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Structures of excited states in 11B are investigated with a method of β-γ constraint antisymmetrized molecular
dynamics in combination with the generator coordinate method. Various excited states with developed cluster
core structures are suggested in positive- and negative-parity states. For negative-parity states, we suggest a band
with a 2α + t cluster structure. This band starts from the 3/2−

3 state and can correspond to the experimental band
observed recently. In positive-parity states, two α core cluster structures with surrounding nucleons are found.
A Kπ = 1/2+ band is suggested to be constructed from a remarkably developed cluster structure with a large
prolate deformation. We discuss features of the cluster structure in association with molecular orbital structures
of 10Be.
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I. INTRODUCTION

The cluster aspect, as well as the shell-model aspect, are
essential features in nuclei. In light nuclei, the cluster and
shell-model features often coexist as discussed, for example,
for 3α cluster structures in 12C [1–11].

11B can be an interesting nucleus where cluster and
shell-model structures coexist. Indeed, it was suggested in
previous works that low-lying states of 11B have mainly a
shell-model structure [12], while cluster structures develop
well in the negative-parity states above or near the threshold
[13–15]. Moreover, in a recent experiment of α resonant
scattering on 7Li [16], a new negative-parity band consisting
of 8.56 MeV (3/2−), 10.34 MeV (5/2−), 11.59 MeV (7/2−),
and 13.03 MeV (9/2−) was suggested. Since these states have
large α-decay widths, this band is considered to be a band
constructed from a cluster structure.

Moreover, cluster features in 11B that are analogous with
three α cluster structures in 12C is a fascinating problem to
be clarified [14]. In previous works [14,17], the 3/2−

3 state
was suggested to have a dilute cluster structure with a 2α + t

configuration and to be analogous with the 0+
2 state in 12C,

which has a dilute 3α structure. However, in recent work [15],
it is suggested that 11B(3/2−

3 ) cannot correspond to 12C(0+
2 ).

The relation between 11B(3/2−
3 ) and 12C(0+

2 ) is controversial
and further studies for this problem are required. Moreover,
for the positive-parity states of 11B, there are few theoretical
studies, although cluster states are expected to appear near the
threshold energy. Thus, structures of excited states of 11B is a
challenging problem to study.

In this article, we investigate structures of excited states
in 11B with a certain type of antisymmetrized molecular
dynamics (AMD), β-γ constraint AMD, in combination
with the generator coordinate method (GCM). To clarify the
correspondence between the 3/2−

3 state of 11B and the 0+
2 state

of 12C, we compare their GCM amplitudes on the β-γ plane.
We also discuss molecular orbital structures with a 2α core
and surrounding nucleons for positive-parity states in 11B and
their correspondence with 10Be.

This paper is organized as follows. In Sec. II, we explain
the framework of the β-γ constraint AMD + GCM briefly.
The calculated results are shown in Sec. III. In Sec. IV, we
give discussions about structures of 11B. Finally, in Sec. V, we
summarize this paper.

II. FRAMEWORK

The frameworks of AMD are described in detail, for
example, in Refs. [18–21]. In the present work, we adopt a
version of AMD, the β-γ constraint AMD [22], in which we
perform the variation with the constraint on the quadrupole
deformation parameters, β and γ .

In the method of AMD, a basis wave function of an A-
nucleon system |�〉 is described by a Slater determinant of
single-particle wave functions |ϕi〉 as

|�〉 = 1√
A!

det{|ϕ1〉, . . . , |ϕA〉}. (1)

The i-th single-particle wave function |ϕi〉 consists of the
spatial part |φi〉, the spin part |χi〉, and the isospin part |τi〉
as

|ϕi〉 = |φi〉|χi〉|τi〉. (2)

The spatial part |φi〉 is given by a Gaussian wave packet whose
center is located at Zi/

√
ν as

〈r|φi〉 =
(

2ν

π

) 3
4

exp

[
−ν

(
r − Zi√

ν

)2

+ 1

2
Z2

i

]
, (3)

where ν is the width parameter and is taken to be a common
value for all the single-particle Gaussian wave functions in the
present work. The spin orientation is given by the parameter
ξ i , while the isospin part |τi〉 is fixed to be up (proton) or down
(neutron),

|χi〉 = ξi↑|↑〉 + ξi↓|↓〉, (4)

|τi〉 = |p〉 or |n〉. (5)
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In a basis wave function |�〉, {X} ≡ {Z, ξ} = {Z1, ξ 1, Z2,

ξ 2, . . . , ZA, ξA} are complex variational parameters and they
are determined by the energy optimization.

We perform the variation for the parity projected wave
function |�±〉 defined as

|�±〉 ≡ P̂ ±|�〉, (6)

with the constraint on the quadrupole deformation parameters
β and γ to obtain various cluster and shell-model structures as
the basis wave functions. The definition of β and γ are

β cos γ ≡
√

5π

3

2〈ẑ2〉 − 〈x̂2〉 − 〈ŷ2〉
R2

, (7)

β sin γ ≡
√

5π

3

〈x̂2〉 − 〈ŷ2〉
R2

, (8)

R2 ≡ 5

3
(〈x̂2〉 + 〈ŷ2〉 + 〈ẑ2〉). (9)

Here 〈Ô〉 represents the expectation value of the operator
Ô for an intrinsic wave function |�〉. After the variation
with the constraints, we obtain the optimized wave functions
|�±(β0, γ0)〉 for each set of parameters, (β, γ ) = (β0, γ0).

In the calculations of energy levels, we superpose the parity
and total-angular-momentum projected AMD wave functions
P̂ J

MK |�±(β, γ )〉 using GCM. Thus, the final wave function for
the J±

n state is given by a linear combination of the basis wave
functions as∣∣�J±

n

〉 =
∑
K

∑
i

fn(βi, γi,K)P̂ J
MK |�±(βi, γi)〉. (10)

The coefficients fn(βi, γi,K) are determined using the Hill-
Wheeler equation.

For the effective two-body interactions, we use the Volkov
No. 2 interaction [23] as the central force and the spin-orbit
term of the G3RS interaction [24] as the LS force. We take the
same interaction parameters as those in Refs. [22,25,26], i.e.,
the Majorana exchange parameter M = 0.6 (W = 0.4), the
Bartlett exchange parameter B = 0.125, and the Heisenberg
exchange parameter H = 0.125 in the central force and u1 =
−1600 MeV and u2 = 1600 MeV in the LS force. These
parameters are the same as those adopted in the studies for
9Be [27], and 10Be [28], except for a small modification in the
strength of the spin-orbit force to fit the 0+

1 energy of 12C [22].
For the width parameter of single-particle Gaussian wave

packets in Eq. (3), we used the value ν = 0.235 fm−2, which
is also the same as those in the studies for C isotopes [22,25,
29,30].

III. RESULTS

We performed variational calculations with the β-γ con-
straint at 196 mesh points of the triangle lattice on the β-γ
plane and superposed the obtained wave functions. In this
section, we show the calculated results.

A. Energy surfaces

Energy surfaces as functions of β and γ are obtained.
We define energy surfaces as the lowest energies after the

FIG. 1. Energy surfaces of 11B on the β-γ plane. The top panel
shows the energy for the negative-parity states and the bottom panel
shows that for the 3/2− states after the total-angular-momentum
projection.

K-mixing calculation for each (β, γ ). The calculated energy
surfaces for negative-parity states and those for positive-parity
states are shown in Figs. 1 and 2, respectively.

In Fig. 1, the top panel shows the energy surface for the
negative-parity states and the bottom panel shows that for the
3/2− states after the total-angular-momentum projection. We
call the former the negative-parity energy surface and the latter
the 3/2− energy surface. The minimum point of negative-
parity energy surface is at (β cos γ, β sin γ ) = (0.13, 0.13).
After the total-angular-momentum projection onto 3/2−

FIG. 2. Energy surfaces of 11B on the β-γ plane. The top panel
shows the energy for the positive-parity states and the bottom panel
shows that for the 5/2+ states after the total-angular-momentum
projection.
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eigenstates, the minimum point shifts to (β cos γ, β sin γ ) =
(0.33, 0.13). This indicates that the deformation of the en-
ergy minimum state becomes large after the total-angular-
momentum projection. In the large prolate region, a valley
is found around (β cos γ, β sin γ ) = (0.9, 0.1). Interestingly,
the feature of the 3/2− energy surface for 11B is similar to that
of the 0+ energy surface for 12C (see Fig. 2 in Ref. [22]).

The positive-parity energy surface and the 5/2+ energy
surface are displayed in the top and bottom panels of Fig. 2,
respectively. The minimum point of the positive-parity energy
surface is at (β cos γ, β sin γ ) = (0.45, 0.00). After the total-
angular-momentum projection onto 5/2+ eigenstates, the min-
imum point shifts to (β cos γ, β sin γ ) = (0.60, 0.09). Thus,
the deformation of the energy minimum state changes from
the prolate deformation before the total-angular-momentum
projection to the large β and triaxial region after the projection.
In a largely deformed region, a local minimum exists at
(β cos γ, β sin γ ) = (1.00, 0.00) in the positive-parity energy
surface and it is at (β cos γ, β sin γ ) = (1.10, 0.00) in the 5/2+
energy surface. As we show later, a rotational band with the
large prolate deformation is constructed by wave functions in
this region after the GCM calculation.

B. Structures on the β-γ plane

In this section, we explain the intrinsic structures of
negative- and positive-parity states obtained with the β-γ
constraint AMD.

We analyze the spatial configurations of the Gaussian
centers {Z1, Z2, . . . , ZA} and the distributions of proton
density ρp, neutron density ρn, and the neutron-proton
density difference ρn − ρp of each intrinsic wave function
|�(β, γ )〉 obtained for given constraint values, β and γ .
The neutron-proton density difference ρn − ρp shows excess
neutron behaviors. We show density distributions ρ̃ which are
integrated densities along the y axis as

ρ̃(x, z) ≡
∫

dyρ(r), (11)

ρ(r) ≡ 〈�(β, γ )|
∑

i

δ(r − r̂ i)|�(β, γ )〉. (12)

The density distributions of the intrinsic wave functions for
negative-parity states are illustrated in Fig. 3. Figure 3(a) is
the density distribution for the energy minimum state in the
3/2− energy surface (β cos γ, β sin γ ) = (0.33, 0.13). In this
wave function, the neutron density has a three-peak structure
showing some components of a 2α + t cluster structure,
though spatial development of the clustering is weak, as
indicated by the fact that centers of single-particle Gaussian
wave packets gather around the origin. The expectation value
of squared intrinsic spin of neutrons is 0.42, which is an
intermediate value between 0 for the 2α + t cluster limit and
4/3 for the p3/2-shell closed configuration limit. This result
indicates a mixture of the p3/2-shell closed configuration and a
2α + t cluster structure. That is to say, this state is considered
to be the intermediate between the shell-model structure and
the cluster structure.

In the large deformation region, two α and t clusters develop
well. Various configurations of clusters appear, depending on

(β cos γ, β sin γ) ρ̃p ρ̃n ρ̃n − ρ̃p [1/fm2]

(a) (0.33, 0.13)

[1/fm2]

(b) (0.90, 0.09)

(c) (0.33, 0.48)

(d) (0.75, 0.17)

FIG. 3. (Color online) Density distributions of the intrinsic
wave functions for the negative-parity states of 11B. The proton
density ρ̃p , neutron density ρ̃n, and difference between the neutron
and proton densities ρ̃n − ρ̃p are illustrated in the left, middle,
and right columns, respectively. The density distributions of the
intrinsic wave functions at (a) (β cos γ, β sin γ ) = (0.33, 0.13),
(b) (β cos γ, β sin γ ) = (0.90, 0.09), (c) (β cos γ, β sin γ ) =
(0.33, 0.48), and (d) (β cos γ, β sin γ ) = (0.75, 0.17) on the β-γ
plane are shown. The size of the box is 10 × 10 fm2.

the deformation parameters, β and γ . Figures 3(b), 3(c), and
3(d) are typical density distributions for prolate, oblate, and
triaxial deformed states, respectively. It is found that the linear-
chainlike, equilateral-triangular, and obtuse-angle-triangular
configuration arise in the prolate state [Fig. 3(b)], oblate state
[Fig. 3(c)], and triaxial state [Fig. 3(d)], respectively.

Various cluster structures are also found in positive-parity
states as well as in negative-parity states. The density dis-
tributions of the intrinsic wave functions for positive-parity
states are illustrated in Fig. 4. Figure 4(a) shows the density
distributions at (β cos γ, β sin γ ) = (0.60, 0.09), which is the
energy minimum point of the 5/2+ energy surface. In this state,
a 2α core is formed. This is seen by the expectation value of
the squared proton spin 〈Ŝ2

p〉 is 0.77, which is consistent with

the ideal value 〈Ŝ2
p〉 = 3/4 for a 2α + t configuration where

spins of four protons in two α clusters couple to S = 0 and
one proton in a t cluster gives spin 1/2.

Figure 4(b) shows the density distribution of the local
minimum state with (β cos γ, β sin γ ) = (1.10, 0.00) in the
5/2+ energy surface. In this state, to be clear from the
expectation value of the squared proton spin 〈Ŝ2

p〉 = 0.80, a
2α + t cluster structure is also formed. In this wave function,
three clusters have a linear-chain configuration. After the GCM
calculation, a Kπ = 1/2+ rotational band is constructed from
this state, as discussed later.

Figures 4(c) and 4(d) are the density distributions for typical
structures with oblate and triaxial deformations in the large
β region. In these states, 2α + t cluster structures develop
well. It is found that the isosceles-triangular structure and
obtuse-angle-triangular structure of two α and one t clusters
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(β cos γ, β sin γ) ρ̃p ρ̃n ρ̃n − ρ̃p

(a) (0.60, 0.09)

[1/fm2]

(b) (1.10, 0.00)

(c) (0.28, 0.48)

(d) (0.83, 0.22)

FIG. 4. (Color online) Density distributions of the intrinsic
wave functions for the positive-parity states of 11B. The proton
density ρ̃p , neutron density ρ̃n, and difference between the neutron
and proton densities ρ̃n − ρ̃p are illustrated in the left, middle,
and right columns, respectively. The density distributions of the
intrinsic wave functions at (a) (β cos γ, β sin γ ) = (0.60, 0.09),
(b) (β cos γ, β sin γ ) = (1.10, 0.00), (c) (β cos γ, β sin γ ) =
(0.28, 0.48), and (d) (β cos γ, β sin γ ) = (0.83, 0.22) on the β-γ
plane are shown. The size of the box is 10 × 10 fm2.

arise in the oblate state [Fig. 4(c)] and triaxial state [Fig. 4(d)],
respectively.

C. Energy levels

In this section, we describe the results of GCM calculations
performed by superposing the obtained wave functions on the
β-γ plane for negative- and positive-parity states.

First, we describe the results for the negative-parity states.
We show the calculated negative-parity energy levels in Fig. 5
as well as the experimental levels. In the four columns on
the left, we display the experimental energy levels for all the
negative-parity assigned states [16,32]. In the six columns
on the right, the theoretical levels are illustrated. In Fig. 6,
we plot the negative-parity energy levels as functions of the
angular momentum J (J + 1) with E2 transition strengths.
We also show the calculated E2 transition strengths, isoscalar
monopole transition strengths, and root-mean-square radii
with experimental data [17,31,32] in Tables I, II, and III,
respectively. Our calculated results agree with experimental
ones reasonably.

With help of E2 strengths and analysis of overlaps with
basis wave functions, we here describe features of ground
and excited states and band structures in the GCM results.
The calculated low-lying states have large overlaps with the
basis wave functions in the small deformation region. For
instance, the 3/2−

1 state has 87% overlap with the energy
minimum state at (β cos γ, β sin γ ) = (0.33, 0.13) [Fig. 3(a)]
in the 3/2− energy surface. As mentioned before, this state has
the intermediate feature between the shell-model structure and
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FIG. 5. Energy levels of the negative-parity states in 11B. The four
columns on the left are the experimental data and the six columns
on the right are the calculated results. The dotted lines in the left
and right show the experimental and theoretical 2α + t threshold
energies, respectively.

the cluster structure. For the low-lying states, the calculated
E2 strengths are reasonable compared with the experimental
values though the level ordering is somehow in disagreement
with the experimental one.

In the high-lying states above −65 MeV, we obtain various
developed cluster states having significant overlaps with the
basis wave functions in the large β regions, such as Figs. 3(b),
3(c), and 3(d). In particular, the 3/2−

3 state, which is considered
to have a dilute cluster structure with a 2α + t configuration, is
described by the linear combination of various 2α + t spatial
configurations. In the next section, we discuss the relation
between the 3/2−

3 state in 11B and the 0+
2 state in 12C comparing

these GCM amplitudes on the β-γ plane.
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FIG. 6. (Color online) The calculated negative-parity states in
11B against the angular momentum J (J + 1) with E2 transition
strengths. 5.0 e2 fm4 < B(E2) � 10.0 e2 fm4, 10.0 e2 fm4 <

B(E2) � 20.0 e2 fm4, and 20.0 e2 fm4 < B(E2) � 40.0 e2 fm4

transitions are described by broken, black solid, and green bold solid
arrows, respectively. The dotted line shows the theoretical 2α + t

threshold energy.
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TABLE I. Electromagnetic transition strengths B(E2)
for the negative-parity states in 11B. The unit is e2 fm4.

Transition Strength

Theory Experiment

5/2−
1 → 3/2−

1 9.2 14 ± 3
7/2−

1 → 3/2−
1 1.3 1.9 ± 0.4

5/2−
2 → 3/2−

1 0.4 1.0 ± 0.7
3/2−

2 → 1/2−
1 6.7 4 ± 3

For the 3/2−
3 , 5/2−

3 , 7/2−
3 , and 9/2−

3 states, the E2 transition
strengths are significantly large as 20–30 e2 fm4 (see Fig. 6),
and, therefore, we consider these states as members of a band
starting from the bandhead 3/2−

3 state. In the next section,
we discuss the correspondence between this band and the
experimental band suggested in Ref. [16].

We next describe the results for the positive-parity states.
We show the calculated positive-parity energy levels in Fig. 7
as well as the experimental levels. In the five columns on
the left, we display the experimental energy levels for all the
positive-parity assigned states [32]. The theoretical levels are
illustrated in the six columns on the right.

For the calculated 3/2+
1 , 5/2+

1 , 5/2+
2 , 7/2+

1 , 7/2+
2 , 9/2+

1 ,
9/2+

2 , and 11/2+
1 states, we found that these states are

constructed dominantly from the AMD wave function at
(β cos γ, β sin γ ) = (0.60, 0.09) [Fig. 4(a)], which is the
energy minimum of the 5/2+ energy surface.

The calculated 1/2+
1 , 3/2+

2 , 5/2+
3 , 7/2+

4 , 9/2+
2 , and 11/2+

2
states have almost 50% overlap with the AMD base at
(β cos γ, β sin γ ) = (1.10, 0.00) [Fig. 4(b)]. As mentioned
before, this state has the linear-chain configuration of 2α + t

clusters. The level spacings of these states show the Kπ =
1/2+ rotational pattern. Moreover, the calculated E2 transition
strengths between these states listed in Table IV shows
a feature of the Kπ = 1/2+ rotational band. Namely the
transitions in the groups (1/2+

1 , 5/2+
3 , and 9/2+

3 ) and (3/2+
2 ,

7/2+
4 , and 11/2+

2 ) are rather strong, while those between
the groups are weak. Therefore, we regard the 1/2+

1 , 3/2+
2 ,

5/2+
3 , 7/2+

4 , 9/2+
3 , and 11/2+

2 states as the band members of
the Kπ = 1/2+ rotational band. As will be discussed later,
the mechanism why this linear-chain configuration stabilizes
and constructs a rotational band can be understood by the
molecular orbital structure of the valence p + 2n around 2α

clusters, which is analogous to the structures in 10Be. Other
states have no specific structure and are difficult to classify as
band members.

TABLE II. Isoscalar monopole transition strengths
B(E0; IS) for the negative-parity states in 11B. The unit
is fm4.

Transition Strength

Theory Experiment

3/2−
1 → 3/2−

2 2.5 <9
3/2−

1 → 3/2−
3 150 96 ± 16

TABLE III. Root-mean-square radii for mass distribu-
tions of the negative-parity states in 11B. The unit is fm.

State Radius

Theory Experiment

3/2−
1 2.29 2.09 ± 0.12

3/2−
2 2.46

3/2−
3 2.65

In the present calculation, the 1/2+
1 state, which is experi-

mentally known to be the lowest positive-parity state, is miss-
ing. It is expected to have 1p-1h configuration with one proton
in the spatial extending 1s1/2 orbital. Unfortunately, the present
framework may not be suitable to describe the spatial extent of
1s1/2 orbital because the width parameter is taken to be a com-
mon value for all the single-particle Gaussian wave functions.

IV. DISCUSSION

A. Negative-parity band from the 3/2−
3 state

We here discuss the negative-parity band starting from
the 3/2−

3 state. As mentioned, the present result suggest the
negative-parity band consisting of the 3/2−

3 , 5/2−
3 , 7/2−

3 , and
9/2−

3 states (Fig. 6). In the recent experiment of α resonant
scattering on 7Li [16], new cluster states were observed, and the
negative-parity states at 8.56 MeV (3/2−), 10.34 MeV (5/2−),
11.59 MeV (7/2−), and 13.03 MeV (9/2−) are assigned to be
band members. We compare the experimental and calculated
band in Fig. 8. Although the calculated excitation energies are
higher than experimental ones by 2.5–4.5 MeV, systematics
of the level structure, in particular, the small level spacings,
correspond well to the experimental ones. Moreover, the
present result suggest developed cluster structures in this
band and these states probably have large α-decay widths.
It supports again that the calculated band can be assigned
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FIG. 7. Energy levels of the positive-parity states in 11B. The five
columns on the left are the experimental data and the six columns on
the right are the calculated results. The dotted lines in the left and
right show the experimental and theoretical 2α + t threshold energies,
respectively.
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TABLE IV. B(E2) for the positive-parity linear states
in 11B. The unit is e2 fm4.

Transition Strength

11/2+
2 → 7/2+

4 154.8
7/2+

4 → 3/2+
2 85.6

9/2+
3 → 5/2+

3 84.1
5/2+

3 → 1/2+
1 48.6

11/2+
2 → 9/2+

3 1.4
9/2+

3 → 7/2+
4 6.7

7/2+
4 → 5/2+

3 3.8
5/2+

3 → 3/2+
2 0.9

3/2+
2 → 1/2+

1 10.7

to the experimental band for which large α-decay widths
were suggested. To make the correspondence of the calculated
states to the experimental observed ones clearer, theoretical
estimation of the partial decay widths of the excited states
above the 2α + t threshold is a remaining future problem.

Cluster structure of the bandhead state, the 3/2−
3 state, of

this band has been attracting special attention in association
with the 0+

2 state in 12C. In the earlier works [14,17], it is
suggested that the 3/2−

3 state has a similar feature to the 0+
2

state in 12C. These states in 12C and 11B are considered to have
dilute cluster structures with 3α and 2α + t configurations,
respectively. To see the similarity of the cluster feature between
these states, we compare the GCM amplitude for the 3/2−

3
states of 11B with that for the 0+

2 state of 12C in Fig. 9. The
results for the 0+

2 states in 12C are calculations with the β-γ
constraint AMD + GCM taken from Ref. [22]. Fragmentation
of the GCM amplitudes for these states is very similar.
Both GCM amplitudes spread over the broad γ area of the
large β region. In this area of the large β region, the basis
wave functions have various configurations of the developed
clusters. The feature of the GCM amplitudes indicates that the
3/2−

3 state in 11B is described by the linear combination of
various 2α + t configurations in the same manner as the 0+

2
state in 12C, which is also described by the linear combination
of various 3α configurations. That is, when one α cluster is
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FIG. 8. Comparison between the calculated band (3/2−
3 , 5/2−

3 ,
7/2−

3 , and 9/2−
3 ) and the experimental band suggested in Ref. [16].

FIG. 9. GCM amplitudes for the 3/2−
3 states of 11B and the 0+

2

states of 12C.

replaced with one t cluster, the structure of the 3/2−
3 state in

11B can be regarded as a very similar state to the 0+
2 state in

12C. Our calculation is consistent with earlier works.
Let us turn again to the level structure of the negative-parity

band starting from the 3/2−
3 state. As shown in Fig. 8, the

energy positions of the 5/2−
3 , 7/2−

3 , and 9/2−
3 states satisfy

the Erot ∝ J (J + 1) rule of the rigid rotor model, while that
of the 3/2−

3 deviates from this rule and it is lower than the
systematic line. This feature is seen in both the calculated and
experimental levels. We here propose a possible reason for the
lowering 3/2−

3 while focusing on its dilute cluster structure
as follows. In the 3/2−

3 state, two α and t clusters are weakly
interacting, and it may not have a rigid structure. Therefore,
the energy cost for rotation of this state can be relatively large.
As the angular momentum increases, the structure may change
from weakly interacting clusters to a somehow rigid structure
with a specific shape, resulting in a larger moment of inertia.
By a consequence of the change of moment of inertia, the plot
of the energy levels with respect to J (J + 1) shows a kink.
A similar feature was discussed for the band in 16O, which
are considered to start from the 0+ state just above the four-α
threshold, a candidate of the α condensation having weakly
interacting four α clusters [33,34].

Here we comment on the behavior of GCM amplitudes
except for the 3/2−

3 state. As the angular momentum increases,
GCM amplitudes gather in the prolate region gradually.
Reflecting this behavior, the 5/2−

3 , 7/2−
3 , and 9/2−

3 states show
a rotational nature.

B. Molecular orbital structures in positive-parity states

In this subsection, we introduce an interpretation from
the picture of the molecular orbital to discuss structures
of positive-parity states and to answer the question why a
linear-chain configuration of 2α + t clusters stabilize in 11B.
Usually a linear-chain configuration is unfavored energetically
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because this configuration loses a kinetic energy. Indeed,
in the negative-parity states, a superposition of various
configurations of 2α + t clusters, such as the 3/2−

3 state, is
favored than a specific configuration of clusters, to gain the
kinetic energy of the relative motion of clusters. However, in
positive-parity states, the linear-chain configuration of 2α + t

clusters [Fig. 4(b)] constructs a Kπ = 1/2+ rotational band as
described before. The mechanism of the stabilization can be
understood by the molecular orbital picture. In the linear-chain
configuration, we consider that one proton and two neutrons
occupy the molecular orbitals around two α clusters and spread
over the whole system to gain the kinetic energy rather than
construct a simple t cluster.

The molecular orbital picture was proposed to describe sys-
tems of a 2α core with valence neutron(s) [27,35–39]. Indeed,
low-lying states of neutron-rich Be isotopes are successfully
described by the molecular orbital pictures [28,36–45]. In
a 2α system with valence neutrons, molecular orbitals are
formed by a linear combination of p orbits around two α

clusters, and valence neutrons occupy the molecular orbitals
such as π3/2 and σ1/2 orbitals. The π3/2 orbital (Jπ = 3/2−)
spreads in a direction perpendicular to the axis between α

clusters, while the σ1/2 orbital (Jπ = 1/2+) spreads parallel
to the axis between α clusters. In the ground band of 10Be,
valence neutrons have the (π3/2)2 configuration. While, in the
excited states of 10Be, developed cluster structures with other
configurations of valence neutrons appear. For instance, the
Kπ = 1−

1 and Kπ = 0+
2 bands are explained by the π3/2σ1/2

and (σ1/2)2 configurations, respectively. A molecular orbital
model was also applied by Seya et al. [36] to B isotopes as
well as to Be isotopes.

In the following, we try to explain the structures of the
positive-parity states in 11B systematically using the molecular
orbital picture. In analogy to the molecular orbital structures
in 10Be, we consider 11B to be two α clusters with surrounding
a proton and two neutrons which occupy the π3/2 and σ1/2

orbitals.
First, we consider the calculated 3/2+

1 , 5/2+
1 , 5/2+

2 , 7/2+
1 ,

7/2+
2 , 9/2+

1 , 9/2+
2 , and 11/2+

1 states. The main component
of those states is the wave function at (β cos γ, β sin γ ) =
(0.60, 0.09) [Fig. 4(a)]. The motion of one valence proton
of this wave function can be regarded as the π3/2 molecular
orbitals because one valence proton attach the side of two α

clusters and two valence neutrons can be interpreted as occu-
pying π3/2 and σ1/2 molecular orbitals. The density distribution
of neutrons has a banana shape, which is constructed from the
combination of the π3/2 and σ1/2 molecular orbitals. As a result,
the 3/2+

1 , 5/2+
1 , 5/2+

2 , 7/2+
1 , 7/2+

2 , 9/2+
1 , 9/2+

2 , and 11/2+
1

states can be interpreted as 2α + p(π3/2) + 2n(π3/2σ1/2). This
neutron configuration is similar to that of the Kπ = 1−

1 band
in 10Be.

Next, we discuss the Kπ = 1/2+ band in 11B. The Kπ =
1/2+ band is constructed dominantly from the wave function
at (β cos γ, β sin γ ) = (1.10, 0.00) [Fig. 4(b)]. In this wave
function, protons and neutrons have the elongate structure
parallel to the axis between two α clusters. This elongate
structure is consistent with the σ1/2 orbital. Therefore, this
wave function can be regarded as 2α + p(σ1/2) + 2n[(σ1/2)2],
where a proton and two neutrons occupy the σ1/2 orbital. The

motion of valence neutrons in Kπ = 1/2+ is similar to that of
valence neutrons in the 0+

2 state of 10Be. Thus, the linear-chain
structure of the Kπ = 1/2+ band in 11B is understood by an
extension of the molecular orbital structures in 10Be, namely
the linear-chain configuration is stabilized because of valence
nucleons in the σ1/2 orbital.

In the above discussions of molecular orbital structures,
we find a good correspondence of the intrinsic structure of
positive-parity states in 11B to the excited states in 10Be. In
the excited states of 10Be, molecular 2α + 2n structures with
π3/2σ1/2 and (σ1/2)2 configurations construct rotational bands.
Also in the positive-parity states of 11B, there are two molecu-
lar orbital configurations such as p(π3/2) + 2n(π3/2σ1/2) and
p(σ1/2) + 2n[(σ1/2)2]. That is, the excited states of both nuclei
can be described by molecular orbital structures with two α

clusters. Note that valence neutrons occupy the same molecular
orbitals such as π3/2σ1/2 and (σ1/2)2 in both nuclei. It suggests
that the molecular orbital structures of 11B can be composed
by an additional proton and 10Be with the corresponding
molecular orbital structures. This correspondence between 11B
and 10Be is an interesting result of introducing the molecular
orbital interpretation.

Here, we discuss whether other configurations of molecular
orbitals exist in 11B. In the simple expectation from the molecu-
lar orbital model, other configurations for valence nucleons can
appear near or under the 2α + p(σ1/2) + 2n(σ1/2)2 states. For
example, the 2α + p(π3/2) + 2n(σ1/2)2 structure can appear
in the negative-parity states because the π3/2 orbital has lower
energy than the σ1/2 orbital in a simple point of view. However,
in the β-γ constraint AMD + GCM calculation, such a state
does not appear. We consider the reason for the absence is less
correlation energy among nucleons in molecular orbitals. In
the 2α + p(π3/2) + 2n(σ1/2)2 states, since a valence proton
and valence neutrons occupy the different orbitals, they have
small spatial overlaps; therefore, valence nucleons gain less
correlation energy. However, in the molecular orbital states
which appear in the β-γ constraint AMD + GCM calculation,
three valence nucleons (a proton and two neutrons) occupy the
same orbital and they gain much correlation energy. In other
words, the molecular orbital states in which valence proton
and neutrons do not occupy same orbitals are unfavored and
cannot appear in the low-energy region.

C. Coexistence of shell-model, 2α + t , and
molecular orbital structures

Let us here discuss the coexistence of various structures
in 11B. What we find in the present work is two types of
cluster structure, three-body 2α + t cluster structures and
molecular orbital structures, as well as shell-model structures.
The 2α + t cluster structures in 11B correspond well to the 3α

cluster structures in 12C, while molecular orbital structures can
be associated with those in 10Be. It should be emphasized that
the coexistence of the three-body 2α + t cluster and molecular
orbital structures is one of the unique features of 11B.

In the 11B system, shell-model structures are seen in the
ground and low-lying states, while in the highly excited
states near or above the 2α + t threshold, three-body 2α + t

structures and molecular orbital structures with a 2α core are
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found. In the molecular orbital structures, the 2α core is formed
and three valence nucleons (a proton and two neutrons) are
moving in the mean field, i.e., the molecular orbitals around
the 2α. It might seem to be contrary to the 2α + t structures
where a t cluster is formed by correlating three nucleons. The
reason why these two kinds of cluster structures coexist in a
similar energy region can be explained by the fragility of a t

cluster. The binding energy of a t cluster is only 8.5 MeV and
much smaller than that of an α cluster. It means that a t cluster
can easily break up into three nucleons. In molecular orbital
structures, three valence nucleons are in the mean field to
gain potential energy from the 2α core. The potential energy
gain from the core can compensate the energy loss of the
binding energy of a t cluster. As a result, the 2α + t cluster
and molecular orbital structures coexist in 11B.

As already mentioned, the coexistence of shell-model
structures and three-body cluster structures occurs in 11B in
a similar way to the coexistence of cluster and shell-model
structures in 12C. We then can conclude that shell-model
structures, 2α + t cluster structures, and molecular orbital
ones coexist in the ground and excited states of 11B. This is a
coexistence phenomenon peculiar to 11B.

V. SUMMARY

We investigated structures of excited states in 11B with
the method of β-γ constraint AMD + GCM. We showed
the calculated results for the energy levels, E2 transition
strengths, isoscalar monopole transition strengths, and a root-
mean-square radius, which are in reasonable agreement with
experimental data. The present results suggest that the ground
and low-lying states have the shell-model structures. In the
excited states, well-developed cluster structures are found in
the negative- and positive-parity states.

By analyzing the E2 transition strengths as well as the GCM
amplitudes, we assigned the negative-parity band starting from
3/2−

3 , in which a 2α + t structure develops well. This band
is the candidate for a band which was suggested in a recent
experiment of α resonant scattering on 7Li. Systematics of
the level structure in this band, in particular, the small level
spacings, correspond well to the experimental ones. In the
experiment, this band is constructed by the states with large
α-decay widths. To make the correspondence of the calculated
states to the experimental observed ones clearer, theoretical
estimation of the partial decay widths of the excited states
above the 2α + t threshold is a remaining future problem.

In the negative-parity states, the present results suggest
a good correspondence of the intrinsic structure with the
positive-parity states of 12C as suggested in previous studies.
For instance, we found the well-developed 2α + t cluster
structure of the 3/2−

3 state in 11B, which shows similar features
to 3α cluster structure of the 0+

2 state in 12C. In the analysis of
GCM amplitudes, we found that the intrinsic structure of the
3/2−

3 state in 11B does not have a rigid shape but it is expressed
by a linear combination of basis wave functions having various
configurations of the developed clusters. The feature is quite
similar to the 0+

2 state in 12C.
For the positive-parity states, a Kπ = 1/2+ rotational band

with a linear-chain configuration of 2α + t clusters is sug-
gested. To explain the stabilization mechanism of the linear-
chain configuration, we introduced an interpretation from the
picture of the molecular orbital. In addition, we discussed
a correspondence of the positive-parity states in 11B to the
excited states in 10Be. The low-lying states in the positive-
parity states of 11B have the 2α + p(π3/2) + 2n(π3/2σ1/2)
structure, which is similar to the Kπ = 1−

1 band in 10Be
[2α + 2n(π3/2σ1/2)] except for the valence proton. The Kπ =
1/2+ band has the 2α + p(σ1/2) + 2n[(σ1/2)2] structure. This
is also similar to the Kπ = 0+

2 band in 10Be [2α + 2n(σ1/2)2].
What we found in the present study of 11B is the coexistence

of shell-model, 2α + t , and molecular orbital structures.
Shell-model structures are seen in the ground and low-lying
states, while in the highly excited states near or above the
2α + t threshold, three-body 2α + t structures and molecular
orbital structures are found. This is a coexistence phenomenon
peculiar to 11B. It is a future problem to investigate other nuclei
from the point of view whether this coexistence appears.
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