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Self-consistent calculations of quadrupole moments of the first 2+ states in Sn and Pb isotopes
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A method of describing static moments of excited states and transitions between excited states is formulated
for nonmagic nuclei within the Green’s function formalism. Quadrupole moments of the first 2+ states in tin
and lead isotope chains are calculated self-consistently using the energy density functional by Fayans et al.
[Nucl. Phys. A 676, 49 (2000)]. Reasonable agreement with available experimental data is obtained. Quadrupole
moments of unstable nuclei including 100Sn and 132Sn are predicted. A nontrivial dependence of the quadrupole
moments on the neutron excess is found which can be traced to the negative proton contributions.
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I. INTRODUCTION

At present, spectroscopic information about unstable nuclei
is of great interest because of the emergence of new magic
numbers; see, for example, Ref. [1]. This phenomenon has
important implications for astrophysics. To reliably predict
properties of unstable nuclei, an approach based on a self-
consistency relation between the mean field and effective in-
teraction should be used. Self-consistency improves noticeably
the predictive power of the theory; for a review, see Ref. [2].

Phonons are an important degree of freedom for nu-
clear structure. Widely used theoretical approaches including
phonons are the quasiparticle-phonon model (QPM) [3],
the quasiparticle random-phase approximation + phonon
coupling (QRPA + PC) [4], and the extended theory of
finite Fermi systems (ETFFS) [5]. Self-consistent extensions
of these methods have been proposed recently, for example,
(Q)RPA + PC [6] and the ETFFS in the quasiparticle time-
blocking approximation (QTBA) [7] [ETFFS (QTBA)] [8].
For magic and semimagic nuclei, such approaches are based
on the fact that in these nuclei there is a small parameter g2,
the dimensionless square of the phonon creation amplitude.

In the framework of the Green’s function (GF) formalism,
both PC and self-consistency have been realized and have
shown their importance for stable nuclei [5,7,8]. However, all
the above mentioned approaches dealing with the PC did not
take into account all the g2 terms, thus limiting themselves with
the pole diagrams only; see the first diagram in Fig. 1 where
diagrams for the mass operator are displayed. The second
diagram represents the sum of all g2 nonpole diagrams, usually
called the tadpole.

The problem of consistent consideration of all g2 terms
including tadpoles was analyzed in the article by Khodel [9]
based on the general self-consistency relations for finite Fermi

systems [10]. The method developed was applied for magic
nuclei, mainly for ground-state nuclear characteristics, within
the self-consistent TFFS [11]. It was found that, as a rule,
the tadpole contributions in magic nuclei are noticeable and
are often of opposite sign as compared with those of the pole
terms. The first attempts to include phonon tadpole effects for
nuclei with pairing and for consideration of excited states were
recently made in Refs. [12,13], respectively.

If one studies phonon effects in the binding energies, single-
particle level positions, g2 corrections are usually smaller than
mean field predictions and could be partially hidden in the
phenomenological parameters used. In this work, within the
GF method, we concentrate our attention on more delicate
characteristics which are proportional to g2 themselves.
Namely, we analyze the static moments of excited states and
transitions between excited states. To ensure self-consistency,
we use the self-consistent TFFS based on the energy density
functional (EDF) by Fayans et al. [14] with the DF3-a set of
parameters fixed previously in Ref. [15]. Thus, there are no
fitted parameters in the present approach. We briefly describe
the method for these characteristics in magic and generalize
it for nonmagic even-even nuclei. Within this approach, we
perform the first self-consistent calculations of static moments
of the first 2+ excited states in tin and lead isotopes.

The quadrupole moments of excited states in spherical
nuclei with pairing have been calculated earlier within
many-body approaches in Refs. [16,17] and within QPM in
Refs. [18,19]. In Ref. [17], the authors use the nuclear field
theory with a set of phenomenological parameters taken from
experiment for each nucleus. In this article, a reasonable
agreement was obtained with the experimental data for Sn
and Ni isotopes available at that time. For magic nuclei, this
problem was considered also within the self-consistent TFFS
in Ref. [20]. The main difference of our approach from those of
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FIG. 1. g2 order corrections to the mass operator in magic nuclei.
The circles with one wavy line in the first term are the phonon creation
amplitudes g. The second term is the phonon tadpole.

Refs. [16–19] is its full self-consistency on the (Q)RPA level
and absence of any phenomenological or fitted parameters.

II. MAGIC NUCLEI

To describe the PC effects in magic nuclei with the
consistent account of all the g2 terms, we follow the method
by Khodel [9]. In the g2 approximation, the matrix element
MLL for a static moment of the excited state (phonon) with
the orbital angular moments L in a static external field V 0 is
determined in terms of the change of the one-particle GF in
the field of this phonon:

MLL =
∫

V 0(r)δ(2)
LLG(r, r, ε)dr

dε

2πı
, (1)

δ
(2)
LLG = δL(GgLG) = G(ε)gLG(ε + ωL)gLG(ε)

+G(ε)gLG(ε − ωL)gLG(ε) + G(ε)δLgLG(ε),

(2)

where gL is the amplitude for the production of the L phonon
with the energy ωL and δLgL is the variation of gL in the field
of other L phonon:

δLgL = δL(FAgL) = δLFAgL + FδLAgL + FAδLgL, (3)

where F is the effective particle-hole (ph) interaction and A

is the ph propagator (the integral over energy of the product
of two single-particle GF’s). Integration over intermediate
coordinates is understood. By substituting Eq. (2) into Eq. (1),
we obtain

MLL = V 0GgLGgLG + V 0AδLgL, (4)

It is convenient to transform this expression in such a way
that the effective field V appears instead of the external field
V 0. They are connected with the TFFS equation [21] V =
V 0 + FAV. After regrouping terms in Eqs. (3) and (4) (for
details, see Refs. [11,13]), we obtain the ultimate expression

MLL = V GgLGgLG + V AδLFAgL, (5)

which is illustrated in Fig. 2. It contains now the effective field
V , instead of V 0 in Eq. (4), and the quantity δLF in the second

FIG. 2. Matrix element MLL in the form of Eq. (5).

term, which denotes the variation of the effective ph interaction
F in the field of the L phonon. For the density-dependent TFFS
effective interaction F(ρ), the following ansatz can be readily
obtained [9,11]:

δLF(r) = ∂F
∂ρ

ρ tr
L(r)YLM (n), (6)

where ρ tr
L = AgL is the transition density for the L phonon

excitation. The first term of Eq. (5) coincides with the result
of Refs. [16,22], while the second one, with the δLF quantity,
is a generalization to take into account all the g2 terms.

All the above equations can be readily modified for such
processes as the transition between the excited states L and L′
in the external field V 0(ω = ωL′ − ωL) or the excitation of the
two-phonon state L + L′ in the external field V 0(ω = ωL′ +
ωL). The static moment case corresponds to ω = 0, ωL′ = ωL.

III. NONMAGIC NUCLEI. COMPARISON WITH QRPA

In the case of nuclei with pairing, it is necessary to use four
GF’s (G,Gh, F (1), F (2) in Ref. [21]). To describe phonons,
one has to use the complete set of the QRPA equations, which
include the ph, hp, pp, and hh channels and four effective
fields V , V h, d (1), and d (2), respectively [21]. As the pp and
hh channels give a small contribution in the case of the first
2+ levels [23], which is considered in the article, we do not
consider these channels and, accordingly, the fields d (1) and
d (2). Then we obtain eight terms for M

(i)
LL′ instead of one in

Eq. (5) and eight integrals of three GF’s A
(i)pair
123 , where i = 1–8.

The typical two terms, M (1) and M (5), are shown in Fig. 3.
The final formula for the static moment MLL of the excited

L state reads

MLL =
∑
123

(−1)L+1

(
I L L

0 L −L

) {
I L L

j3 j2 j1

}

×〈1‖ V ‖2〉〈3‖ gL ‖1〉〈2‖ gL ‖3〉
8∑

i=1

A
(i)pair
123 , (7)

where

8∑
i=1

A
(i)pair
123 =

(
1

(ωL + E13)(ωL + E23)
+ 1

(ωL − E13)(ωL − E23)
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FIG. 3. Matrix elements for M
(1)
LL and M

(5)
LL for nonmagic nuclei.

Here E12 = E1 + E2, E1 =
√

(ε1 − μ)2 + �2
1, and the low

index 1 = (n1, l1, j1), spherical nuclei, is the set of single-
particle quantum numbers.

Let us compare this expression with the QRPA approach.
Here we mean the usual scheme [24], which uses the QRPA
wave functions for the matrix element between two excited
states. In Ref. [24] the expression for the B(E2) quantity
has been derived using the bare external field V 0 and the
QRPA wave functions without the pp and hh channels. The
first square brackets, in the first half of Eq. (8), coincide
completely with the factor v−

12u
+
23u

+
31 in Refs. [3,24]. Thus,

the first half of Eq. (8) corresponds to the expression

v−
12(ψ23ψ31 + φ23φ31) in Ref. [24] because the phonon am-

plitudes ψ12 and φ12 contain, by definition, the denominators
(E12 − ωL) and (E12 + ωL), respectively. Therefore, the sec-
ond half of Eq. (8), which contains the common factor 1/E12,
generalizes the usual QRPA approach. This part of Eq. (8)
describes the contribution of the ground-state correlations
(GSC), the so-called backward-going diagrams, to the first
diagrams of Fig. 3 with the integrals of three GF’s (“triangle”).
We calculate the contribution of such correlations below. The
second generalization is the appearance of the effective field
V , which depends in general on the frequency ω = ωL ± ω′

L,
instead of the external field V 0, which does not depend on
the frequency. The terms with δLF and δLF ξ are the third
generalization of the QRPA approach. Note that these terms
are also absent in Refs. [16–19,22].

In the problem under consideration, the terms of Fig. 3
referring to the density derivative of the force can be straight-
forwardly evaluated with the help of Eq. (6):

Mddf = CIL

∫
δρst(r)

∂F
∂ρ

(r)
[
ρ tr

L(r)
]2

d3r, (9)

CIL = 1

2
(−1)L(2L+1)(2I+1)

(
I L L

0 L −L

)(
I L L

0 0 0

)
, (10)

TABLE I. Quadrupole moments Q (e b) of the first 2+ states in Sn and Pb isotopes. (Qn and Qp are the neutron and proton contributions
to the triangle diagram, Qtot = Qn+Qp+Qddf .)

Nucl. Qn Qp Qtot Qexp [26] Q(GSC = 0) QQRPA
100Sn 0.01 0.03 0.04 – 0.05 0.017
102Sn −0.05 −0.01 −0.07 – −0.02 −0.001
104Sn −0.18 −0.03 −0.22 – −0.08 −0.001
106Sn −0.28 −0.05 −0.34 – −0.13 −0.002
108Sn −0.31 −0.07 −0.39 – −0.14 −0.002
110Sn −0.38 −0.10 −0.50 – −0.17 −0.003
112Sn −0.32 −0.11 −0.45 −0.03(11) −0.15 −0.003
114Sn −0.15 −0.11 −0.28 0.32(3), −0.09 −0.004

0.36(4)
116Sn 0.00 −0.10 −0.12 −0.17(4), −0.03 −0.003

+ 0.08(8)
118Sn 0.10 −0.09 −0.01 −0.05(14) 0.01 −0.003
120Sn 0.12 −0.08 0.04 + 0.022(10), 0.03 −0.003

−0.05(10)
122Sn 0.09 −0.07 0.01 −0.28 < Q 0.02 −0.003

Q < + 0.14
124Sn 0.00 −0.06 −0.07 0.0(2) −0.01 −0.003
126Sn −0.08 −0.05 −0.13 – −0.04 −0.002
128Sn −0.10 −0.03 −0.14 – −0.05 −0.002
130Sn −0.05 −0.01 −0.07 – −0.03 −0.001
132Sn 0.04 0.00 0.04 – 0.05 0.015
134Sn 0.00 −0.01 −0.01 – 0.00 −0.001
190Pb −0.60 −0.29 −0.92 – −0.30 −0.008
192Pb −0.77 −0.35 −1.15 – −0.38 −0.008
194Pb −0.90 −0.39 −1.31 – −0.44 −0.008
196Pb −0.85 −0.38 −1.26 – −0.42 −0.008
198Pb −0.67 −0.35 −1.05 – −0.35 −0.008
200Pb −0.27 −0.23 −0.52 – −0.17 −0.006
202Pb 0.02 −0.15 −0.15 – −0.03 −0.005
204Pb 0.18 −0.07 0.10 + 0.23(9) 0.06 −0.003
206Pb 0.11 −0.02 0.09 + 0.05(9) 0.06 −0.002
208Pb 0.01 0.04 0.05 −0.7(3) 0.07 0.043
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where the transition density is ρ tr
L = L(ωL)gL, δρst = L(0)V,

and L = ∫
(GG − F (1)F (2))dε/2πi.

The problem of calculations of quadrupole moments of
the first 2+ states is connected with the study of the 2+ state
energies and E2 transitions to the ground state. To calculate
these quantities one usually employs the (Q)RPA approach,
which deals only with two quasiparticle excitations. PC mod-
ifies the propagation and interaction of the quasiparticles. A
consistent theory of these anharmonic corrections to the QRPA
is difficult because it requires including a self-consistency
beyond the (Q)RPA and tadpole contributions. The realization
of this program is beyond the scope of this paper since our
calculations include dynamic quantities obtained only within
the (Q)RPA and, thus, are fully self-consistent.

IV. CALCULATIONS OF STATIC QUADRUPOLE
MOMENTS OF THE FIRST 2+ STATES IN TIN

AND LEAD ISOTOPES

The quadrupole moment of the excited state L is equal to the
matrix element MLL, Eq. (7), for I = 2, V 0(r) = eq r2Y20(n),
and e

p
q = 1, en

q = 0. In the recent work [25], we have discussed
the problem and calculated the quadrupole moment for the first
3− level of 208Pb, both without terms with δLF and δLF ξ .

In this article, we calculated the quadrupole moments
of the first 2+ states in tin and lead isotopes according to
Eqs. (7)–(10) in the λ representation with self-consistent
single-particle wave functions φλ obtained within the EDF
method of Ref. [14] with the functional DF3-a [15]. A
spherical box of the radius R = 16 fm is used to simulate
the single-particle continuum. We examined the dependence
of the results on the cutoff energy Emax and have found
that the value of Emax = 100 MeV ensures 1% accuracy. To
calculate the quantities V and gL, the results of Ref. [23]
have been used where all the calculations were performed in
the coordinate representation using the same self-consistent
DF3-a basis as in the present calculation of the matrix element
MLL. Thus, the single-particle continuum is taken into account
adequately in the present calculations. The contribution of
the term with Mddf , Eq. (9), turned out to be rather small,

FIG. 4. (Color online) Quadrupole moments of the first 2+ excited
states in even Sn isotopes.

FIG. 5. (Color online) Same as in Fig. 4 but for Pb isotopes.

Qfdd = −(0.01 ÷ 0.03) e b. However, there are cases where
these corrections are comparable with the total Q(2+

1 ) value
when the Qn and Qp values almost compensate each other,
for example, in 118Sn and 122Sn. The term with δLF ξ contains
the anomalous analogs of the quantities δρst and ρ tr

L, which are
small [23].

The results are given in Table I and Figs. 4 and 5. Except
for 112Sn and 208Pb, we obtained a reasonable agreement
with experimental data [26]. The contribution of the GSC
term in Eq. (8) turned out to be large. Rather often it is
more than 50 ÷ 60% of all triangle contributions [column
Q (GSC = 0)]. The usual QRPA (GSC = 0 and V = V 0),
see the last column in Table I, results in considerably lower
Q values.

V. CONCLUSION

We have formulated the method to describe static mo-
ments of the excited states and transitions between excited
states, which are described within the QRPA, taking into
account all the g2 terms in magic and semimagic nuclei. We
obtained a noticeable difference from the traditional QRPA
approach. In particular, new terms with δLF and δLF ξ appear,
which contain the density derivatives of both the ph and pp
effective interactions. In the problem under consideration,
their contribution turned out, as a rule, to be rather small.
However, for consistency, these terms should be included.
We have performed the self-consistent calculations of the
static quadrupole moments of the first 2+ states for Sn and
Pb isotopes using the known EDF parameter set DF3-a.
Except for the 112Sn and 208Pb cases, a reasonable agreement
has been obtained with the experimental results. Using the
self-consistent method, which contains no newly adjusted
parameters, we have also predicted the values of quadrupole
moments of the first 2+ states in several unstable lead and tin
isotopes including the 100Sn and 132Sn nuclei. An unexpectedly
large contribution of ground-state correlations to the Q(2+

1 )
values is found.

We have found that the static quadrupole moments of the
first 2+ states in both chains are small at the beginning of
the shell. For isotopes in unfilled shells they are on average
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much bigger. However, the function Q(A) is rather irregular,
especially for the tin chain, owing to the neutron component.
In the left part of Fig. 4, the neutron and proton components
are of the same sign, resulting in the large absolute value of
Q(2+

1 ). On the right part of Fig. 4, the quadrupole moment
is close to zero because two terms of the sum Q = Qp + Qn

compensate for each other. In the lead chain, the situation is
similar but less pronounced. Similar behavior probably could
be present in other isotope chains.

ACKNOWLEDGMENTS

We thank J. Speth for useful discussions. Four of us,
S.T., S.Ka., E.S., and D.V., are grateful to the Institut für
Kernphysik, Forschungszentrum Jülich for hospitality. The
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