scattering
function, but merely decomposes the scattering amplitude
into traveling waves. The intermediate-angle structures, such
as those observed in our angular distribution, have been
repeatedly interpreted as arising from the interference of two
ranges in angular momenta, �< and �>, contributing to the
same negative deflection angle. However, the corresponding
cross sections, σF< and σF>, cannot be isolated because their
dynamic content (S matrix) is not accessible.

The semiclassical uniform approximation for the scattering
amplitude of Brink and Takigawa [14] is well adapted to
describe situations in which the scattering is controlled by
at most three active, isolated, complex turning points. An
approximate multireflection series expansion of the scattering
function can be obtained, the terms of which have the same
simple physical meaning as in the exact Debye expansion for
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the scattering of light on a spherical well. The major interest
in this theory comes from the fact that it can give precious
information on the response of a nuclear system to the nuclear
interior. An application [9] of this technique helped to clarify
the controversial problem of the “Airy oscillation” seen in
low-energy 16O + 12C scattering [5].

We take as an example the potential VO1 in Table I.
We discard the absorptive term and define the effective
potential as

Veff(r) = V (r) + h̄2

2μ

λ2

r2
, λ = � + 1

2
, (17)

where the Langer prescription has been used for the centrifugal
term. This guarantees the correct behavior of the semiclassical
wave function at the origin [39]. Then we calculate the
deflection function

�(λ) = π − 2
∫ ∞

r1

√
h̄2

2μ
λ dr

r2
√

Ec.m. − Veff
, (18)

where r1 is the outer zero of the square root, i.e., the radius
of closest approach to the scatterer, and μ is the reduced
mass. Note that with the replacement h̄λ = b

√
2μE, Eq. (18)

becomes identical to the classical deflection function �(b),
where b is the impact parameter. The result is shown in Fig. 9.
The behavior of �(λ) is the one expected for a strong nuclear
potential in a near-orbiting kinematical situation in which
the center-of-mass energy approximately equals that of the
top of the barrier for some specific angular momentum. All
the measured angular range is classically illuminated. The
deflection function exhibits no genuine minima, but rather a
pronounced cusp close to an orbiting logarithmic singularity.
Therefore any interpretation of structures in angular distribu-
tions in terms of Airy oscillations can be discarded. Rather,
we need an interpretation appropriate for orbiting, a well-
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FIG. 10. Trajectories of complex turning points for the potential
VO1, Table I. Inactive turning points r1−1 and r2−1 give negligible
small contribution to the semiclassical S matrix and are omitted from
the calculation. The complex poles of the potential are plotted with
stars.

documented situation in classical physics [40]. We identify
the cusp angular momentum as the orbiting momentum (λo)
since this is related to the coalescence of two (barrier) turning
points and the innermost turning point given by the centrifugal
barrier becomes classically accessible. There are two branches
that can be distinguished, an internal branch for low active
momenta λ < λo related to semiclassical trajectories which
penetrate into the nuclear pocket and a less-developed external
(barrier) branch (λ > λo) related to trajectories deflected at the
diffuse edge of the potential.

However, this simple calculation cannot reveal the relative
importance of these branches and provides no information
about the interference effects of the corresponding semiclas-
sical trajectories. To clarify these points it is best to go into
the complex r plane and look for complex turning points, i.e.,
the complex roots of the quantity Ec.m. − Veff − iW . This is
an intricate numerical problem, because, for a WS optical
potential, the turning points are located near the potential
singularities and there are an infinite number of such poles. The
situation for integer angular momenta is depicted in Fig. 10.
Inactive turning points r11 and r21 are located quite far from the
real axis and give a negligible small contribution to the total S

matrix. We observe an ideal situation with three well-isolated
turning points for each partial wave.

The multireflection expansion of the scattering function in
the Brink-Takigawa approach reads

SWKB(�) =
∞∑

q=0

Sq(�), (19)

where

S0(�) = exp
(
2iδ�

1

)
N (S21/π )

(20)
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and, for q = 0,

Sq(�) = (−)q+1 exp
[
2i

(
qS32 + S21 + δ�

1

)]
Nq+1(S21/π )

. (21)

In these equations δ�
1 is the WKB (complex) phase shift

corresponding to the turning point r1, N (z) is the barrier
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penetrability factor,

N (z) =
√

2π

�
(
z + 1

2

) exp (z ln z − z), (22)

and Sij is the action integral calculated between turning points
ri and rj ,

Sij =
∫ rj

ri

dr

{
2μ

h̄2 [Ec.m. − Veff − iW ]

}1/2

. (23)

S21 and S32 are independent of the integration path provided
they lie on the first Riemann sheet and collision with potential
poles is avoided. Each term in Eq. (19) has a simple physical
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few active partial waves.
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interpretation. The first term (the barrier term, denoted as SB)
retains contributions from trajectories reflected at the barrier,
not penetrating the internal region. The qth term corresponds
to trajectories refracted q times in the nuclear interior with
q − 1 reflections at the barrier turning point r2. Summation of
terms q � 1 can be recast into a single term,

SI = exp
[
2i

(
S32 + S21 + δ�

1

)]
N (S21/π )2

1

1 + exp [2iS32]/N(S21/π )
,

(24)

and is known as the internal barrier scattering function. The
last factor in Eq. (24), the enhancement factor, is responsible
for the multiple reflections of the wave within the potential
pocket. When the absorption in the nuclear interior is large,
the enhancement factor reduces to one, and we are left with
the expression used in [21]. Since the semiclassical scattering
function is decomposed additively, SWKB = SB + SI , the cor-
responding total scattering amplitude is decomposed likewise
as fWKB = fB + fI and conveniently the corresponding bar-
rier and internal barrier angular distributions are calculated as
σB,I = |fB,I |2, using the usual angular momentum expansion
of the amplitudes.

The poles of the semiclassical S matrix are given by

N (iε) + e2iS32 = 0; ε = − i

π
S21. (25)

This is equivalent to the outgoing boundary condition and can
be satisfied only when the energy or the angular momentum
is complex and can be used for searching for Regge poles.
It should be emphasized that these poles are due to multiple
reflections of the internal wave within the potential pocket,
while the zeros of the S matrix arise from the interference
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between the barrier and internal barrier waves. The accuracy of
the semiclassical calculation has been checked by comparing
the barrier and internal barrier absorption profiles with the
exact quantum-mechanical result in Fig. 11. First, one observes
that the semiclassical B/I expansion is an exact decomposition
of the quantum result. They are virtually identical at the scale
of the figure. The internal component gets significant values up
to the grazing angular momentum (�g = 12) and is negligibly
small beyond this value. The barrier component resembles a
strong absorption profile and this justifies the interpretation
that it corresponds to that part of the flux not penetrating
into the nuclear interior. For values near the orbiting angular
momentum (�o ≈ 10), the two components interfere and a
downward spike appears in the total profile, in complete
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TABLE II. Parameters for two-Regge-pole unitary solutions for 6Li + 16O. The first four columns define the background S matrix and the
next ones define the pole component. The approximate pole and zero positions predicted by the model in the complex l plane are given by
Li + ipi and Li + izi , respectively. See text for notation.

Elab L � α β L1 �1 D1 �1 L2 �2 D2 �2 χ 2 σR

25.7 14.73 3.08 −1.57 0.29 9.82 1.72 3.10 5.03 8.97 1.02 0.41 1.19 4.32 1437
29.8 10.07 1.53 1.59 5.09 4.71 4.42 2.27 1.13 6.37 0.65 4.38 0.97 11.8 1117

agreement with the quantum result. This is the famous Grühn-
Wall spike [41] introduced phenomenologically to explain
ALAS for α-particle scattering and appears here as strong
interference between barrier and internal barrier amplitudes.
Second, the B/I components are almost decoupled in the
angular momentum space and therefore they will contribute
in different angular ranges.

Semiclassical cross sections are compared with the data in
Fig. 12. Better insight into this technique is obtained by further
decomposing the B/I components into far and near (BF/BN
and IF/IN) subcomponents. Clearly, the barrier component
dominates the forward angle region. Fraunhofer diffractive
oscillations appear as the result of BF and BN interference.
At large angles, the internal contribution accounts for the full
cross section.

Thus, the intermediate-angle exotic structure in angular
distributions for the elastic scattering of 6Li on 16O can be
understood as a result of coherent interference of two far-side
subamplitudes generated by different terms in the uniform
multireflection expansion of the scattering function [terms
q = 0 and q = 1 in Eq. (19)], corresponding to the scattering
at the barrier and the internal barrier. This interference effect
appears as a signature of a surprisingly transparent interaction
potential forthe loosely bound nucleus 6Li at this low energy,
which allows part of the incident flux to penetrate the nuclear
interior and re-emerge with significant probability.

The Argand diagrams corresponding to the B/I decompo-
sition are displayed in Fig. 13. Evidently, only the internal
barrier amplitude is responsible for the resonant behavior of
the low-momentum partial waves.

IV. REGGE POLES

We have seen in the preceding sections that the data could
be described by highly transparent potentials, such that the low
absorption is not able to suppress the resonant effects in the
low partial waves. Semiclassically, these effects appear as a
consequence of multiple reflections of the internal amplitude
between the most internal complex turning points of the
potential. In fact, a common property of the WS potentials
which well describe the data is that they possess several narrow
shape (molecular) resonances located in the most active waves
l = 8, 9, 10 (see Fig. 14). In this section we examine this
effect in terms of a purely phenomenological Regge pole
approximation. Previously, Ceuleneer and Michel [42] used
the Cowley and Heymann [43] expansion of the scattering
amplitude to describe α + 16O scattering at low energy. We
adopt the “product” representation of the S matrix [15],

S(l) = Sbkg(l)Spole(l), (26)

where the background (bkg) component is borrowed from the
strong absorption model of Ericson [44],

Sbkg =
[

1 + β exp(−iα) exp

(
L − l

�

)]−1

. (27)

For the pole term we adopt the expression

Spole(l) =
2∏

i=1

[
1 + i

Di(l)

l − Li − i�̂i(l)/2

]
. (28)

This term describes resonances in l centered at Li with total
width �̂i . In line with McVoy [15] we assume the zeros and
the widths to be slowly l dependent and vanishingly small as
l → ∞,

Di(l) = Di

1 + exp
(

l−L
�i

) , (29)

�̂i(l) = �i

1 + exp
(

l−L
�i

) . (30)

Clearly, D measures the distance between the pole (p = 1/2�)
and the zero (z = 1/2� − D). The model has 12 parameters,
twice as much as the WS model. The reason is that we were not
able to find a single-pole unitary solution for both background
and pole components. Since the problem is highly nonlinear
there is no guarantee for the uniqueness of the solution. We
used a Monte Carlo procedure to generate input parameters
and then minimized the usual χ2 objective function. From
the numerous solutions we found, we choose to show only
one set of parameters (Table II) which has the merit that
both Sbkg and Spole are unitary. The poles are located in the
upper complex l near L ≈ 9, 10, in line with what we found
from the other analyses. The cross sections obtained with this
model are plotted in Fig. 15. The background component is
important only at forward angles, while the pole component
contributes significantly at all angles. Only the pole component
contributes to the far-side amplitude, which displays only a
shallow minimum near θ = 50◦. The nearby deep minimum,
interpreted previously as a Fraunhofer minimum, appears here
as a result of the strong destructive interference between far-
and near-side amplitudes of the pole component alone. The
background absorption profile shown in Fig. 16 is typical
for the strong absorption regime while the Grühn-Wall dip
appears here, as carried out by the pole component alone. The
corresponding Argand diagrams displayed in Fig. 17 show
clearly the resonant contribution of the pole component.

054606-11



FLORIN CARSTOIU AND LIVIUS TRACHE PHYSICAL REVIEW C 85, 054606 (2012)

V. CONCLUSIONS

We have analyzed 6Li + 16O elastic scattering at an energy
of 4–5 MeV/nucleon in an effort to obtain systematic
information on the interaction of p-shell nuclei with light
targets. Optical potentials for these nuclei are needed for
studies where highly peripheral transfer reactions involving
radioactive nuclei are used as indirect methods for nuclear
astrophysics and are an important factor in the accuracy
and reliability of these methods. At the present time, the
best information on the optical potentials for radioactive
nuclei can be obtained only by extrapolation from adjacent
less-exotic nuclei. Our intention is to narrow the ambiguities
in the optical model potentials by systematic studies of the
scattering of loosely bound projectiles over a large range of
angles and energies and to extract information that can be
used for systems involving radioactive projectiles, for which
elastic scattering data of very good quality are not easily
available.

The data confirm the existence of an exotic intermediate-
angle structure, observed previously [4] at higher energy. We
interpret these structures as refractive effects arising from
a fine balance between the real and imaginary components
of the optical potential. We have performed a traditional
analysis of the data in terms of Woods-Saxon and microscopic
folded potentials. A range of effective NN interactions has
been used to generate folding potentials. Both approaches
lead to the conclusion that the optical potential is deep
and surprisingly transparent, in line with findings for other
more bound systems. Folding model form factors have been
renormalized in the usual way in order to account for the energy
and radial dependence of the dynamic polarization potential.
The intermediate-angle structures could be reproduced only
with potentials approaching a critical volume integral of
about 280 ± 10 MeV fm3 and a rms radius RV = 4.05 ± 0.1
fm and, consequently, are severely selective, limiting the
ambiguities in the determination of the OMP. The remaining
discrete ambiguities could be removed by including an
exact local representation of the knock-on exchange kernel
within a Perey-Saxon localization procedure. Our analysis in
terms of the dispersion relation confirms the conjecture of a
canceling effect between the repulsive dynamic polarization
potential due to the coupling with breakup channels and the
attractive, dispersive component of the optical potential. Thus
the barrier anomaly appears to be weak in this case. As a
consequence, all folding potentials require a renormalization
NV < 1 to match the required critical value of the real volume
integral.

The present analysis shows that in order to reproduce the
structures observed at intermediate angles in this case, one
needs to allow for a more complicated radial dependence of
the dynamic polarization potential, which can be energy and
target dependent, and requires deep real potentials.

In an effort to clarify the reaction mechanism responsible
for the intermediate-angle structures, we performed extensive
semiclassical calculations within the uniform multireflection
expansion of the scattering function of Brink and Takigawa. It
has been shown that using complex trajectories, the (external)
barrier/internal barrier expansion is an exact realization of the
dynamic decomposition of the quantum result into components
responsible for that part of the incident flux reflected at the
barrier and the part of the flux which penetrates into the
nuclear interior and re-emerges with significant probability. By
combining the B/I decomposition with the usual far-side/near-
side expansion, we explain the intermediate-angle structure as
a coherent interference effect of two subamplitudes (BF and
IF). Intermediate-angle structures in our case do not arise from
interference between two saddle points in the same term of
the multireflection expansion but from interference between a
saddle point from the second term of the expansion, describing
trajectories refracted in the internal region, and a contribution
from the first term of the expansion [see Eqs. (19)–(21)].
Thus, this refractive effect appears as a signature of a highly
transparent interaction potential. This decomposition allows
us to isolate dynamically the resonant component of the S

matrix which is due to multiple reflections of the low-angular-
momentum waves between the most internal complex turning
points of the potential.

A completely different picture emerges by using a slight
generalization of the “product” Regge representation of the full
S matrix in which poles in the complex l plane are located in
peripheral waves. Seeking a unitary solution, we found that the
pole component is entirely responsible for intermediate-angle
structure and the oscillatory behavior of the cross section at
large angles. Thus it is a matter of taste whether we interpret
intermediate-angle structure as a resonant refraction or equally
well as a resonant diffraction.
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