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Despite the supposed simplicity of double-closed shell nuclei, conventional coupled-channels calculations,
that include all of the known collective states of the target and projectile, give a poor fit to the fusion cross section
for the 16O + 208Pb system. The discrepancies are highlighted through the experimental barrier distribution and
logarithmic derivative, that are both well defined by the precise experimental fusion data available. In order to
broaden our search for possible causes for this anomaly, we revisit this system and include in our calculations a
large number of noncollective states of the target, whose spin, parity, excitation energy, and deformation parameter
are known from high-precision proton inelastic-scattering measurements. Although the new coupled-channels
calculations modify the barrier distribution, the disagreement with experiment remains both for fusion and for
quasi-elastic (QE) scattering. We find that the Q-value distributions for large-angle QE scattering become rapidly
more important as the incident energy increases, reflecting the trend of the experimental data. The mass-number
dependence of the noncollective excitations is discussed.
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I. INTRODUCTION

In heavy-ion reactions at energies close to the Coulomb
barrier, couplings between the relative motion and the internal
degrees of freedom in the colliding nuclei play a crucial
role. A well-known example is the enhancement of sub-
barrier fusion cross sections, compared to the predictions
of a simple potential model, due to strong couplings to
collective excitations [1,2]. Coupled-channels analyses have
been performed for various heavy-ion systems taking into
account such coupling effects and have successfully accounted
for experimental data for fusion reactions as well as quasi-
elastic scattering at backward angles [1].

Conventionally, a few low-lying collective excitations,
such as vibrational modes in spherical nuclei or rotational
excitations in deformed nuclei, as well as few-nucleon transfer
channels have been taken into account in the coupled-channels
calculations. In the eigenchannel representation, channel-
coupling effects lead to a distribution of potential barriers [3],
and it has been well established that the barrier distribution
can be directly extracted from experimental fusion and
quasi-elastic cross sections. For fusion reactions, the barrier
distribution is defined as the second derivative of the product of
center-of-mass energy Ec.m. and fusion cross section σfus with
respect to Ec.m., that is, d2(Ec.m.σfus)/dE2

c.m. [4,5]. For quasi-
elastic scattering, it is defined as the first derivative of the ratio
of the backward quasi-elastic scattering cross section to the
Rutherford cross section with respect to center-of-mass energy,
that is −d(σqel(θ = π )/σR(θ = π ))/dEc.m. [6,7]. The fusion
and quasi-elastic barrier distributions have been found to
behave in a similar way to each other, though the quasi-elastic
barrier distribution tends to be more smeared [6,8]. These
quantities are known to be sensitive to the channel coupling
effects [1,2,5]. They can also serve for the determination of
deformation parameters [9].

Although the coupled-channels method appears successful
for heavy-ion sub-barrier fusion reactions, there is a long-
standing problem of the method that, in order to reproduce
experimental fusion data, a significantly larger value of
the surface diffuseness of the nuclear potential is required,
compared to the value found from fitting the scattering process
[10,11]. Furthermore, some recently obtained experimental
data cannot be accounted for by the conventional coupled-
channels method. For example, fusion cross sections for
several systems at deep sub-barrier energies have turned out to
be much smaller than the predictions of conventional coupled-
channels calculations [12–15]. Another example is the quasi-
elastic barrier distribution for the 20Ne + 90,92Zr systems. The
conventional coupled-channels analysis that takes into account
only the collective excitations of the colliding nuclei fails to
explain the difference in the experimental quasi-elastic barrier
distributions of these two systems [16]. That is, although
the experimental barrier distribution for the 20Ne + 92Zr
system is much more smeared than that for the 20Ne +
90Zr system, the coupled-channels calculations yield similar
barrier distributions for both systems due to the much larger
deformation of the 20Ne nucleus. One possible reason for the
smearing may be the effect of transfer reactions [17]. However
the total transfer cross sections for these systems have been
found to be almost the same [16]. Therefore the difference
between the barrier distributions has been conjectured to arise
from noncollective excitations, that are not taken into account
explicitly in the coupled-channels calculations.

In order to discuss how noncollective excitations affect
low-energy heavy-ion reactions, in Ref. [18] we have solved
schematic one-dimensional coupled-channels equations with
a gaussian potential barrier. There are several ways to describe
the noncollective degrees of freedom [19–24]. In Ref. [18],
we employed the random matrix theory, that has been applied
to deep inelastic collisions by Agassi et al. [20–23]. We have
shown that, by including noncollective excitations, the barrier
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penetration probabilities are suppressed at energies above the
barrier leading to a smeared barrier distribution.

In this paper, we carry out a similar analysis in three dimen-
sions, using realistic spectra for the noncollective excitations.
For this purpose, we choose the 16O + 208Pb system. In
addition to the experimental data for sub-barrier and deep
sub-barrier fusion reactions [25,26], as well as quasi-elastic
scattering for this system at energies near the Coulomb barrier
[27–30], almost all of the excited states of 208Pb up to 7.5 MeV
have been identified (spin, parity, excitation energy, and
deformation parameter) from high-resolution proton inelastic
scattering measurements [31,32]. We will include these 208Pb
excited states in our coupled-channels calculations and discuss
the role of noncollective excitations in heavy-ion reactions
around the Coulomb barrier.

Note that a satisfactory description of the fusion cross
sections as well as the fusion barrier distribution has not
yet been obtained for this system with the conventional
coupled-channels calculations [25,33]. That is, the height of
the main peak in the barrier distribution is overestimated by
the coupled-channels calculations (see also Ref. [34]). Another
motivation to choose the 16O + 208Pb system in the present
study is, therefore, to see whether the noncollective excitations
improve the agreement of the coupled-channels calculation
with the experimental data.

In addition to our calculation for the 16O + 208Pb system,
we also study 32S + 208Pb and 40Ca + 208Pb to investigate
the dependence of the effect of the noncollective excitations
on the mass number of the projectile.

The paper is organized as follows. In Sec. II, we explain the
coupled-channels formalism and how to describe the couplings
to the noncollective excitations. In Sec. III, we apply the
coupled-channels formalism to the fusion and quasi-elastic
scattering of the 16O + 208Pb system. We will discuss fusion
and quasi-elastic cross sections, barrier distributions, as well
as the energy dependence of the Q-value distributions for
quasi-elastic scattering. We also investigate the fusion reaction
for the 32S + 208Pb and 40Ca + 208Pb systems and discuss
the mass-number dependence of the noncollective effects. In
Sec. IV, we summarize the paper.

II. COUPLED-CHANNELS METHOD

In order to take into account excitations of the colliding
nuclei during the fusion and scattering processes, we assume
the following Hamiltonian:

H = − h̄2

2μ
∇2 + Vrel(r) + H0(ξ ) + Vcoup(r, ξ ), (1)

where r is the coordinate for the relative motion between the
projectile and the target nuclei, and μ is the reduced mass.
H0(ξ ) is the intrinsic Hamiltonian, for which we consider
vibrational excitations of the colliding nuclei, ξ representing
the internal degrees of freedom. Vcoup(r, ξ ) is the coupling
Hamiltonian between the relative motion and the intrinsic
degrees of freedom. Vrel(r) is the optical potential for the
relative motion, that is given as a sum of the Coulomb and

nuclear potentials,

Vrel(r) = ZP ZT e2

r
− V0

1 + exp[(r − RN )/a]

− i
W0

1 + exp[(r − RW )/aW ]
. (2)

Here, we have adopted the Woods-Saxon form for the nuclear
potential.

The coupled-channels equations are obtained by expanding
the total wave function in terms of the eigenfunctions of H0(ξ ).
This leads to[

− h̄2

2μ

d2

dr2
+ J (J + 1)h̄2

2μr2
+ Vrel(r) + εn − E

]
uJ

n (r) (3)

+
∑
m

Vnm(r)uJ
m(r) = 0, (4)

where εn is the excitation energy for the nth channel. In
deriving these equations, we have employed the isocentrifugal
approximation [35–44] and replaced the angular momentum
for the relative motion by the total angular momentum, J .
This approximation has been found to be valid for heavy-ion
systems [39], and reduces considerably the dimensions of the
coupled-channels problem.

We impose the following boundary conditions in solving
the coupled-channels equations:

uJ
n (r) → H

(−)
J (knr)δn,0 −

√
k0

kn

SJ
n H

(+)
J (knr), (5)

for r → ∞, together with regularity at the origin. Here, kn =√
2μ(E − εn)/h̄2 is the wave number for the nth channel,

where n = 0 represents the entrance channel. SJ
n is the nuclear

S matrix, and H
(−)
J (kr) and H

(+)
J (kr) are the incoming and the

outgoing Coulomb wave functions, respectively. Using the S

matrix, the fusion cross sections are calculated as

σfus(E) = π

k2
0

∑
J

(2J + 1)

⎛
⎝1 −

∣∣∣∣∣
∑

n

SJ
n

∣∣∣∣∣
2
⎞
⎠ . (6)

On the other hand, the differential cross sections for the
channel n are given by

dσn

d�
= kn

k0
|fn(θ )|, (7)

with

fn(θ ) = 1

2i
√

k0kn

∑
J

ei[σJ (E)+σJ (E−εn)]

×(2J + 1)PJ (cosθ )
(
SJ

n − δn,0
) + fC(θ )δn,0, (8)

where σJ (E) and fC(θ ) are the Coulomb phase shift and the
Coulomb scattering amplitude, respectively. The quasi-elastic
scattering cross sections are calculated according to

σqel(E, θ ) =
∑

n

dσn

d�
(E, θ ). (9)
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III. RESULTS

Let us now numerically solve the coupled-channels equa-
tions for the 16O+208Pb system. For the coupling to the
collective excitations, we take into account the vibrational
3− state at 2.615 MeV, 5− state at 3.198 MeV, and 2+
state at 4.085 MeV in 208Pb as well as the 3− state at
6.13 MeV in 16O. The deformation parameters are estimated
from the measured electromagnetic transition probabilities,
that is, β3(208Pb) = 0.122, β5(208Pb) = 0.058, β2(208Pb) =
0.058, β3(16O) = 0.733, together with a radius parameter
of r0 = 1.2 fm. In addition to these collective vibrational
states, we also include 70 noncollective states in 208Pb below
7.382 MeV, whose excitation energies, multipolarities, and
deformation parameters are taken from the high-resolution
proton inelastic scattering measurements in Ref. [31]. We take
into account the mutual excitations of the 208Pb and the 16O
nuclei.

For the nuclear potential, we use the same geometry as that
in Ref. [29], where the parameters were obtained by fitting
the coupled-channels calculations to the experimental quasi-
elastic scattering cross sections. This potential has a surface
diffuseness parameter of a = 0.671 fm. Since our calculation
takes into account the 3− state in 16O, that was not included
in Ref. [29], we modify the potential depth from 853 MeV
to 550 MeV in order to compensate the adiabatic potential
renormalization [45]. For the form factors of the noncollective
couplings, for simplicity we take the same geometry as that
for the collective couplings. For the noncollective excitations,
we include only the couplings between the ground state and
the noncollective states, and neglect the couplings among
the noncollective excitations and the couplings between the
collective and the noncollective states.

A. Single phonon calculations

We first show the results for the calculation that does not
take into account double octupole phonon states in the 208Pb.
In this case, the number of channels amounts to 146 in the
isocentrifugal approximation.

Figures 1(a) and 1(b) show the fusion cross sections thus
obtained. They are plotted both on a linear scale [Fig. 1(a)] and
on a logarithmic scale [Fig. 1(b)]. The corresponding barrier
distributions, Dfus = d2(Eσfus)/dE2, are plotted in Fig. 1(c).
The experimental data are taken from Refs. [25,26]. The
dashed lines are obtained by taking into account only the
collective excitations of 208Pb and 16O, while the dot-dashed
lines take into account also the noncollective excitations of
208Pb. One immediately sees that the main peak in the barrier
distribution is shifted in energy due to the noncollective
excitations towards low energy and consequently the fusion
cross sections are enhanced. This can be understood in terms of
the adiabatic potential renormalization because the excitation
energies for the noncollective excitations are relatively large.
One can also see that the noncollective excitations do not alter
much the energy dependence of the fusion cross sections, as
can be seen more clearly by shifting the dot-dashed lines in
energy as shown in Fig. 1 by the solid lines. As a consequence,
the noncollective excitations hardly modify the behavior of the
logarithmic slope, L(E) = d[ln(Eσfus)]/dE [see Fig. 1(d)].
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FIG. 1. (Color online) The fusion cross sections [Figs. 1(a)
and 1(b)], the fusion barrier distribution, Dfus = d2(Eσfus)/dE2,
[Fig. 1(c)], and the logarithmic slope, L(E) = d[ln(Eσfus)]/dE,
[Fig. 1(d)], for the 16O + 208Pb reaction. The fusion cross sections are
plotted both on linear and logarithmic scales in Figs. 1(a) and 1(b),
respectively. The dashed lines are obtained by taking into account
only the collective excitations of 16O and 208Pb, while the dot-dashed
lines take into account the non-collective excitations of 208Pb in
addition to the collective excitations. The solid lines are the same
as the dot-dashed lines, but shifted in energy. The experimental data
are taken from Refs. [25,26].

That is, the calculations with only the collective excitations
do not account for the observed large logarithmic slope at
deep sub-barrier energies. This remains the same even if the
noncollective excitations are taken into account. This indicates
that the deep sub-barrier hindrance of fusion cross sections
cannot be explained simply with the noncollective excitations
in each of the colliding nuclei; some other mechanism, such
as noncollective excitations of the one-body system after the
touching of the colliding nuclei, has to be considered [34].

As mentioned in Sec. I, it is known that the calculation with
only collective excitations does not reproduce well the exper-
imental barrier distribution for this system [25]. That is, the
coupled-channels calculation yields too high a main peak in the
barrier distribution. We find that the noncollective excitations
are not helpful in this respect, as shown in Fig. 1(c). The non-
collective excitations rather smear the barrier distribution at
energies around 78 MeV [18], and the agreement is somewhat
worsened. Clearly, one needs other mechanisms in order to
reproduce the experimental barrier distribution for this system.
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FIG. 2. (Color online) Quasi-elastic scattering cross sections
[Fig. 2(a)] and the quasi-elastic barrier distribution [Fig. 2(b)] for
the 16O + 208Pb system. The meaning of each line is the same as in
Fig. 1. Data are taken from Ref. [28].

In this connection, in the next subsection, we will investigate
the effect of double octupole phonon excitations in 208Pb.

Figure 2 shows the quasi-elastic scattering cross sec-
tion and the quasi-elastic barrier distribution, Dqel(E) =
d[σqel/σR]/dE at θc.m. = 170◦. Eeff is the effective energy
defined by [6,7]

Eeff = 2E
sin(θ/2)

1 + sin(θ/2)
, (10)

which takes into account the centrifugal energy for the
Rutherford trajectory. The meaning of each line is the same as
in Fig. 1. The solid lines are shifted in energy with the same
amount as in the fusion calculation. The experimental data are
taken from Ref. [28].

One can observe that the change in the barrier distribution
due to the noncollective excitations is similar to the fusion
calculation. That is, the main effect of the noncollective
excitations is the barrier renormalization without changing
the shape of the distribution, although they smear the barrier
distributions at relatively higher energies. The agreement with
the experimental data around Eeff = 75 MeV is not improved
by the noncollective excitations.

B. Double phonon calculation

We next show the results for the calculations with the double
octupole phonon excitations in 208Pb. In this case, the number
of channels included amounts to 148. The double octupole
phonon states in 208Pb have been experimentally investigated
in Refs. [46–50] and candidates for the double phonon have
been identified. In the present calculation we assume, for
simplicity, that all four double octupole phonon states are
degenerate with E = 5.23 MeV, that is, twice the energy of
the single-phonon state.
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FIG. 3. (Color online) Same as Fig. 1, but with the double
octupole phonon excitations.

In Figs. 3 and 4, we show the calculations for the fusion
reaction and quasi-elastic scattering, respectively. One sees
that the double phonon excitations leads only to a minor
improvement both for fusion and quasi-elastic scattering. The
effects of the noncollective excitations are similar to those in
the single-phonon case presented in the previous subsection.
That is, the barrier distribution is smeared above the barrier
while the shape of the lower peak is almost unchanged.

We have also investigated the role of anharmonicity of the
octupole phonon excitations of 208Pb [51,52], together with
the noncollective excitations. We have found that the effect
of anharmonicity is minor and again does not improve the
agreement with the data.

C. Q-value distribution

Measurements of the Q-value distribution for backward-
angle quasi-elastic scattering have been performed for this
system [29,30]. The experimental data indicate that the
contribution from the noncollective excitations increases as
the incident energy increases. A big advantage of our method
is that the Q-value distribution can be computed easily because
we explicitly take into account the noncollective excitations in
our coupled-channels calculations.

Figure 5 shows the Q-value distributions at θc.m. = 170◦
at six different incident energies, corresponding to the double
phonon calculations shown in Sec. III B. The spectra shown
by the dashed lines correspond to the collective excitations

054601-4



ROLE OF NONCOLLECTIVE EXCITATIONS IN HEAVY- . . . PHYSICAL REVIEW C 85, 054601 (2012)

0

0.2

0.4

0.6

0.8

1

dσ
qe

l / 
dσ

R
ut

h
experiment
collective
coll. + non-coll.
coll. + non-coll.(shifted)

65 70 75 80 85 90
E

eff
 (MeV)

0

0.05

0.1

0.15

0.2

D
qe

l (
M

eV
-1

)

16
O + 

208
Pb

(a)

(b)

FIG. 4. (Color online) Same as Fig. 2, but with the double
octupole phonon excitations.

while those by the solid lines correspond to the noncollective
excitations. The envelope of the spectra is obtained by
smearing with a gaussian function,

F (E∗) =
∑

n

dσn

d�

1√
2π


e
− (E∗−εn)2

2
2 , (11)

with 
 = 0.2 MeV.
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FIG. 5. (Color online) The Q-value spectra for the quasi-elastic
scattering at θc.m. = 170◦ for the 16O + 208Pb system for six different
incident energies. The dashed peaks correspond to the collective
excitations while the solid peaks correspond to the non-collective
excitations. The solid line is obtained by smearing the peaks with a
gaussian function.

Note that we include the noncollective states of 208Pb up
to 7.382 MeV. Thus the spectra above this energy correspond
to mutual excitations of the 208Pb and 16O nuclei. One can
see that, at the lowest incident energy shown in the figure, the
contribution from the collective channels is dominant. With
increasing energy, the contribution from the noncollective
excitations becomes more and more important. This behavior
is consistent with the experimental Q-value distribution for
this system [29,30].

Note that this energy dependence is also related to how
the noncollective excitations modify the energy dependence
of the barrier distribution. Namely, at low energies where
the contribution from the noncollective excitations is not
important, a change in the barrier distribution is not observed.
On the other hand, at higher energies where the contribution
from the noncollective excitations is important, the barrier
distribution is smeared due to the noncollective excitations.

D. Mass-number dependence of the effect of noncollective
excitations

Finally, we investigate how the effect of noncollective
excitations depends on the mass number of the projectile
nucleus. For this purpose, we solve the coupled-channels
equations for the 32S + 208Pb and 40Ca + 208Pb systems. For
the nuclear potential, we use the Akyüz-Winther potential [53].
We include the same excited states in the 208Pb nucleus as those
in the calculation for the 16O + 208Pb system discussed in the
previous subsections.
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FIG. 6. (Color online) Fusion cross section and fusion barrier
distribution for the 32S + 208Pb system. The meaning of each line is
the same as in Fig. 1. The experimental data are taken from Ref. [28].
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FIG. 7. (Color online) Fusion cross section and fusion barrier
distribution for the 40Ca + 208Pb system. The meaning of each line
is the same as in Fig. 1.

We first discuss the 32S + 208Pb reaction. For the exci-
tations of 32S, we take into account the quadrupole vibration
up to double phonon states. The excitation energy and the
deformation parameter are taken from Ref. [54]. Figure 6
shows the calculated fusion cross section and fusion barrier
distribution. The meaning of each line is the same as in Fig. 1.
The experimental data are taken from Ref. [28]. One can see
that the effect of the noncollective excitations is qualitatively
similar to that in the 16O + 208Pb reaction. That is, the barrier
is shifted toward lower energy and the higher part of the barrier
distribution is smeared. However, the smearing is stronger than
that in the 16O + 208Pb system, because an effective coupling
strength is in general approximately proportional to the charge
product of the colliding nuclei [4], and thus the noncollective
excitations are effectively stronger for heavier systems. One
can also see that the two low-energy peaks in the barrier
distribution are sharpened due to the noncollective excitations,
while the separation between the peaks is not altered much.
The calculations do not reproduce the experimental data, and
this might be attributed to the role of transfer reactions.

Figure 7 shows the fusion cross section and the fusion
barrier distribution for the 40Ca + 208Pb reaction. For this
system, we assume that 40Ca is inert and take into account
only the excitations of 208Pb. As the charge product is larger,
the effect of the noncollective excitations is stronger than that
in the 16O + 208Pb and 32S + 208Pb reactions. It smears the
higher part of the barrier distribution while the lower main
peak is sharpened.

As we have shown, while the effect of noncollective
excitations is not large for the 16O+208Pb system, the ef-
fect becomes increasingly important for heavier systems,

such as 40Ca + 208Pb. This suggests that the conventional
coupled-channels approach, that neglects the noncollective
excitations, is well justified for relatively light systems, but
the noncollective excitations have to be included explicitly in
coupled-channels calculations for heavy systems, for example,
those relevant to a synthesis of superheavy elements.

IV. SUMMARY

We have solved the coupled-channels equations for fusion
and quasi-elastic scattering for the 16O + 208Pb system,
including both the collective and noncollective excitations
of 208Pb. Noncollective excitations are approximated by
vibrational couplings, whose coupling strength and excitation
energy are taken from the analysis of the high-resolution proton
inelastic scattering experiment.

Our results show that the barrier distributions for the fusion
reaction and the quasi-elastic scattering are changed in a
similar manner due to the noncollective excitations at energies
above the Coulomb barrier. The energy dependence of the
cross sections, on the other hand, is not affected much by the
noncollective excitations and the degree of agreement with
the experimental barrier distributions remains the same. We
have, therefore, ruled out couplings to the many noncollective
excitations as a possible source of the hindrance of fusion cross
sections at deep sub-barrier energies and at energies above the
Coulomb barrier. However, this important result still leaves
the mechanism for fusion hindrance phenomena as an open
question. In order to improve the agreement, one would have
to consider another mechanism, such as a reduction of the exci-
tation energy of the 3− state in 208Pb as suggested in Ref. [55].

The fusion calculations are also performed for the 32S +
208Pb and 40Ca + 208Pb systems in order to investigate
the projectile mass-number dependence of the effect of the
noncollective excitations. We have shown that the effect of
the noncollective excitations becomes stronger as the mass
number of the projectile nucleus increases.

For the 32S + 208Pb system, the coupled-channels calcula-
tions with only the inelastic excitations of the colliding nuclei
do not account for the experimental data. That is, the sub-
barrier fusion cross sections are significantly underestimated
in this case and the experimental barrier distribution is much
more smeared than that obtained by the coupled-channels
calculation. The transfer process, as well as the noncollective
excitations, should be taken into account for this system in
order to improve the agreement with the data.

We also calculated the energy dependence of the Q-value
distribution for the 16O + 208Pb system and found that
the contribution from the noncollective excitations becomes
more and more important as the incident energy increases.
This behavior is consistent with the experimental Q-value
distribution for the same system. Data on the charged particle
transfer channels in this system also exist [56]. Therefore, it
will be an interesting future project to study theoretically their
contribution and to compare with the experimental Q-value
distribution in a more quantitative way.

In this study, we have investigated systems involving the
208Pb nucleus because good information on its noncollective
excitations is available. However, in general, such information
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is not necessarily available for other systems. For the 90,92Zr
nuclei, several proton inelastic scattering experiments have
been performed [57–59]. However, the number of identified
levels is not as large as for 208Pb. Thus, we will have to use
an approach different from this work, for example the random
matrix theory [18], to describe the noncollective excitations in
the 20Ne + 90,92Zr system.
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