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Nuclear response for the Skyrme effective interaction with zero-range tensor terms.
II. Sum rules and instabilities
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The formalism of linear response theory for Skyrme forces including tensor terms presented by Davesne et al.
[Phys. Rev. C 80, 024314 (2009)] is generalized for the case of a Skyrme energy density functional in infinite
matter. We also present analytical results for the odd-power sum rules, with particular attention to the inverse
energy weighted sum rule, M−1, as a tool to detect instabilities in Skyrme functionals.
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I. INTRODUCTION

The energy density functional (EDF) method is a tool of
choice to perform systematic calculations of binding energies
and one-body observables in the region of the nuclear chart
that ranges from medium- to heavy-mass atomic nuclei from
drip line to drip line [1]. This effective approach relies on
a limited number of universal parameters, usually fitted on
experimental data (observables) [2,3] along with properties
of infinite nuclear matter (pseudo-observables) extracted from
experimental results or derived from realistic models [4].

In its general formulation, the EDF is the sum of different
terms that depend only on products of one-body densities
weighted by coupling constants, which in general can also
depend on the local densities themselves. Although several
functionals are available [5–7], the most often used is the one
derived from the effective Skyrme interaction [8]. Building
all possible combinations up to quadratic terms in densities
together with the conservation of some general symmetries
(see Ref. [8] for a detailed discussion), one obtains 28 free
coupling constants [9], which can be reduced to 14 by
imposing the condition that the functional be derived from
an effective force. This requirement is not only adopted to
simplify the optimization procedure used to determine the
values of the coupling constants, but it is also mandatory
in order to use methods that go beyond the mean field to
avoid self-interactions and self-pairing [10–12]. Due to this
additional requirement, it turns out that the standard Skyrme
EDF usually adopted in mean-field calculations is not flexible
enough to improve the level of accuracy in describing sets
of available experimental data. For this reason, other terms
are now considered, such as as three-body [13] and tensor
forces [32], for example.

The determination of accurate values for the coupling
constants of the Skyrme functional, even in its simplest form, is
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quite an elaborate process since a good predictive power is only
possible from a pertinent and well chosen set of observables
or pseudo-observables. Although this is still possible for the
time-even part of the functional [3], there is not yet a consensus
on how to proceed in order to constrain the time-odd terms.
Actually, it is not clear at all which observables could be used
for this purpose, and the corresponding parameters are not
explicitly constrained, but merely indirectly determined by
the time-even part through simple mathematical relations. For
this reason, a vast area can be explored in the parameter space,
and one possibly ends up in some region of instabilities, as
discussed further in this article.

One of the first methods used to fix some of these terms can
be found in the work of Van Giai and Sagawa [14], where they
adjust the Landau parameters on values obtained from realistic
forces. Furthermore, from the theory of Landau-Migdal for
quasiparticles, one can derive set of sum rules for Landau
parameters [15] that should be fulfilled, otherwise the system
could pass through different phase transitions according to
the different spin/isospin channels (for instance ferromagnetic
instabilities in spin channels). The Landau-Migdal approach
is valid for quasiparticles interacting near the Fermi surface
with transfer momentum that goes to zero—a situation that
corresponds to the so-called long wavelength limit. Thus it is
not able to predict possible instabilities that occur at nonzero
transferred momentum q, with the appearance of domains
with typical size λ ∼ 2π/q. The first example of such kind
of instability was encountered and examined in detail in an
article devoted to the study of effective mass splitting by
Lesinski et al. [16], in the scalar-isoscalar channel of the
SkP functional. It has been shown that when performing
high-accuracy Hartree-Fock calculations (HF) of doubly-
magic nuclei, the system converges towards an unphysical
configuration where protons are separated from neutrons. This
observation has also been confirmed by RPA calculations in
finite nuclei [17]. Another recent example of instability was
found by Hellemans et al. [18] in the vector channel of several
Skyrme functionals. They have performed cranked-HFB cal-
culations in 194Hg and shown that, for particular values of the
time-odd coupling constants, the system can spontaneously
polarize.
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To improve the existing functionals, it is therefore manda-
tory to find a tool which is able to detect these instabilities
in all scalar (vector) and isoscalar (isovector) channels. It has
already been demonstrated by Lesinski et al. [16] that the
linear response (LR) formalism applied to the Skyrme energy
functional could be used to predict the appearance of some
finite-size instabilities in nuclei. However, only the central
part of the Skyrme interaction was taken into account for the
building of the linear response. The same LR formalism for a
case of a Skyrme interaction including tensor and spin-orbit
terms was studied by Davesne et al. [19], hereafter denoted
as article I. In the present article, we extend the formalism of
article I by expressing our results in terms of coupling constants
of a general Skyrme functional. The main goal is actually to
investigate the role of odd-power sum rules [20] and show
that they can be used as a simple and very powerful tool to
detect instabilities in infinite symmetric matter. In particular
we give the explicit expression of the inverse sum rule M−1 and
demonstrate that a pole in the response function corresponds to
a zero in the denominator of the inverse sum rules. This greatly
simplifies the process of pole detection since we just have
to find the roots of a real function. A more detailed analysis
concerning the correspondence between finite-size instabilities
in finite nuclei and infinite matter will be the subject of a
forthcoming article [21].

This work is organized as follows: in Sec. II we summarize
the different components of the EDF and recall the main steps
of the LR formalism in nuclear matter presented in article I
[19]. In particular we give explicit expressions of the RPA
responses in terms of the coupling constants of the Skyrme
functional. We also establish the expressions of the first odd
moments of the strength function in each channel. In Sec. III,
we present the results concerning the detection of instabilities,
and for completeness we also show the resulting Landau
parameters. Further possible developments are discussed in
the conclusion.

II. LINEAR RESPONSE

A. Response functions and energy density functional

The response functions χ (S,M,I )(ω, q) that we are interested
in are formally defined as the response of the infinite medium
to external probes of the type Q̂(S,M,I ) = ∑

j eiq·rj �
(S,M,I )
j ,

where S (M) is the spin (its projection along the z axis),
I is the isospin, and the operators �

(S,M,I )
j are given in

Table I. Following the notation of Garcia-Recio et al. [22], we

TABLE I. Operators used in each (S, M, I ) channel. Columns
3 and 4 give the central and tensor contributions to the EWSR
respectively. σ 0

i , σ±1
i (τi respectively) are the standard components

of the vector σ i defined as σ 0
i = σ z

i and σ±1
i = ∓(σ x

i ± iσ
y

i )/
√

2.

(S,M, I ) �
(S,M,I )
i α(S,M,I ) α(S,M,I )

(central) (tensor)

(0, 0, 0) 1 0 0
(0, 0, 1) τ 0

i Aτ
0 − Aτ

1 0

(1, 0, 0) σ 0
i Aτ

0 − AT
0 −BT

0 − BF
0

(1,±1, 0) σ±1
i Aτ

0 − AT
0 −BT

0

(1, 0, 1) σ 0
i τ 0

i Aτ
0 − AT

1 −BT
1 − BF

1

(1,±1, 1) σ±1
i τ 0

i Aτ
0 − AT

1 −BT
1

have

χ (S,M,I )(ω, q) = 1

V

∑
n

|〈n|Q̂(S,M,I )|0〉|2

×
(

1

ω − En + iη
+ 1

−ω − En + iη

)
, (1)

where ω and q are respectively the transferred energy and
momentum, the sum is on all excited states |n〉 with energy
En, and V is a quantification volume (see Ref. [23] for a
detailed discussion). Without any residual particle-hole (p-h)
interaction, the above expression reduces to the usual Lindhard
function. Switching the p-h interaction on, the response func-
tions can be determined with the use of the RPA formalism.
Such calculations have already been published in the literature
with Skyrme pointlike interactions which incorporate only
the central part [16,22] or the spin-orbit contribution [24] as
well. More recently, in article I, we generalized the previous
calculations by taking into account the tensor part, which
is revealed to be very important quantitatively. However, in
article I we expressed the response functions with respect to the
usual coupling constants of the Skyrme effective interaction:
{ti , xi}, i = 0, . . . , 3, W0, and te, to respectively for the central,
the spin-orbit, and the tensor parts. In the present article we
write them with an energy density functional (EDF) as a
starting point. This has the great advantage of being more
general in the sense that all the coefficients can be now
considered to be independent of each other. The parameter
space is thus enlarged, allowing for instance more flexibility
in the description of nuclei. In the context of forthcoming
articles on instabilities, it will allow us to study precisely the
role of each of these coefficients. To be specific, we consider
hereafter the following EDF (see article I for notations):

ESkyrme =
∫

d3r
∑
t=0,1

{
C

ρ
t [ρ0] ρ2

t + Cs
t [ρ0] s2

t + C
�ρ
t ρt�ρt + C∇s

t (∇ · st )
2 + C�s

t st · �st + Cτ
t

(
ρtτt − j2

t

)
+CT

t

(
st · Tt −

z∑
μ,ν=x

Jt,μνJt,μν

)
+ CF

t

[
st · Ft − 1

2

(
z∑

μ=x

Jt,μμ

)2

− 1

2

z∑
μ,ν=x

Jt,μνJt,νμ

]

+C∇·J
t (ρt∇ · Jt + st · ∇ × jt )

}
. (2)
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When the EDF is derived from a Skyrme interaction, the
coupling constants can be reexpressed, following the notation
of article I, in terms of At and Bt coefficients. The coupling
constants written At depend on the central and spin-orbit
part of the interaction (i.e., C

ρ
t = A

ρ
t , C

�ρ
t = A

�ρ
t , Cτ

t = Aτ
t ,

Cs
t = As

t , and C∇J
t = A∇J

t ) and the ones written Bt depend
on the tensor part (i.e., C∇s

t = B∇s
t and CF

t = BF
t ), but can

also contribute to the central part of the interaction (i.e.,
CT

t = AT
t + BT

t and C�s
t = A�s

t + B�s
t ). The expressions of

the coupling constants as functions of the parameters of the
interaction can be found in article I. The procedure used to
obtain the residual interaction is then no longer based, as in
article I, on the determination of the matrix elements of the

particle-hole interaction from the Skyrme one, but on the direct
double derivation with respect to the one-body density of the
EDF. The results concerning the residual interaction coming
from the tensor part are summarized in Appendix A while
the response functions for infinite nuclear matter are explicitly
written in Appendix B.

For completeness we also give the Landau parameters. To
obtain their expression, we have to take the limit q → 0 and
q1,2 → kF ,

V Landau
p-h (kF , kF ) = lim

q→0,q1,2→kF

Vp-h(q, q1, q2). (3)

According to Refs. [15,25], the most general form of the
residual interaction in the Landau limit is

V Landau
p-h = δ(r1 − r2)N−1

0

∑
�

{
F� + F ′

�τ̂a ◦ τ̂b + (G� + G′
�τ̂a ◦ τ̂b)σ a · σ b + k2

12

k2
F

H�Sab + k2
12

k2
F

H ′
�Sabτ̂a ◦ τ̂b

}
P�(cos θ ) (4)

where N−1
0 = h̄2π2

2m∗kF
is the usual normalization factor given here for the symmetric infinite nuclear matter, k12 = (k1 − k2), and

Sab = 3(q̂12 · σ a)(q̂12 · σ b) − σ a · σ b, where the symbol q̂12 indicates a vector of unitary length. One can express the product
of momentum and Pauli matrices as (k̂12 · σ a)(k̂12 · σ b) = 1

3Sab + 1
3σ a · σ b. It is important to notice that the H coefficients are

functions of cos θ and are only related to the tensor part of the interaction [15,26–29]. In our case the residual interaction in the
Landau limit reads

V Landau
p-h (kF , kF ) = 1

4
W

(0,0)
1,L + 1

4
W

(0,1)
1,L τ̂a ◦ τ̂b + 1

4
W

(1,0)
1,L σ a · σ b + 1

4
W

(1,1)
1,L σ a · σ b τ̂a ◦ τ̂b

+ 1

4

[
W

(0,0)
2,L + W

(0,1)
2,L τ̂a ◦ τ̂b + W

(1,0)
2,L σ a · σ b + W

(1,1)
2,L σ a · σ b

] [
2k2

F − 2k2
F cos θ

]
+ 1

3

[
k2
F CF

0 + k2
F CF

1 τ̂a ◦ τ̂b

] k2
12

k2
F

Sab, (5)

where the W
(S,I )
j,L with j = 1, 2 coefficients are given in

Appendix C. We checked that in the case of a Skyrme force
we get the same values as in Ref. [15].

B. Sum rules and moments of the strength function

It should be noted that the quantity of interest is not
directly the response function itself discussed in the previous
paragraph, but merely S(α)(q, ω), usually called the dynamical
structure function, which is, at zero temperature, proportional
to the imaginary part of the response function at positive
energies:

S(α)(q, ω) = − 1

π
Im χ (α)(q, ω) . (6)

On the other side, the k moments, which are defined as
moments per particle in infinite matter, read

M
(α)
k (q) =

∑
n

Ek
n|〈n|Q̂(α)|0〉|2. (7)

After some manipulation we can express them as an integral
of the dynamical structure function S(α)(q, ω) shown in

Eq. (6) as

M
(α)
k (q) =

∫ ∞

0
dω ωk S(α)(q, ω). (8)

Moreover, because of its intrinsic analytic properties, the
response function satisfies a dispersion relation. As a con-
sequence, moments can be obtained analytically through
appropriate expansions in power series of ω [22]:

(i) For ω → +∞, the positive odd-order moments read

χ (α)(ω, q) ≈ 2ρ

+∞∑
p=0

(ω)−(2p+2)M
(α)
2p+1(q), (9)

and can be used for the calculation of the M1 energy
weighted sum rule (EWSR) and the M3 cubic energy
weighted sum rule (CEWSR).

(ii) For ω → 0, the negative odd-order moments can be
extracted as

χ (α)(ω, q) ≈ −2ρ

+∞∑
p=0

(ω)2pM
(α)
−(2p+1)(q), (10)

which will be used for the M−1 inverse energy weighted
sum rule (IEWSR).
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In the above formula ρ represents the density of the system.
Note that, in the above equations, the imaginary part of
χ (α)(q, ω) cancels out exactly in the limit (ω → 0 and ω →
∞) (see Ref. [22] for details). The situation is the following.
Ee can obtain M

(α)
k in two ways: the first one [Eq. (8)] is

purely numerical and implies the whole response function; the
second one is analytical (see the next paragraph for the explicit
expression) and originates from Eq. (9) [or Eq. (10)], which is
itself a direct consequence of the dispersion relation satisfied
by the response function. Both should coincide with very high
accuracy. When this is not the case, it means that the dispersion
relation is no longer valid or, in other words, that a pole occurs.
Thus, a discrepancy between the different expressions for the
sum rules will be interpreted as the presence of a pole.

We shall now explore the details and discuss separately the
three important sum rules M1, M3, and M−1. Since the other
cases can be obtained by switching off the appropriate coupling
constants, the general case with the tensor will be considered
only. As stated previously, all the expressions given below for
these sum rules are valid for a general Skyrme EDF given in
Eq. (2) in which all the coupling constants could be considered
to be independent of each other.

1. Energy weighted sum rule

Making the appropriate asymptotic expansion of the re-
sponse functions written in Appendix B, we obtain for each
channel

M
(0,I)
1 = q2

2m∗

[
1 − m∗ρ

2
W

(0,I)
2

]
, (11)

M
(1,0,I)
1 = q2

2m∗

[
1 − m∗ρ

2

(
W

(1,I)
2 + 4BT

I + 4BF
I

)]
, (12)

M
(1,±1,I)
1 = q2

2m∗

[
1 − m∗ρ

2

(
W

(1,I)
2 + 4BT

I

)]
. (13)

If one now takes into account the expression of the isoscalar
effective mass, i.e., m/m∗ = 1 + 2mρCτ

0 , one can rewrite the

expressions of the EWSR in terms of the coupling constants
of the Skyrme EDF as

M
(S,M,I )
1 = q2

2m
+ q2 ρ α(S,M,I ), (14)

where α(S,M,I ) is a sum of contributions corresponding to
each part of the Skyrme EDF that is considered; the central
and tensor parts from Table I for instance. The free part
q2

2m
corresponds to the kinetic part of the Hamiltonian since

only the gradient terms of the interaction contribute to the
corresponding α(S,M,I ) coefficient. Note that the spin-orbit part
of the Skyrme interaction does not contribute to the EWSR.

In self-consistent RPA calculations, i.e., when the same
effective interaction generates the HF mean field and also
produces the residual interaction, positive odd-order RPA sum
rules can be calculated through the Thouless theorem by taking
the expectation values of appropriate operators on the HF
ground state (see for example Bohigas et al. [30] and Lipparini
et al. [20] for the details of this technique). For the M

(S,M,I )
1

EWSR one can write

M
(S,M,I )
1 = 1

2 〈0|[Q̂(S,M,I ), [H, Q̂(S,M,I )]]|0〉, (15)

calculated for each (α) channel with the corresponding
operator Q̂(S,M,I ) (see Table I) and with the Hamiltonian H

built up with the zero-range Skyrme effective interaction. We
have checked, after some tedious calculations, that this result
coincides exactly, as it should, with that obtained with the
asymptotic expansion of the response. Note that the double
commutator technique [Eq. (15)] uses the full Hamiltonian H

of the system with a Skyrme interaction, and it cannot be used
with a generalized EDF which does not derive from a Skyrme
interaction.

2. Cubic energy weighted sum rule

Making the expansions of the responses (see Appendix B),
we obtain successively for each channel

M
(0,I )
3 = q4

(
k2
F

2m∗3

)[
1

2
m∗ρW

(0,I )
2 − 1

]2{3

5
+ k2 + 1

2
k2m∗ρW

(0,I )
2 + 1

2

(
m∗kF

3π2

)(
W

(0,I )
1 + 2k2

F W
(0,I )
2

)}
, (16)

M
(1,0,I )
3 = q4

(
k2
F

5m∗

)[
ρBF

I

]2 [
m∗ρ

(
W

(1,I )
2 + 4BT

I + 4BF
I

) − 1
] + q4

(
k2
F

2m∗3

)[
1

2
m∗ρ

(
W

(1,I )
2 + 4BT

I + 4BF
I

) − 1

]2

×
{

3

5
+ k2 + 6

5
m∗ρBF

I + 1

2
m∗ρk2

(
W

(1,I )
2 + 4BT

I

) + 1

2

(
m∗kF

3π2

)[
W̃

(1,0,I )
1 + 2k2

F

(
W

(1,I )
2 + 4BT

I

)]}
, (17)

W̃
(1,0,I )
1 = W

(1,I )
1 + 8q2

(
B∇s

I − B�s
I

) − 2q2BT
I ,

M
(1,±1,I )
3 = q4

(
k2
F

10m∗

)[
ρBF

I

]2[
m∗ρ

(
W

(1,I )
2 + 4BT

I

) − 1
] + q4

(
k2
F

2m∗3

)[
1

2
m∗ρ

(
W

(1,I )
2 + 4BT

I

) − 1

]2

×
{

3

5
+ k2 + 2

5
m∗ρBF

I + 1

2
k2m∗ρ

(
W

(1,I )
2 + 4BT

I

) + 1

2

(
m∗kF

3π2

)[
W̃

(1,±1,I )
1 + 2k2

F

(
W

(1,I )
2 + 4BT

I

)]}
, (18)

W̃
(1,±1,I )
1 = W

(1,I )
1 − (

8B�s
I + 2BT

I

)
q2,

with the W
(S,I )
i coefficients given in Appendix C and the usual relations ρ = 2k3

F /(3π2) and k = q

2kF
.
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In principle the M
(S,M,I )
3 CEWSR can be also obtained analytically from the commutator machinery briefly described in the

previous paragraph, but the operator to be considered involves now a triple commutator, i.e., three times the interaction. The
calculation becomes then very tedious and has been checked only for the central part of the Skyrme interaction [31], which gives
a CEWSR that does not depend on the value of spin projection M ,

M
(S,M,I )
3 = q4

(
k2
F

2m∗3

)[
1

2
m∗ρW

(S,I )
2 − 1

]2{3

5
+ k2 + 1

2
k2m∗ρW

(S,I )
2 + 1

2

(
m∗kF

3π2

)[
W

(S,I )
1 + 2k2

F W
(S,I )
2

]}
.

3. Inverse energy weighted sum rule

This moment cannot be obtained through the commutator machinery but only using appropriate constrained Hartree-Fock
calculations through the well known dielectric theorem [30].

Thus, we use again the appropriate expansion of the expressions given in Appendix B to obtain finally

M
(0,I )
−1 = f (k)

(
3m∗

2k2
F

) {
−48

[
m∗ρkC∇J

I

]2 f (k)[1 + 3(1 − k2)f (k)]

8 − m∗ρ[1 + 3(1 − k2)f (k)]
[
W

(1,I )
2 + 4BT

I − 2BF
I

]
− 3

64

[
m∗ρf (k)(1 − k2)W (0,I )

2

]2 +
[

1 + 3

8
m∗ρW

(0,I )
2

]2

+ f (k)

[(
m∗kF

2π2

)
W

(0,I )
1 + 3

4
m∗ρ(1 − k2)W (0,I )

2 − 1

32
(3 + 13k2)

(
m∗ρW

(0,I )
2

)2
] }−1

, (19)

M
(1,0,I )
−1 = f (k)

(
3m∗

2k2
F

) {[
1 + 1

8
m∗ρ

(
3W

1,I
2 + 12BT

I + 8BF
I

)]2

− 3

64
[f (k)(k2 − 1)m∗ρ]2

[
W

1,I
2 + 4BT

I

]2

+ f (k)

[(
m∗kF

2π2

)
W̃

(1,0,I )
1 + 3

4
m∗ρ(1 − k2)

(
W

1,I
2 + 4BT

I

) − 3

2
k2m∗ρ

(
4BF

I

)
− 1

32
m∗2ρ2

(
96(1 + k2)

[
BF

I

]2 + 24(1 + 3k2)BF
I

(
W

1,I
2 + 4BT

I

) + (
3 + 13k2

)(
W

1,I
2 + 4BT

I

)2)]}−1

, (20)

M
(1,±1,I)
−1 = f (k)

(
3m∗

2k2
F

){
−24

[
km∗ρC∇J

I

]2 f (k)[1 + 3(1 − k2)f (k)]

8 − m∗ρ[1 + 3(1 − k2)f (k)]W (0,I )
2

+
[

1 + 3

8
m∗ρ

(
W

1,I
2 + 4BT

I + 2

3
BF

I

)]2

− 3

64
[m∗ρf (k)(1 − k2)]2

[
20

[
BF

I

]2 + 4BF
I

(
W

1,I
2 + 4BT

I

) + (
W

1,I
2 + 4BT

I

)2]
+ f (k)

[(
m∗kF

2π2

)
W̃

(1,±1,I )
1 + 3

4
m∗ρ(1 − k2)

(
2BF

I + W
1,I
2 + 4BT

I

)
− 1

32
m∗2ρ2(4

[
BF

I

]2
(9 − k2) + 16k2BF

I

(
W

1,I
2 + 4BT

I

) + (3 + 13k2)
(
W

1,I
2 + 4BT

I

)2)]}−1

, (21)

with f (k) = 1
2 [1 + 1

2k
(1 − k2) ln( k+1

k−1 )]. Since the instabilities we are looking for are related to poles of the response functions
at zero energies, this sum rule will be shown in the next part to be of fundamental importance for the detection and therefore
prediction of instabilities. Since, in the definition of M−1, the contribution of the low-energy part is more important because of
the factor 1/ω in the integrand, this sum rule is more sensitive to the poles than the others.

III. RESULTS

A. Response functions

We have already discussed in article I the fact that the
tensor may contribute significantly to the response functions.
Here, we summarize several related aspects in view of the
forthcoming discussion about instabilities.

Quite generally, in S = 0 channel, the tensor terms do not
affect qualitatively the response; all tests performed using TIJ
tensor interactions discussed in Ref. [32] exhibit the same
qualitative behavior. The situation is quite different in S = 1
channels; the effect from the tensor terms is large whatever the

value of the spin projection M is. Actually, depending on the
values of the transferred momentum q and the density ρ, the
response functions can even increase significantly and diverge
for finite q for a certain critical density ρc. As illustrated in
Fig. 1, one can typically observe two types of extremes
phenomena: the first one (left panel) corresponds to an
accumulation of strength at finite energy (and low transfer
momentum) and is related to the zero-sound mode, whereas
the second one (right panel) is associated with a pole at
zero energy (and finite momentum). Although a one-to-one
correspondence between infinite matter and nuclei is obviously
not trivial, preliminary tests seem to show that the latter
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FIG. 1. (Color online) Nuclear response function for two given values of the transferred momentum q (in fm−1) for the T44 tensor
parametrization. On the left (a) we show the response function in the channel (1, 1, 1) with the discrete p-h transition corresponding to the zero
sound. On the right (b) we show the response function in the channel (1, 1, 0) in the proximity of a pole. ρsat is the saturation density of the system.

divergence actually reveals the presence of instabilities ob-
served in nuclei [16], with the appearance of domains with typ-
ical size of the order of 2π/q [33]. The center of a nucleus ef-
fectively explores, because of fluctuations, not only the satura-
tion density but also some larger values for which one may ob-
serve a divergence of the response functions. In the following,
we will concentrate ourselves on the detection of such poles.

B. Sum rules

1. EWSR

As an example, Fig. 2 shows the EWSR calculated for the
equilibrium density, for the T44 tensor parametrization and
for all six (S,M, I ) channels. In each case the result obtained
with the integral [Eq. (8)] is compared to the exact calculation
[Eqs. (11)–(13)]. As expected, both results coincide in most
cases, satisfying then the sum rule. There remains an exception
for the two (1, 0, 1) and (1, 1, 0) channels where the integral
calculation violates the sum rule. This is actually due to the
presence of a pole (indicated by an arrow on Fig. 2) in the

0

200

400

0

200

400

M
1 [

M
eV

]

0 1 2 3 4
q [fm

-1
]

0

200

400

0 1 2 3 4
q [fm

-1
]

S=0 M=0 I=0

S=1 M=0 I=0

S=1 M=1 I=0

S=0 M=0 I=1

S=1 M=0 I=1

S=1 M=1 I=1
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(c) (d)

(e) (f)

FIG. 2. (Color online) EWSR (in MeV) as a function of the
transferred momentum q (in fm−1) for the T44 tensor parametrization.
The red dashed and black solid lines correspond to the integral
[Eq. (8)] and analytical expressions [Eqs. (11)–(13)], respectively.
Results are shown for the saturation density and for each (S,M, I )
channel.

strength function at q � 1.5 fm−1 for the (1, 1, 0) channel
(see caption of Fig. 1 regarding the right panel) and at q �
2.2 fm−1 for the (1, 0, 1) channel. These poles, which are
clearly exhibited in the IEWSR (see below), make the sum
rules unphysical at and above the q value of the pole.

2. CEWSR

For the same example and for the same conditions, Fig. 3
shows the CEWSR. As for the EWSR we observe a perfect
correspondence between the two calculations of the sum rule:
integral or analytical expression [see Eqs. (16)–(18)] except
in the channels which exhibit a pole in the strength function.
The same remarks as for the EWSR apply. Due to the cubic
power of the energy weight in this sum rule, the violation of the
concerned sum rules does not appear very clearly in the figures.

3. IEWSR

For the same example and for the same conditions,
Fig. 4 shows the IEWSR. As for the EWSR we observe a
good correspondence between the integral and the analytical
expressions [see Eqs. (19)–(21)] except when there is a pole in
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FIG. 3. (Color online) CEWSR (in MeV3) as a function of the
transferred momentum q (in fm−1) for the T44 tensor parametrization.
See Fig. 2 for other details.
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FIG. 4. (Color online) IEWSR (in MeV−1) as a function of the
transferred momentum q (in fm−1) for the T44 tensor parametrization.
Contrary to Fig. 2 we modified the order of the panel for reasons of
clarity.

the strength function. Moreover the discrepancy in that case is
very sharp, so that the signature of the pole is very clear. This
is due to the fact that for IEWSR this pole is also present in the
denominator of the analytical expressions [see Eqs. (19)–(21)].
Thus, we show here that there is unique correspondence
between the pole observed in the strength function and
the pole of the IEWSR. An immediate consequence is that
Eqs. (19)–(21) can be used in a fit protocol in order to test
directly the occurrence of instabilities.

It should also be noticed (see the inset of Fig. 4) that a small
amount of strength is missing at low q in channels (1, 0, 0)
and (1, 1, 1). This again corresponds to the zero-sound mode
already shown in left panel of Fig. 1, and will not be discussed
here.

C. Instabilities

When the response function exhibits a pole at zero energy in
a given channel, one can suspect that an unphysical instability
will occur in finite nuclei if the corresponding critical density
is close to the saturation density. The goal of this part is thus to
show for typical Skyrme parametrizations whether they lead
to such problem; that is, the appearance of an unphysical
instability when the critical density ρc calculated using the
IEWSR is close to the saturation density. Since we have shown
that there is a direct connection between the pole (when it does
exist) observed in the response function and the pole observed
in the M−1 sum rule, it is easy to plot the critical densities ρc

as a function of q by simply solving 1/M−1(ρc, q) = 0 in each
channel. For example, Fig. 5 shows the behavior of the critical
density for each (S,M, I ) channel for the interaction T44. As
a guide to the eye, the saturation density ρsat is also plotted.
As claimed, one can clearly see that one exactly obtains the
same results if one considers the pole of the M−1 sum rule
(open circles) or the pole of the corresponding RPA responses
(dashed lines). For this particular parametrization, instabilities
appear both in the (1, 0, 0) and (1, 1, 0) channels at ρc = ρsat.
For the (0,0) channel, we can also see in Fig. 5 the well known
spinodal instability. This spinodal instability is viewed here as
a two-branch curve corresponding to the two critical densities

0 1 2 3 4
q [fm

-1
]

0

0.1

0.2

0.3

0.4

0.5

ρ c [
fm

-3
] S=0 M=0 I=0

S=0 M=0 I=1
S=1 M=0 I=0
S=1 M=1 I=0
S=1 M=1 I=1

FIG. 5. (Color online) Critical densities (in fm−3) as functions
of the transferred momentum q (in fm−1) for the T44 tensor
parametrization. Open circles show the critical densities extracted
from the pole of the M−1 moment while the dashed lines correspond
to the pole of the corresponding strength function.

observed in a standard plot of this spinodal curve. These two
branches meet at the critical point. This fact is due to the C

�ρ

0
coupling constant and it can be viewed as a surface effect.
Without this term in the functional the two branches of the
spinodal curve would turn into two parallel lines [34–37].

Figure 6 displays the critical densities for some usual
Skyrme EDFs. All the Skyrme EDFs exhibit the same physical
spinodal instability but the behaviors of the critical densities
in the other channels are very different and depend strongly of
the parametrization under consideration.

Similarly Fig. 7 shows the evolution of critical densities
following two series of parametrizations with tensor couplings
T11–T16 and T11–T61 when one considers the CJ

0 -CJ
1 plane

of tensor coupling constants studied by Lesinski et al. [32]. In
this case we only show the S = 1 channel for the different TIJ
forces, showing that they all are unstable against spontaneous
polarization of finite-size domains as already observed by
Hellelmans et al. [18].

D. Landau parameters

Another important constraint concerning stability of a
parametrization is given by the Landau parameters: since they
represent the short range of the interaction, they have to be
positive. The Fl and F ′

l spin-independent Landau parameters
must obey to the stability condition

1 + Fl

2l + 1
> 0. (22)

Remember that the l = 0 Landau parameters can be related to
the second derivative of the EDF with respect to I, Iτ , Iσ ,
and Iστ (see Ref. [13] for details), for the pertinent variables
of each (S, I ) channel. Equation (22) represents thus the
condition that the concavity of the equation of state (EoS)
at the equilibrium must be positive in each (S, I ) channel. The
result is represented in Fig. 8 for some Skyrme interactions.
Similarly the l = 1 Landau parameters can be related to the
effective mass in each (S, I ) channel, and Eq. (22) requires
that each effective mass be positive without any pole. Similar
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FIG. 6. (Color online) Critical densities, ρc (in fm−3), as functions of the transferred momentum q (in fm−1) for some usual Skyrme EDFs:
SkP [38], SkM* [39], SGII [14], SLy4 [40–42], BSk8 [43], and SkO [44]. The horizontal dashed-dotted line represents the saturation density
of the system.

conditions exist for Gl,G
′
l spin-dependent Landau parameters.

They are shown on Fig. 9. In the presence of a tensor interaction
a new additional condition that prevents the deformation of the
Fermi sphere has to be satisfied. Following the derivation of
Brown et al. [29] we have

1 + 1

3
G1 − 10

3
H0 > 0, (23)

1 + 1

3
G1 + 5

3
H0 > 0, (24)

1 + 1

3
G1 − 1

3
H0 > 0, (25)(

1 + G0

2

)
+ 1

2

√
G2

0 + 8H 2
0 > 0, (26)(

1 + G0

2

)
− 1

2

√
G2

0 + 8H 2
0 > 0, (27)

and similarly for G′
0 and H ′

0. In Fig. 10 we show the left-hand
side of Eqs. (23)–(27). This result is consistent with the results
presented by Cao et al. [15], but generalized here for the case
of a Skyrme functional.

IV. SUMMARY AND CONCLUSIONS

In this article, we have presented the analytic contribution
arising from the tensor terms to the RPA response functions
with a general EDF as a starting point. From these response
functions, we derived the Landau parameters and we focused
on instabilities at zero energy and finite transfer momentum.
In particular, we have shown that a divergence of the
response structure functions χ (α)(q, ω) indicates a finite-size
instability in infinite matter. Moreover this instability can
be detected by simply using the analytical IEWSR, which
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FIG. 7. (Color online) Critical densities, ρc (in fm−3), in the S = 1 channels as functions of the transferred momentum q (in fm−1) for the
T11 to T16 [top four panels (a)–(d)] and for the T11 to T61 [bottom four panels (e)–(h)] tensor parametrizations. The horizontal dashed-dotted
line represents the saturation density of the system.

is a great advantage for future applications. At this point,
one should note that a systematic study of the critical
densities is in progress in order to determine whether the
link between the divergences of χ (α)(q, ω) and the instabilities
encountered in nuclei at the Hartree-Fock approximation is
robust.

Another important point under study is the identification,
directly from the Skyrme energy functional, of the contribution
of each term of the EDF in the response functions. Such a
study would enable us to put some constraints on the different
constants in order to avoid instabilities. In the same spirit,
a detailed study of sum rules can enlighten the contribution
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FIG. 8. (Color online) � = 0 Landau parameters as a function of the ratio ρ/ρsat, where ρ is the density of the system and ρsat is the
saturation density, for some usual Skyrme parametrizations. The T44 tensor parametrization does not appear on the G0, G

′
0 [panels (c) and (d)]

plots, since in that case the inequalities that should be satisfied in the presence of a tensor interaction are Eqs. (23)–(27).
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FIG. 9. (Color online) � = 1 Landau parameters as a function of the ratio ρ/ρsat, where ρ is the density of the system and ρsat is the
saturation density, for some usual Skyrme parametrizations. See Fig. 8 for other details.
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FIG. 10. (Color online) On the left panel (a) we show the left-hand side of Eqs. (23)–(27), while on the right panel (b), adopting the same
color code, the same but replacing in Eqs. (23)–(27) the terms G0, H0 with G′

0, H
′
0. The T44 tensor parametrization is considered here. See text

for details.

of the tensor for various physical situations (see for instance
Ref. [20]). Finally, applications to pure neutron matter are of
great importance (see for instance Refs. [45–57]) and will be
the subject of a forthcoming article in preparation. In that case,
the above formulas are no longer directly usable and have been
adapted to that specific case.
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APPENDIX A: PARTICLE-HOLE MATRIX ELEMENTS
OF THE ZERO-RANGE TENSOR PART OF THE

INTERACTION

Following the notation adopted in article I, we give in
Table II the values of the particle-hole residual interaction
for the tensor part of the functional.

APPENDIX B: RPA NUCLEAR RESPONSES

We recall here the nuclear responses already given in article I but rewritten here in terms of the coupling constants of the
Skyrme EDF. We keep in mind from article I the definitions of these coupling constants in terms of the parameters of the Skyrme
interaction.

TABLE II. Contribution of the EDF tensor part to the residual interaction in terms of the BI coupling constants. For the sake of simplicity we
have introduced the notation Ki,j = [(k12)i(k12)j ], where (k12)(1)

M is defined in Eq. (9) of article I. The term δSS′δS1δII ′δQQ′ is implicit everywhere.

M ′ = 1 M ′ = 0 M ′ = −1

M = 1 −2q2 (BT
I + 4B�s

I )
+4 BT

I K0,0 −4 BF
I K−1,0 −4 BF

I K−1,−1

−4 (2BT
I + BF

I ) K1,−1

M = 0 −2(BT
I − 4B∇s

I + 4B�s
I + BF

I )q2

4 BF
I K0,1 +4 (BT

I + BF
I ) K0,0 4 BF

I K−1,0

−8 BT
I K1,−1

M = −1 −2q2 (BT
I + 4B�s

I )
−4 BF

I K1,1 −4 BF
I K1,0 +4 BT

I K0,0

−4 (2BT
I + BF

I ) K1,−1
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(i) For the S = 0 channel
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]2

− ˜̃W (1,±1,I )

1 χ0 + [
W

(1,I )
2 + 4BT

I + 2BF
I

]{1

2
q2

[
1 − m∗ρBF

I

]
χ0 − 2k2

F χ2 − m∗ρk2
F BF

I (χ0 − χ2)

}

+ [
W

(1,I )
2 + 4BT

I + 2BF
I

]2
{
k4
F χ2

2 − k4
F χ0χ4 + m∗2ω2χ2

0 − 1

4
m∗ρq2χ0

}

+ 2χ0

(
m∗ω
q

)2 [
W

(1,I )
2 + 4BT

I

][
1 + 1

4m∗ρX(1,±1,I )
]

1 − 1
2m∗ρ

[
W

(1,I )
2 + 4BT

I − 1
2X(1,±1,I )

] , (B4)

where we have used

˜̃W (1,0,I )

1 = −[
W

(1,I )
1 + 8q2

(
B∇s

I − B�s
I

)] + 2q2BT
I +

[
2q2 − 8

(
m∗ω
q

)2]
BF

I +
[

4k2
F + q2 − 4

(
m∗ω
q

)2]
m∗ρ

[
BF

I

]2
, (B5)

˜̃W (1,±1,I )

1 = W
(1,I )
1 − 2q2

(
4B�s

I + BT
I

) + 8q4
[
C∇J

I

]2 (β2 − β3)

1 + q2(β2 − β3)W (0,I )
2

− 4

(
m∗ω
q

)2

BF
I

+ [
BF

I

]2
{
q2m∗ρ + 1

4

[
q2 − 4

(
m∗ω
q

)2]2

χ0 − 2k2
F

[
q2 + 4

(
m∗ω
q

)2]
χ2 + 4k4

F χ4

}
. (B6)

The X(1,M,I ) coefficients occurring in the previous expressions of the S = 1 response functions are defined in Appendix C, while
the momenta βi were already defined in Appendix D of article I.

APPENDIX C: THE W (α)
i , W (α)

i,L , AND X (α) COEFFICIENTS

In order to simplify all the written formulas in the presence of a tensor part in the Skyrme interaction, the W
(S,I )
1 and W

(S,I )
2

coefficients have been defined as

1
4W

(0,0)
1 = 2A

ρ0
0 + (2 + γ )(1 + γ )Aργ

0 ργ − [
2A

�ρ

0 + 1
2Aτ

0

]
q2, 1

4W
(0,1)
1 = 2A

ρ0
1 + 2A

ρ,γ

1 ργ − [
2A

�ρ

1 + 1
2Aτ

1

]
q2,

1
4W

(1,0)
1 = 2A

s,0
0 + 2A

sγ

0 ργ − [
2A�s

0 + 1
2AT

0

]
q2, 1

4W
(1,1)
1 = 2A

s,0
1 + 2A

sγ

1 ργ − [
2A�s

1 + 1
2AT

1

]
q2, 1

4W
(0,0)
2 = Aτ

0,

1
4W

(0,1)
2 = Aτ

1,
1
4W

(1,0)
2 = AT

0 , 1
4W

(1,1)
2 = AT

1 .
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For the residual interaction of a general Skyrme functional in the Landau limit [see Eq. (5)] we define the W
(S,I )
1,L and W

(S,I )
2,L

coefficients as
1
4W

(0,0)
1,L = 2C

ρ0
0 + (2 + γ )(1 + γ )Cργ

0 ργ , 1
4W

(0,1)
1,L = 2C

ρ0
1 + 2C

ρ,γ

1 ργ , 1
4W

(1,0)
1,L = 2C

s,0
0 + 2C

sγ

0 ργ ,

1
4W

(1,1)
1,L = 2C

s,0
1 + 2C

sγ

1 ργ , 1
4W

(0,0)
2,L = Cτ

0 , 1
4W

(0,1)
2,L = Cτ

1 , 1
4W

(1,0)
2,L = CT

0 , 1
4W

(1,1)
2,L = CT

1 .

Similarly, the X(1,M,I ) coefficients can be written in terms of the EDF coupling constants as

X(1,0,I ) = 8 q2
[
BF

I

]2 β2 − β3

1 + q2(β2 − β3)
[
W

(1,I)
2 + 4BT

I + 6BF
I

] , X(1,±1,I ) = 8 q2
[
BF

I

]2 β2 − β3

1 + q2(β2 − β3)
[
W

(1,I)
2 + 4BT

I

] .
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N. Schunck, M. V. Stoitsov, and S. Wild, Phys. Rev. C 82,
024313 (2010).

[3] M. Kortelainen, J. McDonnell, W. Nazarewicz, P.-G. Reinhard,
J. Sarich, N. Schunck, M. V. Stoitsov, and S. M. Wild, Phys.
Rev. C 85, 024304 (2012).

[4] J. Meyer, Ann. Phys. Fr. 28, 1 (2003).
[5] L. M. Robledo, M. Baldo, P. Schuck, and X. Viñas, Phys. Rev.
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