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The mean values of a many-body Hamiltonian including a proton-neutron pairing term and matrix elements
of one-, two-, and four-body operators within a basis of particle-number-projected BCS states are analytically
expressed in terms of a single function Q(N ) depending on the number of particles, N . The function Q(N ) is
calculated using a recursion in N in which the shells and the BCS angles are kept the same for any iteration step.
An illustrative example is numerically considered in a restricted single-particle space. Some specific features
of the standard BCS, the projection after variation approach, and the variation after projection formalism are
pointed out.

DOI: 10.1103/PhysRevC.85.054314 PACS number(s): 21.30.Fe, 21.60.−n, 21.10.Pc

I. INTRODUCTION

Shortly after the theory of superconductivity [1,2] showed
up it has been realized [3] that such a formalism might work
also for nuclear systems, although the number of constituents is
relatively small. Many applications have been performed with
a single constant for the interaction strength of various paired
states. All calculations were based on the supposition that the
particle number is conserved only on average. Amazingly, the
pairing force and the emerging seniority scheme had been
introduced much earlier, by Racah [4]. A serious question
arose: namely, to what extent do particle number fluctuations
affect some physical observables? Attempting to answer such
a question many authors used a projected-particle-number
formalism. Two distinct calculations have been employed.
Occupation probabilities are determined first variationally with
a standard BCS wave function and then the components of a
given number of nucleons are projected out. The resulting pro-
cedure is conventionally called the particle-number-projected
BCS and as we said already the projection is performed
after variation. The second set of calculations perform the
variation after projection. Particle number projection had been
first considered by Bayman [5]. There the averages of the
Hamiltonian, including the mean field and pairing terms, and
of the particle number operator are expressed as functions
of some residuum integrals which were estimated by the
saddle-point method. The saddle point approximately satisfies
an equation which is similar to the particle number equation
of the BCS formalism. Under these conditions the Euler-
Lagrange equations obtained with a particle-number-projected
variational state are identical to the standard BCS equations.
The projection procedure was improved in Refs. [6,7]. The
residuum integrals were calculated by the saddle-point method
with the integral path chosen such that it crosses the saddle
point on a line of steepest descent. Moreover, two-dimensional
recursion formulas for the residuum integrals were provided.

An extensive analysis of ordinary BCS, PBCS (projected
BCS with projection after variation), and FBCS (variation
after projection) is performed within a two-level pairing
model [7].

Another feature which was considered referred to the
centrifugal Coriolis antipairing effect. The Coriolis interaction
tends to decrease the pairing strength and at a critical angular
frequency the gap equation has only a trivial solution. In
Refs. [8,10] it is found that crossing the critical point the
rotational energy exhibits a discontinuity, which, in fact, is
not confirmed by the FBCS calculations of Ref. [7]. Clearly
the occupation probabilities emerging from a FBCS formalism
are different from those associated with ordinary BCS theory,
the difference being a function of the pairing interaction
strength. The idea of particle number projection was extended
to angular momentum. Indeed, the cranking model with a
particle-number-projected wave function was considered [9]
to investigate the back-bending phenomena. The simultaneous
projection of particle number and angular momentum from a
pairing-correlated many-body system has been considered in
Ref. [11] for light nuclei. Many papers have been devoted to the
issues mentioned above [12], focusing on explaining properties
such as gap parameter, moment of inertia, spectroscopic
factors, pairing versus nuclear deformation, and angular
momentum.

The field of the pairing interaction has been very much
developed in the last three decades and many new issues
have been addressed. Thus the differences and resemblances
of pairing correlations in finite systems and infinite nuclear
matter were pointed out by several authors [13–16]. The
phenomenological way of determining the pairing correlations
in finite nuclei does not determine uniquely the pairing
interaction for the whole nuclear chart.

Microscopic approaches start from a bare N-N interaction,
and at the next stage medium polarization effects are included
[17–19]. In Refs. [20,21] an effective density-dependent
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pairing interaction which reproduces both the neutron-neutron
(nn) scattering length at zero density and the neutron pairing
gap in uniform matter was proposed. In order to fulfill
the two conditions an isospin dependence of the proposed
effective interaction was necessary. This interaction was used
in a Hartree-Fock-Bogoliubov calculations for the semi-magic
isotopes of Ca, Ni, Sn, and Pb, which explained the binding
energy dependence on the neutron number, the two-neutron
separation energy, and the odd-even mass staggering. It was
shown that supplementing the pairing interaction with an
isovector term one can construct a global effective pairing
interaction which is applicable to nuclei over a wide range of
the nuclear chart [22].

The spatial dependence of the pairing gap in 120Sn was
studied in Ref. [23] based on the bare v14 Argonne N-N
interaction supplemented with some important polarization
effects. The spatial dependence of the pairing gap is obtained
by multiplying the abnormal density by the N-N interaction.
The Fourier transform with respect to the relative coordinate
yields the gap dependence on the center-of-mass coordinate
and relative momentum. The resulting gap is surface peaked,
reflecting the dominant attractive character of the pairing inter-
action. The effect is more pronounced for lower momenta. The
exchange with spin modes leads to an attractive component
acting predilectly inside the nucleus and seems to be dominant
in neutron matter. Various measures for spatial correlations
were considered: rms of a Cooper pair, the coherence length,
the average distance between the paired nucleons, etc. The
pairing gap for uniform matter obtained from a microscopic
treatment based on the realistic N-N interaction was considered
in Ref. [16].

In Ref. [24] it was proved that the BCS equations work also
for strongly interacting fermion systems which actually realize
the so-called BEC phase characterized by a small coherence
length in the coordinate space [25]. A regularized model for
the density-dependent contact interaction, which removes the
divergences showing up in the interaction strength and the
scattering length, was used to study the transition between
the BCS and the Bose-Einstein condensate (BEC) phases in
symmetric, asymmetric, and neutron matter, respectively. Also
the BEC-BCS crossover phenomena in dilute nuclear matter
with a medium polarization effect included were investigated.
There is a hope that the local density approximation opens
up the possibility of mapping from the pairing in uniform
nuclear matter to that in finite nuclei [26]. A full picture of
achievements in the field of the pairing interaction may be
found in some recent review papers [27].

Cooper pairs of one proton and one neutron have also been
investigated [28–33], although not as extensively. The results
reported there demonstrate that the generalized Bogoliubov-
Valatin (BV) transformation including pp, nn, and pn pairing
is appropriate for treating the pairing correlations in a self-
consistent way, in spite of some earlier pessimistic views on
this issue [34,35]. The results reported in Ref. [36], showing
the isoscalar neutron-proton two-quasiparticle nature of the
high-spin states in the N = Z isotope of 92Pd, support the
existence of the T = 0 proton-neutron pairing in this system.
Note that in a generalized (BV) formalism the total number
of nucleons, the isospin third component (T3), and isospin (T )

are not conserved. Therefore a simultaneous projection for all
three quantum numbers is necessary. This type of projection
has been considered by several authors both numerically and
analytically [37,38]. The integrability of a pn pairing model
was treated in Refs. [39,40] by different methods. Thus the
pairing Hamiltonian introduced by Richardson and Sherman
[41] was considered in the context of the quantum inverse
scattering method. It is proved that the model is integrable by
constructing explicitly the conserved commuting operators.
The eigenvalues of these operators were determined in terms
of the Bethe ansatz and finally an expression for energy
eigenvalues was possible [39]. A different method is applied,
in Ref. [40], to the same Richardson model which includes
isospin-symmetry breaking terms.

It seems that the common mathematical content with the
above pairing-correlated system provides a serious ground
for considering the pairing effect for other systems. Pairing
forces acting among the quarks in two-color QCD matter
lead to color superconductivity [42,43], as also confirmed by
simulations in lattice gauge theories [44]. Superconductivity
of metallic nanoparticles is discussed in Refs. [45–47]. Due to
its paramount importance it is worth simplifying the formalism
applied to other degrees of freedom by following the successful
path used for pairing of like nucleons.

In this context the present paper considers the isovector pn

pairing interaction with the projected total number of particles.
We aim at obtaining tractable equations for the residuum
integrals and finally for the norms and matrix elements of
projected states.

This study is organized as follows. In Sec. II we study the
factorization procedure applied to the exponent of a linear
combination of the su(2) algebra generators. The motivation
for this investigation is the fact that the BCS function could be
obtained by transforming the particle vacuum state with such
an operator. This is shown in Sec. III. The particle-number-
projected function is described in Sec. IV. Analytical results
of the average values of various interaction terms are given in
Sec. V. Numerical results for a pairing Hamiltonian considered
in a restricted single-particle space are given in Sec. VI. The
final conclusions are collected in Sec. VII.

II. FACTORIZATION OF THE ROTATION OPERATOR

In the theory of superconductivity bilinear forms of creation
and annihilation operators of fermions satisfy the commutation
relations for the generators of rotations. For this reason, we
shall first derive some very useful, in the theory of super-
conductivity, algebraic relations for the rotation operators.
Although some of them are well known we present them for
the sake of completeness.

In quantum mechanics, the rotation of a wave function is
given by a real angle θ and the real unit vector n,

� → � ′ = exp(−iθnJ)�, (2.1)

where J are the generators of rotation, given in Cartesian coor-
dinates. We are interested in various equivalent representations
of the rotation operators. Concretely, we wish to establish a
connection between the rotation parameters θ, n from Eq. (2.1)
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and those denoted by αμ and βμ (μ = ±, 0), which define two
independent factorized forms for the same rotation operator

exp(−iθnJ) ≡ U

= exp(iθn−J+ − iθn0J0 + iθn+J−)

= exp(iα−J+) exp(−iα0J0) exp(iα+J−)

= exp(iβ+J−) exp(−iβ0J0) exp(iβ−J+). (2.2)

The indices show the components of coordinates in the cyclic
basis:

nJ = −n−J+ + n0J0 − n+J−, (2.3)

where

J+ = −1√
2

(J1 + iJ2),

J− = 1√
2

(J1 − iJ2), (2.4)

J0 = J3.

Throughout the present paper we use notation consistent with
that of Ref. [48]. The spherical components of the unit vector
are

n± = ∓ 1√
2

sin(�) exp(±i�),

(2.5)
n0 = cos(�),

where � and � are the polar and azimuthal angles. The unit
length of the vector n implies, in the cyclic basis,

−2n−n+ + n2
0 = 1. (2.6)

The decomposition (2.2) resembles the representation of
rotation as a product of three rotations described by the Euler
angles. The difference is that here all three rotation generators
are involved, and they are non-Hermitian operators.

The relation among the parameters θ, n, and αμ can be
found by taking the derivative over θ of the left and right
sides in Eq. (2.2) and using the commutation relations for the
rotation generators. The derivative over θ gives

(in−J+ − in0J0 + in+J−) exp(−iθnJ)

= iα′
−J+ exp(iα−J+) exp(−iα0J0) exp(iα+J−)

− iα′
0 exp(iα−J+)J0 exp(−iα0J0) exp(iα+J−)

+ iα′
+ exp(iα−J+) exp(−iα0J0)J− exp(iα+J−).

Here the prime symbol stands for the derivative with respect
to the variable θ . Using the commutation relations satisfied by
the angular momentum components [48]

[J+, J−] = −J0,
(2.7)

[J±, J0] = ∓J±,

one finds

exp(iα−J+)J0 exp(−iα−J+) = J0 − iα−J+,

exp(−iα0J0)J− exp(iα0J0) = J− exp(iα0), (2.8)

exp(iα−J+)J− exp(−iα−J+) = J− − iα−J0 − α2
−
2

J+.

One thus arrives at the equation

in−J+ − in0J0 + in+J−
= iα′

−J+ − iα′
0(J0 − iα−J+)

+ iα′
+ exp(iα0)

(
J− − iα−J0 − α2

−
2

J+

)
, (2.9)

which can be split into three equations

n− = α′
− + in0α− + n+α2

−
2

,

n0 = α′
0 + in+α−, (2.10)

n+ = α′
+ exp(iα0).

Using the boundary conditions

α−(0) = α0(0) = α+(0) = 0,

we obtain

α±(θ ) = n±2 tan(θ/2)

1 + in0 tan(θ/2)
, (2.11)

α0(θ ) = −2i ln[cos(θ/2) + in0 sin(θ/2)]. (2.12)

The result for the functions αμ(θ ) depends only on the
commutation relations of Jμ and therefore is the same for any
representation of the su(2) algebra generated by the angular
momentum operators. Let us make use of this remark. Consider
the fundamental representation and replace the operators Jμ

by the Pauli matrices divided by 2. Next, we expand the left
and right sides of the expression (2.2) in the parameters θ

and αμ. The decomposition over α± is necessarily truncated
at terms linear in α± due to the equation J 2

± = 0 being valid
for the spin-1/2 representation. Thus, one obtains a system of
algebraic equations for αμ(θ ) whose solutions, as can easily
be checked, are given by Eqs. (2.11) and (2.12). The algebraic
method is fully equivalent to solving the system of ordinary
differential equations (2.10).

We assumed, so far, that the rotation angle θ and the unit
vector n are real quantities. However, in the above development
the condition for the mentioned variables to be real was not
explicitly used. Equations (2.11) and (2.12), therefore, can be
analytically continued to complex values of the parameter θ ;
the vectors n could also be complex under the condition that
their square is equal to unity, i.e., n2 = −2n+n− + n2

0 = 1.
Obviously, these are the most general conditions. Any operator
that can be written as the exponential of a linear combination
of generators of the rotation with complex coefficients can be
represented using a complex parameter θ and a unit complex
vector n.

In calculating the state norms and the matrix elements of
operators one needs to know another factorized form for the
rotation operator where the factor operators show up in the
reverse order compared with that given in the second line of
Eq. (2.2). The reverse order is shown explicitly in the third line
of Eq. (2.2). We thus are looking for the rotation parameters
βμ as functions of θ and n.

In the derivation of Eqs. (2.11) and (2.12) we have used
only commutation relations for the generators of rotations.
The explicit form of βμ(θ ) can be obtained by using the fact
that under the replacement of (J+, J−, J0) → (J−, J+,−J0)
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the commutation relations (2.7) remain unchanged. From this
we immediately find

β±(θ ) = n±2 tan(θ/2)

1 − in0 tan(θ/2)
, (2.13)

β0(θ ) = 2i ln[cos(θ/2) − in0 sin(θ/2)]. (2.14)

If we are able to express βμ through αμ, then we can change
the order of the exponents with different operators Jμ. These
relations are, however, simple:

β± = −α∗
∓, (2.15)

β0 = α∗
0 . (2.16)

Equations (2.15) and (2.16) are necessary and sufficient for
the operator U to be unitary. They are therefore valid for real
θ and for real unit vectors n, which is for pure rotation. These
equations cannot be continued analytically to complex values
of θ and n, because they involve the operation of complex
conjugation. In the case of complex rotations, one should
return to Eqs. (2.11) and (2.12). We express the complex
parameters θ and n through αμ, and we substitute these
expressions in formulas (2.13) and (2.14). Simple calculations
give

β± = α± exp(iα0)

1 + 1
2α+α− exp(iα0)

, (2.17)

β0 = α0 + 2i ln
[
1 + 1

2α+α− exp(iα0)
]
. (2.18)

These formulas establish the connection between arbitrary
complex parameters αμ and βμ. The inverse relations have
the form

α± = β± exp(−iβ0)

1 + 1
2β+β− exp(−iβ0)

, (2.19)

α0 = β0 − 2i ln
[
1 + 1

2β+β− exp(−iβ0)
]
. (2.20)

The factorized expression of any rotation-like operator
is known in the literature as the Baker-Cambell-Haussdorff
formula. The general necessary conditions which make this
factorization possible are discussed in Ref. [49].

Inverse relations allowing defactorization of the rotation
look as follows:

cos(θ/2) = cos(α0/2) + 1

4
α+α− exp(iα0/2)

= cos(β0/2) + 1

4
β+β− exp(−iβ0/2),

n± sin(θ/2) = 1

2
α± exp(iα0/2)

= 1

2
β± exp(−iβ0/2), (2.21)

n0 sin(θ/2) = sin(α0/2) + i

4
α+α− exp(iα0/2)

= sin(β0/2) + i

4
β+β− exp(−iβ0/2).

III. BCS STATE

The BCS wave function can be written as a unitary
transformation of the vacuum state. Such a form significantly
simplifies the calculations and gives physical meaning to the
algebraic transformations involved in the formalism.

In the analogy with Eq. (2.1) one can write

|BCS〉 = e−iF |0〉, (3.1)

where

F = 1√
2

∑
α

(
zα

∑
m

c†αmd
†
αm̃ + z∗

α

∑
m

dαm̃cαm

)
(3.2)

is a Hermitian operator while |0〉 denotes the bare vacuum state.
Here, c

†
αm and d

†
αm are particle creation operators for protons

and neutrons, respectively, and α is the index numbering
shells. For example, in a spherical shell model α is the set
of quantum numbers (njl), where n is the radial quantum
number, j is the total angular momentum, and l is the orbital
angular momentum. m̃ denotes the time reversal substate:
d
†
αm̃ = (−)j−md

†
α,−m. For like nucleons in Ref. [50] and for

a generalized pn pairing interaction in Ref. [38], analogous,
otherwise different, unitary transformations have been used.

The creation operator images through the transformation
exp(−iF ) define the quasiparticle creation operators:

e−iF c†αmeiF = c†αm,
(3.3)

e−iF d†
αmeiF = d†αm.

with

c†αm = cos

( |zα|√
2

)
c†αm − i

z∗
α

|zα| sin

( |zα|√
2

)
dαm̃,

(3.4)

d†αm = cos

( |zα|√
2

)
d†

αm − i
z∗
α

|zα| sin

( |zα|√
2

)
cαm̃.

We recognize here the BV transformation

c†αm = Up
α c†αm − V p

α dαm̃,
(3.5)

d†αm = Un
αd†

αm − V n
α cαm̃.

By using the polar representation of the complex variable z,

zα = 1√
2
ραe−iψα , (3.6)

the occupation and nonoccupation probability coefficients, V

and U , respectively, are expressed as follows:

Uτ
α = cos

(ρα

2

)
,

(3.7)
V τ

α = ei(ψα+ π
2 ) sin

(ρα

2

)
, τ = p, n.

The complex variable zα can be interpreted as the μ = −1
component of a representative vector from the associated
classical phase space. From Eq. (3.7) it comes out that
the BV transformation coefficients satisfy the normalization
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conditions:

U 2
α + |Vα|2 = 1, (3.8)

which assure that the quasiparticle operators obey anticom-
mutation relations specific to fermions. Since U

p
α = Un

α and
V

p
α = V n

α , in what follows we shall omit the isospin index
for the BV transformation coefficients. Applying the operator
exp(−iF ) on the obvious equations cαm|0〉 = dαm|0〉 = 0 one
obtains cαm|BCS〉 = dαm|BCS〉 = 0, which expresses the fact
that the BCS state is a vacuum state for the quasiparticle
operators.

Using the proton and neutron creation operators one could
define the bilinear operators

Jα+ = − 1√
2

∑
m

c†αmd
†
αm̃, (3.9)

Jα− = − 1√
2

∑
m

cαmdαm̃, (3.10)

Jα0 = 1

2

∑
m

(c†αmcαm − dαmd†
αm), (3.11)

which satisfy the su(2) algebra commutation relations [cf.
Eqs. (2.7)]

[Jα+, Jβ−] = −δαβJα0,

[Jα±, Jβ0] = ∓δαβJα±. (3.12)

We conventionally call these operators quasispin operators.
Indeed, if we replace the d operators by c the resulting algebra
defines the proton seniority states. Moreover, replacing the
c operators by d one obtains the neutron quasispin algebra
which defines the neutron seniority scheme. Although there
is a danger of mixing them up with the angular momentum
operator we use the notation J for the quasispin algebra
operators. Actually, the pn pairing operators and the total
number of nucleons form a representation of the su(2)
algebra which is different from that generated by angular
momentum components. Due to Eq. (3.12), the transformation
e−iF acquires the significance of a quasirotation. Within this
context the quasiparticle operators appear to be the result of a
quasirotation applied to the creation and annihilation particle
operators.

It is worth mentioning some useful properties: J
†
α± =

−Jα∓, Jα0 is a Hermitian operator. Due to the Pauli principle
both Jα+ and Jα− are nilpotent:

(Jα−)2jα+2 = (Jα+)2jα+2 = 0.

Acting on the vacuum state, one has

Jα−|0〉 = 0,

Jα0|0〉 = −(
jα + 1

2

)|0〉.
For a given α the eigenstates of the proton-neutron pairing
Hamiltonian in the restricted single-particle space can be
expressed in terms of the irreducible representations of
the SU(2) group. These are the states |Jα, Jα0〉 which are
simultaneous eigenstates for the operators J 2

α and Jα0. The
interpretation of the quasispin is revealed from the following

obvious equations:

Jα−|Jα,−Jα〉 = 0,

Jα0|Jα, Jα0〉 = Jα0|Jα, Jα0〉
=

(
N

2
− 1

2
(2ja + 1)

)
|Jα, Jα0〉,

Jα0 = N

2
− 1

2
(2jα + 1). (3.13)

Since the values for N range from 0 to 2(2jα + 1), the
minimum and maximum values of Jα0 are −(2jα + 1)/2 and
(2jα + 1)/2, respectively. Consequently, the quasispin has the
expression

Jα = 1
2 (2jα + 1). (3.14)

Thus, the state with a minimum quasispin projection to the
z axis is a kind of Hartree-Fock vacuum for the lowering
quasispin operator. Also, the component z of quasispin is
related to the state angular momentum and the total number
of particles, N , distributed on the substates of the single shell,
jα , while the quasispin is given by the semidegeneracy of the
given single-particle state.

The transformation e−iF is very useful for calculating
operator matrix elements either in the quasiparticle or in the
particle representation. As an example, we find the matrix
element of a unit operator between the states exp(iβα−Jα+)|0〉
and 〈0| exp(iβα+Jα−).

By means of Eqs. (2.19) and (2.20), we obtain

〈0| exp(iβα+Jα−) exp(iβα−Jα+)|0〉
= 〈0| exp(iαα−Jα+) exp(−iαα0Jα0) exp(iαα+Jα−)|0〉
= 〈0| exp(−iαα0Jα0)|0〉 = 〈0| exp

[
iαα0

(
jα + 1

2

)]|0〉
= (

1 + 1
2βα+βα−

)2jα+1
. (3.15)

In the above case, the parameter βα0 is equal to zero; we
used Eq. (2.20) to express αα0 in terms of βα+and βα−.

Under the unitary transformation, the generators Jμα

become

e−iF JαμeiF = Jαμ, μ = ±, 0,

where

Jα+ = − 1√
2

∑
m

c†αmd
†
αm̃,

Jα− = − 1√
2

∑
m

cαmdαm̃, (3.16)

Jα0 = 1

2

∑
m

(c†αmcαm − dαmd†αm).

Under the action of a unitary BV transformation, the
operator exp(−iF ) maps onto itself, since

F ≡ e−iF F eiF

= 1√
2

∑
α

(
zα

∑
m

c†αmd
†
αm̃ + z∗

α

∑
m

dαm̃cαm

)

= F. (3.17)

The reciprocal relation for Eq. (3.3) takes the form
c†αm = eiFc†αme−iF, d†

αm = eiFd†αme−iF, (3.18)
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or, explicitly,

c†αm = Uαc†αm + Vαdαm̃, d†
αm = Uαd†αm + Vαcαm̃. (3.19)

IV. PARTICLE NUMBER PROJECTION

The projection operator to the state with a definite number
of particles is given by

PN =
∫ 2π

0

dϕ

2π
ei(N̂−N)ϕ. (4.1)

One can check that the signature property of a projection
operator is satisfied:

PNPN = PN. (4.2)

The particle number operator can be expressed in terms of the
operators Jα0 as

N̂ =
∑

α

N̂α,

where

N̂α = 2Jα0 + 2jα + 1. (4.3)

The operator PN acting on the BCS wave function gives a
state with a definite number of particles,

|BCS,N〉 ≡ CNPN |BCS〉

= CN

∫ 2π

0

dϕ

2π
e−iNϕe−iF (ϕ)|0〉, (4.4)

where

F (ϕ) = −
∑

α

(zαe2iϕJα+ − z∗
αe−2iϕJα−) (4.5)

and F = F (0).
By using the representation (3.6), the operator F (ϕ) can

be written as a sum of scalar products of vectors ραnα and

quasispin operators Jα:

F (ϕ) = −
∑

α

ρα (nα−Jα+ + nα+Jα−) . (4.6)

Here, nα are unit vectors defined by the cyclic coordinates

nα± = ∓ 1√
2

exp[±i(ψα − 2ϕ)],

(4.7)
nα0 = 0.

Using Eq. (2.2), we obtain

exp[−iF (ϕ)] = exp

[
i
∑

α

ρα (nα−Jα+ + nα+Jα−)

]

= exp

(
i
∑

α

αα−Jα+

)

× exp

(
− i

∑
α

αα0Jα0

)
exp

(
i
∑

α

αα+Jα−

)
,

where, according to Eqs. (2.11) and (2.12),

αα± = nα±2 tan(ρα/2),
(4.8)

αα0 = −2i ln[cos(ρα/2)].

Acting with the operator exp[−iF (ϕ)], after factorizing it,
on the vacuum state, we obtain

exp[−iF (ϕ)]|0〉 =
∏
α

[cos2(ρα/2)]jα+1/2

× exp

[
i
∑

β

nβ−2 tan(ρβ/2)Jβ+

]
|0〉.

Now, we are in a position to find the projected state with N

nucleons:

|BCS,N〉 = CN

∫ 2π

0

dϕ

2π
exp(−iNϕ)

∏
α

[cos2(ρα/2)]jα+1/2 exp

{
i
∑

α

exp[i(−ψα + 2ϕ)]
√

2 tan(ρα/2)Jα+

}
|0〉

= CN

∏
α

[cos2(ρα/2)]jα+1/2
∫

C

dζ

2πi

1

ζN+1
exp

[
iζ 2

∑
α

exp(−iψα)
√

2 tan(ρα/2)Jα+

]
|0〉

= CN

∏
α

[cos2(ρα/2)]jα+1/2 1

(N/2)!

(
i
∑

α

exp(−iψα)
√

2 tan(ρα/2)Jα+

)N/2

|0〉.

The contour C encompasses the point ζ = 0, and the integration is performed in the direction of increasing ϕ = arg ζ .
By the condition (4.2), the problem of finding the normalization constant reduces to calculating the overlap of unprojected and

projected states:

〈BCS,N |BCS,N〉 = CN 〈BCS|BCS,N〉 = C2
N

∏
α

[cos2(ρα/2)]2jα+1
∫

C

dζ

2πi

1

ζN+1
〈0| exp

[
i
∑

α

exp(iψα)
√

2 tan(ρα/2)Jα−

]

× exp

[
iζ 2

∑
α

exp(−iψα)
√

2 tan(ρα/2)Jα+

]
|0〉

= C2
N

∫
C

dζ

2πi

1

ζN+1

∏
α

[cos2(ρα/2) + ζ 2 sin2(ρα/2)]2jα+1. (4.9)
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From the above equation we obtain

C−2
N =

∫
C

dζ

2πi

1

ζN+1

∏
α

[cos2(ρα/2) + ζ 2 sin2(ρα/2)]2jα+1.

(4.10)

In the derivation of the expression (4.9), we used Eqs. (2.19)
and (2.20), which allow us to change the order of the factors of
the unitary operator. Also, we had to calculate the average
of the product of exponents of operators associated with
individual shells. If the two involved shells are distinct, the
exponents commute with each other and their average over
the vacuum is unity. An average value different from unity
occurs only when the two shells coincide. The average value
splits thereby into the product of the average values for the
individual shells.

Further simplification can be achieved by using a binomial
formula and then evaluating the integrand residue in the point
ζ = 0. After applying the binomial formula for the sum of
a large number of terms and then finding the residue of the
integrand the problem becomes combinatorial in nature, which
is not attractive from the computational point of view, because
the number of options needed to be considered and the number
of terms in the sum grow with N exponentially.

From the computational point of view, the possibility of
reducing the problem to evaluation of a recursion looks more
attractive. We introduce the function

Q(N ) = C−2
N (4.11)

with C−2
N defined above.

Integrating by parts, one finds

Q(N ) =
∑

β

∫
C

dζ

2πi

Gβ(ζ )

ζN+1
, (4.12)

where

Gβ(ζ ) = �β

N

ζ 2 sin2(ρβ/2)

cos2(ρβ/2) + ζ 2 sin2(ρβ/2)

×
∏
α

[cos2(ρα/2) + ζ 2 sin2(ρα/2)]2jα+1, (4.13)

with �β = 2(2jβ + 1). We expand further the expression in
front of the product sign in powers of ζ 2. Each member of the
series is a function of Q(N ′) for some value of N ′ < N . The
function Q(N ), therefore, is expressed as the sum of Q(N ′)
evaluated for a smaller number of particles. It only remains
to fix the boundary value for N = 0. From the definition of
Q(N ) one easily finds

Q(0) =
∏
α

[cos2(ρα/2)]2jα+1. (4.14)

Note that for negative integer values of N , the function Q(N ) is
equal to zero, as can be seen from the Cauchy theorem related
to the contour integral. Also, Q(N ) = 0 for N = 1 mod(2).
We thus get a recursion

Q(N ) =
∑

β

Qβ(N ), (4.15)

Qβ(N ) = �β

N

N/2∑
n=1

(−)n+1 tan2n(ρβ/2)Q(N − 2n). (4.16)

The number of operations to calculate Q(N ) grows with
increasing N only quadratically. From the viewpoint of numer-
ical calculation, estimates for oscillatory contour integrals are
associated with considerable difficulty. We avoid this difficulty
by reducing the problem to the computation of the recursion
relations. Within a variation after projection procedure the
angles ρβ are determined by the equations provided by
the conditions that the energy of the system for a fixed N be
minimum. The same angles are however used to calculate the
factors Q(N − 2n − 2) involved in the summation operation
over n. The BCS angles as well as the number of involved
shells are preserved during the iteration process.

The product factors from Eq. (4.13) can be expanded in
a power series of 1/ζ . In this case we obtain a recursion for
calculating the function Q(N ) starting from large numbers
of particles. Recursion of this form is more convenient to
calculate Q(N ) for values of N close to the maximum

� =
∑

β

�β. (4.17)

Using the expansion in 1/ζ , we obtain Eq. (4.15) with

Qβ(N ) = �β

� − N

(�−N)/2∑
n=1

(−)n+1 cot2n(ρβ/2)Q(N + 2n).

(4.18)

These expressions should be supplemented by the boundary
condition

Q(�) =
∏
α

[sin2(ρα/2)]2jα+1. (4.19)

For N > �, the function Q(N ) is identically zero.
The only singularity of the integrand in the expression

(4.12) is a pole at ζ = 0. For this reason, we can deform
the contour of integration, squeezing it around zero or moving
it to infinity. In the first case, the expansion in powers of ζ is
the appropriate one, while in the second case, the expansion
in powers of 1/ζ is valid. Obviously, the results (4.16) and
(4.18) coincide. Also we note that for N = 0 the function
Qβ(N ) given by Eq. (4.16) is not defined. For this case one
should use the 1/ζ expansion from Eq. (4.18). By contrast, for
calculating Qβ(�) the expression (4.16) is the appropriate
one. From the integral representation of Q(N ) as well as
from Eq.(A11) considered for the diagonal case, a very simple
relation follows:

�∑
N=0

Q(N ) = 1. (4.20)

By virtue of this expression, Q(N ) acquires the significance of
the admixture probability of the N -projected state in the BCS
wave function.

In realistic bases with a large number of shells, the recursion
formulas (4.15) and (4.16) can lead to a numeric overflow
because part of the shells remain almost empty and, therefore,
have small BCS angles. In this case the function Q(0) can
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numerically vanish. To avoid this difficulty, we note that
only the ratios of Q(N ) for different values of N matter,
when matrix elements between projected states are calculated,
while the overall normalization of Q(N ) is easily restored
by Eq. (4.20). This means that at each step of the recursion,
we could renormalize Q(N ) so that the maximum value in
the sequence Q(0),Q(2), . . . ,Q(N ) is of the order of unity.
Actually, the overall normalization is not important since
all the matrix elements are expressed in terms of the ratios
of Q(N ).

In the next section this will be shown for a few examples.

V. AVERAGE ENERGY

The projected state might be used as a variational state
for a proton-neutron pairing Hamiltonian. We shall calculate
the average of a many-body Hamiltonian with a two-body
interaction with a strength depending on shells,

Ĥ =
∑

α

(εα − λ)Nα +
∑
αβ

VαβJα+Jβ−. (5.1)

Within the standard BCS formalism, λ is the Fermi sea level
(chemical potential), which is to be fixed by solving the BCS
equations. Here it is just a parameter involved in the gap energy
equation. The two terms entering the microscopic Hamiltonian
will be separately treated. The situation whenVαβ = 2G can be
used to describe a possible transition of the pn system from the
normal to the superconducting phase. Also such a Hamiltonian
could be used for describing the rate of double-β Fermi-type
decay. Note that such a particular form of the pn pairing
interaction is not invariant under rotations in isospin space
but preserves the third component, T3, of the total isospin.
Indeed, the two-body interaction comprises terms of isospin
0, 1, and 2. Therefore the eigenstates of Ĥ are expected to be
a mixture of components of different isospin. In order to have
an isospin-invariant Hamiltonian we have to account also for
the pp and nn interaction. Due to these features we consider
(5.1) as an illustrative example which allows us to describe the
main ingredients of the present formalism.

A. Mean-field term

The mean-field energy is determined by averaging the
particle number operator for each shell,

〈Nα〉 = 〈BCS,N |Nα|BCS,N〉. (5.2)

With the interchange of the order of the exponent operators, as
described in the previous section, this average is transformed
into

〈Nα〉 = Q−1(N )
∫

C

dζ

2πi

Pα(ζ )

ζN+1
, (5.3)

where

Pα(ζ ) = 2i
∏
γ

[cos2(ργ /2)]2jγ +1 d

dx
〈0| exp

[
i
∑

γ

exp(iψγ )

×
√

2 tan(ργ /2)Jγ−

]
exp [−ix (Jα0 + jα + 1/2)]

× exp

[
iζ 2

∑
γ

exp(−iψγ )
√

2 tan(ργ /2)Jγ+

]
|0〉|x=0.

(5.4)

The derivative over x is taken at x = 0. By making use of
Eqs. (2.2), (2.19), and (2.20), Pα(ζ ) can be simplified to give

Pα(ζ ) = NGα(ζ ). (5.5)

The function Gα(ζ ) enters the definition of Q(N ) and is given
by Eq. (4.13). Combining Eqs. (5.3) and (5.5), one obtains

〈Nα〉 = NQα(N )Q−1(N ). (5.6)

The sum over α in Eq. (5.6) gives the identity N = N . Using
Eq. (4.3), one can find the average of Jα0.

B. Energy gap function

Within the BCS theory the expression of the gap energy
function is obtained by averaging the operator

√
2

∑
α Jα+ on

the unprojected BCS state. Instead, for the particle-number-
projected BCS formalism, the matrix element of the mentioned
operator between the states with N and N + 2 particles is to
be calculated. We start by calculating such a matrix element
for each term under summation:

〈Jα+〉 = 〈BCS,N + 2|Jα+|BCS,N〉
= CN+2〈BCS|Jα+|BCS,N〉. (5.7)

The BCS wave functions of the initial and final states can be
different (ρα 
= ρ ′

α, ψα 
= ψ ′
α). This case is considered in the

Appendix. Here, following the path described in the previous
section, we present results for the matrix elements diagonal in
the BCS angles:

〈Jα+〉 = −iQ−1/2(N + 2)Q−1/2(N )
1

2
√

2
(N + 2)

× exp(iψα) cot(ρα/2)Qα(N + 2). (5.8)

Alternatively, one may express the above matrix elements as
a polynomial in tan(ρ/2) by using a power expansion in ζ for
the integrand, as explained already before. The result is

〈Jα+〉 = iQ−1/2(N + 2)Q−1/2(N )(2jα + 1)
1

2
√

2
exp(−iψα)

×
N∑

n=0

(−)n tan2n+1(ρα/2)Q(N − 2n). (5.9)

The matrix element of Jα− can easily be found by complex
conjugation:

〈Jα−〉 = 〈BCS,N |Jα−|BCS,N + 2〉
= −〈Jα+〉∗. (5.10)

This quantity multiplied by
√

2 defines the spectroscopic factor
for a pair α of states which could be measured in a deuteron
transfer reaction. If the two-body interaction strength is state
independent and equal to 2G the pairing interaction term
resembles the pairing interaction for like nucleons. By virtue
of particle number conservation, the average of G

√
2

∑
α Jα+
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is equal to zero. By analogy with the case of like-nucleon
pairing, we call the sum

�(N)
pn = G

∑
α

〈BCS,N + 2|c†αmd
†
αm̃|BCS,N〉 (5.11)

the gap parameter for the N -nucleon system, which might be
a good definition at least in the limit of large N .

C. Interaction energy

Now, consider the proton-neutron (pn) pairing interaction
with the generic term:

〈Jα+J−β〉 = 〈BCS,N |Jα+Jβ−|BCS,N〉. (5.12)

First, we lift the operators Jα+ and Jβ− to the arguments
of exponents by introducing two derivatives over x and y,
evaluated at the origin:

〈Jα+Jβ−〉 = Q−1(N )
∫

C

dζ

2πi

Pαβ(ζ )

ζN+1
,

where

Pαβ(ζ ) = −
∏
γ

[cos2(ργ /2)]2jγ +1 d

dx

d

dy
〈0|

× exp

[
i
∑

γ

exp(iψγ )
√

2 tan(ργ /2)Jγ−

]

× exp(−ixJα+) exp(−iyJ−β )

× exp

[
iζ 2

∑
δ

exp(−iψδ)
√

2 tan(ρδ/2)Jδ+

]

× |0〉 |x=y=0 . (5.13)

The product of four exponents is then reordered, using the
results of Sec. II.

The final expressions for α 
= β and α = β become

〈Jα+Jβ−〉 = Q−1(N )
1

4
N [(2jβ+1)Qα(N ) − (2jα+1)Qβ(N )]

× exp(iψβ − iψα) tan(ρβ/2) tan(ρα/2)

tan2(ρβ/2) − tan2(ρα/2)
, (5.14)

〈Jα+Jα−〉 = −Q−1(N )

[
N

2
Qα(N ) + (jα + 1/2)

N/2∑
n=1

(−)n+1

× tan2n(ρα/2)(2njα − 1)Q(N − 2n)

]
. (5.15)

In the standard BCS formalism, according to Eq. (3.6)
the occupation probabilities for protons and for neutrons
associated with the single-particle state |α〉 are equal to each
other: ∣∣V p

α

∣∣2 = ∣∣V n
α

∣∣2
. (5.16)

Within a particle-number-projected formalism, the occupation
probability is different from that defined above. Indeed, here
the occupation probability for the pair of α states is given by

−2〈Jα+Jα−〉 
= sin2(ρα/2). (5.17)

VI. ONE- AND TWO-SHELL CASES

In this section we shall focus on the pairing Hamiltonian

Ĥ =
∑
αm

(εα − λ) (c†αmcαm + d†
αmdαm)

−G
∑
αβmn

c†αmd
†
αm̃dβñcβn. (6.1)

In the special situation when the single-particle space occupied
by protons and neutrons is restricted to a single j , the energy
for N nucleons calculated as the average of Ĥ corresponding
to λ = 0 with the N -projected state defined before is a quantity
growing quadratically with N and depending neither on ρ nor
on ψ . In this respect, one may say that the N -projected state
does not exhibit a superconducting character. However, the
spectroscopic factors defined by Eq. (5.10) can be calculated
if ρ and ψ are determined within the standard BCS theory. In
that case, the spectroscopic factor is readily obtained once the
functions Q(N ) are calculated.

After some algebraic manipulations one finds a binomial
distribution

Q(N ) =
(

2j + 1

N/2

)
pN/2(1 − p)2j+1−N/2 (6.2)

with probability p = sin2(ρ/2), which can be written, in fact,
immediately starting from the integral form (4.10) or using
combinatorial arguments to calculate the norm of the particle-
number-projected BCS states.

Let us consider now that a number of nucleons, N , are
distributed among two single-particle states whose quantum
numbers are specified through their angular momenta j1 and
j2, respectively. The potential entering Eq. (5.1) now has the
form

Vαβ = 2G. (6.3)

The corresponding energies of the shells are denoted by ε1 and
ε2, respectively.

A. Standard BCS

If one neglects the renormalization of the single-particle
energies due to the pairing interaction, the energy of the
constrained system of N nucleons has the expression

E′(N ) =
∑

α

2(2jα + 1)(εα − λ)|Vα|2 − |�|2
G

, (6.4)

with

� = G

2

∑
α

2(2jα + 1)UαVα, (6.5)

N =
∑

α

2(2jα + 1)|Vα|2. (6.6)

The condition of minimum energy as a function of the BCS
angles can be used to express the BCS angles in terms of the

054314-9



A. A. RADUTA, M. I. KRIVORUCHENKO, AND AMAND FAESSLER PHYSICAL REVIEW C 85, 054314 (2012)

energy gap � and the parameter λ:( |Vα|2
U 2

α

)
= 1

2

(
1 ∓ εα − λ√

(εα − λ)2 + |�|2

)
. (6.7)

The energy gap and λ can be found from the self-consistency
condition (6.5) and the particle number constraint (6.6):∑

α

(2jα + 1)(εα − λ)√
(εα − λ)2 + |�|2

=
∑

α

(2jα + 1) − N,

G

2

∑
α

2jα + 1√
(εα − λ)2 + |�|2

= 1. (6.8)

The variational problem also constrains the phases. Denot-
ing by ϕ the phase of the gap parameter

� = |�|eiϕ, (6.9)

one successively finds arg Vα = arg �, or, using the
relation (3.7),

ψα + π

2
= ϕ. (6.10)

The average energy (6.4) is independent of the phase factor
of Vα . The absolute scale of the phases, therefore, is not
determined.

If the BCS equations admit nontrivial solutions, the system
is, by definition, in a superconducting phase, its energy being
calculated by Eq. (6.4).

In the case of a single shell, the solution of the above
equations has the form

ε1 − λ = 1
2G(2j + 1 − N ),

�2 = 1
4G2N (4j + 2 − N ),

V 2
j = N

2(2j + 1)
,

E′(N ) = −G

4
N2.

The quasiparticle energy is equal to G
2 (2j + 1) while the

system energy is obtained by subtracting from E′(N ) the
contribution of the constraint term:

Egs(N ) = ε1N − 1
4GN (4j + 2 − N ). (6.11)

In the BCS theory, therefore, the superconducting state exists
for any number of particles. This conclusion, however, is not
supported in the particle-number-projected BCS theory. It is
not difficult to see that the average energy corresponding to
the N -projected BCS state is independent of the BCS angles
and phases and equal to

E(N ) = ε1N − 1
4GN (4j + 4 − N ). (6.12)

This result can be obtained with the general formulas of
the previous sections, where λ is set equal to zero, but also
by exploiting the fact that, after projecting the nucleon total
number, only the component ∼(J+)N/2|0〉 survives in the BCS
wave function. The average value of the Hamiltonian Ĥ ,
corresponding to λ = 0, for this component provides (6.12).
Note that the unprojected BCS state is higher in energy than
and the N -projected BCS state.

FIG. 1. (Color online) The energy of a system with N nucleons
(N = 2, 4, 6, 8), obtained within the BCS formalism, plotted as a
function of the pairing interaction strength G.

Moreover, the system defined by the Hamiltonian (6.1)
restricted to a single shell is exactly solvable, since the
components of the Hamiltonian are expressed through
the Casimir operator of the quasirotation group, Ĵ 2

α , and
the quasispin projection on z axis, Ĵα0. In our case, the
expression of (6.12) appears to be just the eigenvalue of
the pairing Hamiltonian, while the N -projected state is the
corresponding eigenfunction.

B. N-projected BCS

Here we consider the case of two-shell calculations.
By using the matrix elements (5.6), (5.13), and (5.14) the

system energy calculated as the average value of the pairing
Hamiltonian Ĥ corresponding to the N -projected BCS state is
readily obtained.

Making use of the results obtained so far one can calculate
the ground-state energies as well as the energy gap. Calcula-
tions were successively performed for the standard BCS, the
PBCS, and the FBCS formalisms. Also, the exact eigenvalues
of Ĥ have been obtained by diagonalization. The input data in
our calculation are

j1 = 3
2 , j2 = 7

2 ,
(6.13)

ε1 = 1 MeV, ε2 = 1.5 MeV.

For a given N (= 2, 4, 6, 8) we solved the BCS equations
(6.8) and then calculated the ground-state energy (6.4). Results
for energies are plotted, in Fig. 1, as function of the pairing
interaction strength. The uncorrelated system has the energy

Enormal = Nε1. (6.14)

Alternatively, with the parameters ρ1, ρ2, ψ1, ψ2 deter-
mined by the standard BCS approach, the system energy was
calculated with the general expression provided by the present
formalism with the N -projected state. We conventionally
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FIG. 2. (Color online) The energy of a system with N nucleons
(N = 2, 4, 6, 8), obtained within the PBCS formalism, plotted as a
function of the pairing interaction strength G. Energies predicted by
the PBCS, the FBCS, and diagonalization (Exact) are identical. This
is indicated by assigning to the given curves all three labels: PBCS,
FBCS, and Exact.

call this approach the projected BCS (PBCS). The resulting
energies are represented in Fig. 2 as functions of G.

For each N , further, the energy E(N ) given by the
N -projection formalism was minimized with respect to the
parameters involved in the trial function, i.e., ρ1, ρ2, ψ1, ψ2.
It turns out that the ground-state energies provided by PBCS,
FBCS, and diagonalization are equal to each other for any G

in the range of 0.1–1.0 MeV. The common values were used in
Fig. 2, showing the energy dependence on the pairing strength
parameter.

The two figures mentioned before exhibit some common
features. Energies are decreasing functions of G. They show
a linear dependence on G with the slope depending on the
total particle number, N . For low values of G, energies are
increasing functions of N , while for large pairing strength
they are decreasing with N . In the four approaches, the
transition from one energy ordering to another is taking place
for different values of G. The largest critical G is met for the
standard BCS. The superconducting phase is achieved for any
G � 0.1. It is remarkable that energies provided by the PBCS
and FBCS approaches are the same. For a given set of G and
N the ground-state energies obtained in different approaches
are ordered as follows:

Enormal > EBCS > EPBCS = EFBCS. (6.15)

Another observable considered in our study is the en-
ergy gap obtained within the standard BCS and the FBCS
formalisms, respectively. The results obtained for a fixed N

were plotted as a function of G in Figs. 3 and 4, respectively.
These figures show a linear dependence of both gaps on G.
The split of gaps due to their N dependence is larger for
� than for �(N). Indeed, according to the numerical results,
�(N = 8) − �(N = 2) is equal to 0.212 and 2.338 MeV for
G equal to 0.1 and 1.0 MeV, respectively, while �(8) − �(2)

FIG. 3. (Color online) The gap energy for a system with N nu-
cleons (N = 2, 4, 6, 8) plotted as a function of the pairing interaction
strength G within the standard BCS formalism.

for G = 0.1 and 1.0 MeV amounts to 0.146 and 1.633 MeV,
respectively. Note that for a given set of N and G we
have � > �(N). Since the energy gap might be looked at
as a measure of superconductivity one may expect that the
superconductivity effects are more pronounced in the PBCS
and FBCS than in the BCS.

The Hamiltonian Ĥ can be diagonalized in a basis of
definite number of particles, N :

|N1, N2〉 = CN1N2 (c†1d
†
1̃
)N1/2(c†2d

†
2̃
)N2/2|0〉,

(6.16)
N1 + N2 = N,

FIG. 4. (Color online) The gap energy for a system with N nu-
cleons (N = 2, 4, 6, 8) plotted as a function of the pairing interaction
strength G within the standard FBCS formalism. The gap function is
defined by Eq. (5.11).
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with CN1N2 standing for the normalization constant. The matrix
elements of H in this basis have simple expressions:

〈N1, N2|H |N1, N2〉
= ε1N1 + ε2N2 − G

4
[N1(4j1 + 4 − N1)

+N2(4j2 + 4 − N2)],

〈N1 + 2, N2 − 2|H |N1, N2〉
= −G

4
[(N1 + 2)N2(4j1 + 2 − N1)(4j2 + 4 − N2)]1/2,

〈N1 − 2, N2 + 2|H |N1, N2〉
= −G

4
[N1(N2 + 2)(4j1 + 4 − N1)(4j2 + 2 − N2)]1/2.

(6.17)

For each N and a fixed G, we diagonalized the above
matrix and depicted the lowest eigenvalues. Further, these
were compared with the energies provided by the FBCS and
the PBCS formalisms. In this way we found out that the
three sets of energies are identical. This is a nice example
of when the solution of two variational principle equations
reproduce the exact ground-state energy. However, in a
realistic single-particle space and, moreover, when an isospin-
invariant Hamiltonian is instead considered, this feature does
not necessarily show up.

Let us now say a few words about the relationship of
the present formalism and that from Ref. [38]. Therein the
variational state is obtained by applying a particular rotation
in the isospin space to the BCS state associated with a
system with N = Z. The basic state [Eq. (2.3) from the
quoted reference] is however different from the one used
in the present work (3.2), although the corresponding BV
transformation differs only by a phase factor “i” in the
coefficient V . The expression e−iF chosen in the present work
has the advantage of being a rotation and, moreover, many of
the matrix elements have a clear interpretation. The additional
rotation appearing in the expression of the generalized BCS
state is necessary for a realistic treatment of the Hamiltonian
used in the mentioned work, which has a complex structure
and therefore is different from the one used here. There, the
matrix elements are obtained by brute-force calculation by
expanding the exponentials and then performing the tedious
commutators involving monomials and binomials of creation
and annihilation single-fermion operators, whereas here the
particle number projection is achieved by using the Cauchy
theorem for integrating over the gauge angle. Moreover, in
order to do that, the operators whose matrix elements are to
be evaluated are exponentiated, which results in simplifying
significantly the manipulation efforts. Only in this way can
the matrix elements be expressed in terms of the norms of
the projected states. In turn, these satisfy a recursive formula
which, as a matter of fact, generalizes the one of Ref. [6],
obtained for like-nucleon pairing. It is remarkable that despite
its generalizing feature our recursion expression is simpler
than the one of Ref. [6]. We stress again that this is actually
the main objective of the present paper. We just mention
that, by contrast, even for the single j case considered in
Ref. [38] the expressions are quite complicated. Extension of

the present formalism to isoscalar Hamiltonians requires of
course a variational state of a more complex structure. Then
combining the results of Ref. [38] and those from here we
hope to obtain the eigenvalues of the chosen Hamiltonian in
the space of states with restored gauge and isospin symmetries
for a large single-particle space. We hope we shall be able to
report on this project in the near future.

VII. CONCLUSIONS

Many interesting properties of pn pairing have been derived
using for the BCS function of the form (3.1). After making
use of the factorization described in Sec. I, one finds that the
function (3.1) for a fixed α represents the coherent state of the
SU(2) group generated by Jαμ. Our attention was focused on
the nucleon-number-projected BCS. Since any matrix element
can be expressed in terms of the norms of the involved states,
we started with the norm calculation. One of the main results
of the present paper is the recursive formula for these norms.
By using this equation the norm of a projected state with N

particles is related to the norms of the N ′-projected states with
N ′ < N . For pairing interaction of like nucleons, a similar
recursion formula was obtained in Ref. [6]. The difference
between the two recursion formulas is that there the recursion
is operating in two dimensions and two indices are iterated,
while here only one index is involved in the recursion.

To prove the usefulness of the obtained recursion formula
several matrix elements have been evaluated. The one for the
proton-neutron pairing operator of a given shell is interpreted
as a spectroscopic factor for a deuteron transfer reaction. Being
guided by the analogy with like-nucleon pairing we defined
a quantity which might be a measure for the energy gap in
the particle-number-projected picture. Also, we calculated the
occupation probability for a given state with a proton-neutron
pair. In the Appendix the matrix element involved in the width
of an α-decay process is analytically expressed. Also, the
matrix element for the two-body proton-neutron interaction
in the particle-particle channel between the states associated
with the mother and daughter nuclei involved in a double-β
Fermi decay are obtained in a compact form.

Using a Hamiltonian including a mean-field term and a
proton-neutron pairing interaction we calculated the system
energy as a function of the particle number N and the pa-
rameters ρα, ψα defining the unprojected BCS wave function.
Since many features of the paired system can be found also
in a restricted single-particle space we discussed the simple
cases of one and two single-particle states. Since the energy
associated with a single j and the N -projected picture is
constant with respect to the BCS parameters we concluded
that for this case a superconducting phase cannot be reached.
However, the case of two j is suitable for studying the
pairing properties in both the standard BCS and projected BCS
formalisms. In the later situation we considered both cases
when the variation is performed before and after projection. In
the two-level situation we have proved that the ground-state
energy provided by the PBCS and the FBCS are the same and
moreover equal to the exact ground-state energy obtained by
diagonalization. It is an open question whether this feature
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is caused by the restricted single-particle space or by the
particular choice of the model many-body Hamiltonian.

One of the evident limitations of our formalism consists in
the fact that the trial BCS unprojected function allows us to
describe only nuclei with N = Z. This feature can, however,
be improved by adding two factors accounting for the proton-
proton and neutron-neutron pairing, respectively, to (3.1).

As an imminent project for the near future we also
mention the extension of our formalism to isospin-preserving
Hamiltonians. In the second step of the formalism development
we shall attempt to include in our study proton-neutron T = 0
pairing as well as isospin projection. This plan is, in fact,
a reflection of our belief that a new and powerful technical
result might be decisive in unveiling new properties of the
paired proton-neutron system.
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APPENDIX: MATRIX ELEMENTS OF DIFFERENT FINAL
AND INITIAL PARTICLE-NUMBER-PROJECTED BCS

STATES

In various applications matrix elements of operators be-
tween two different BCS states are frequently encountered. In
the case of projected BCS, such matrix elements are calculated
in the manner described in Sec. V. Here we derive formulas
for 〈BCSf ,Nf |O|BCSi,Ni〉 for O = 1, J±α, J±αJ±β , and
J∓αJ±β with different BCS angles of the final and initial states.

We start from the diagonal in particle number overlap,

〈BCSf ,N |BCSi,N〉 = Q
−1/2
f (N )〈BCSf |BCSi,N〉

= Q
−1/2
f (N )Q−1/2

i (N )Qf i(N ),

where Qf (N ) and Qi(N ) are the diagonal Q functions
defined for the final- and initial-state BCS angles (ρ ′

α, ψ ′
α) and

(ρα, ψα), respectively. Calculations similar to those carried out
in Sec. V give the off-diagonal Q function

Qfi(N ) =
∫

C

dζ

2πi

1

ζN+1

∏
α

[cos(ρ ′
α/2) cos(ρα/2)

+ ζ 2 exp(iψ ′
α − iψα) sin(ρ ′

α/2) sin(ρα/2)]2jα+1.

(A1)

Integrating by parts and expanding into a series in ζ or 1/ζ ,
we obtain the recursion for the calculation of this function:

Qfi(N ) =
∑

α

Qα
fi(N ),

Qα
fi(N ) = �α

N

N/2∑
n=1

(−)n+1[exp(iψ ′
α − iψα) tan(ρ ′

α/2)

× tan(ρα/2)]nQfi(N − 2n) (A2)

= �α

� − N

(�−N)/2∑
n=1

(−)n+1[exp(−iψ ′
α + iψα) cot(ρ ′

α/2)

× cot(ρα/2)]nQfi(N + 2n). (A3)

The boundary conditions follow from (A1):

Qfi(0) =
∏
α

[cos(ρ ′
α/2) cos(ρα/2)]2jα+1,

Qfi(�) =
∏
α

[exp(iψ ′
α − iψα) sin(ρ ′

α/2) sin(ρα/2)]2jα+1.

As in the case of the function Q(N ), Qfi(N ) vanishes outside
the interval (0,�) and for odd N . In the limit where the angles
in the initial and final BCS states coincide, we recover the result
for Q(N ). In particular, Qff (N ) = Qf (N ) and Qii(N ) =
Qi(N ). Qα

fi(N ) vanishes outside the interval (2,� − 2).
Now, consider the two-fermion gap function

〈Jα+〉fi = 〈BCSf ,N + 2|Jα+|BCSi,N〉
= Q

−1/2
f (N + 2)〈BCSf |Jα+|BCSi,N〉.

The calculation is performed using the representation of Jα+
in the exponential form

Jα+ = −i
d

dx
exp(iJα+x)|x=0

and Eq. (3.15). A similar representation is used for the other
quasispin components. After some algebraic manipulations,
we obtain

〈Jα+〉fi = −iQ
−1/2
f (N + 2)Q−1/2

i (N )
1

2
√

2
(N + 2) exp(iψα)

× cot(ρα/2)Qα
fi(N + 2), (A4)

〈Jα0〉fi = Q
−1/2
f (N )Q−1/2

i (N )

×
[
N

2
Qα

fi(N ) − (jα + 1/2)Qfi(N )

]
. (A5)

Summing the last equation over α one arrives at

2
∑

α

〈J0α〉fi = Q
−1/2
f (N )Q−1/2

i (N )Qfi(N )

(
N − 1

2
�

)
,

which is consistent with the definition for particle number
operator, Eq. (4.3). The expression for 〈Jα−〉fi is obtained by
complex conjugation (A4).

Consider now the four-fermion gap function

〈Jα+Jβ+〉fi = 〈BCSf ,N + 4|Jα+Jβ+|BCSi,N〉.
This matrix element represents the width of the α decay of
the mother nucleus in the state |BCSf ,N + 1〉 to the daughter
nucleus in the state |BCSi,Nf 〉. Also, based on this matrix
element one may define the spectroscopic factor of a reaction
which removes an α particle from the states α and β. In other
words, squaring this matrix element one obtains the occupation
probabilities of the states α and β with proton-neutron pairs.
The calculation uses the representation

Jα+Jβ+ = − d

dx

d

dy
exp(iJα+x + iJβ+y)|x=y=0
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and the method of Sec. II. For α 
= β, we obtain

〈Jα+Jβ+〉fi = −Q
−1/2
f (N + 4)Q−1/2

i (N )
1

4
(N + 2)[(2jβ + 1)Qα

fi(N + 2) − (2jα + 1)Qβ

fi(N + 2)]

× exp(iψ ′
β + iψ ′

α) tan(ρ ′
α/2) tan(ρ ′

β/2)

exp(iψ ′
α − iψα) tan(ρ ′

α/2) tan(ρα/2) − exp(iψ ′
β − iψβ) tan(ρ ′

β/2) tan(ρβ/2)
. (A6)

A similar expression is obtained for the matrix element

〈Jα+Jβ−〉fi = 〈BCSf ,N |Jα+Jβ−|BCSi,N〉
= −Q

−1/2
f (N )Q−1/2

i (N )
1

4
N [(2jβ + 1)Qα

fi(N ) − (2jα + 1)Qβ

fi(N )]

× exp(iψ ′
β − iψα) tan(ρ ′

β/2) tan(ρα/2)

exp(iψ ′
α − iψα) tan(ρ ′

α/2) tan(ρα/2) − exp(iψ ′
β − iψβ) tan(ρ ′

β/2) tan(ρβ/2)
. (A7)

We may ask ourselves how that situation may appear. The answer is offered by the double-β decay with and without neutrinos in the
final state. Indeed, in such a process the nucleus |N , Z〉 goes to the nucleus |N − 2, Z + 2〉, two electrons and either two or zero
antineutrinos respectively, where N and Z denote the neutron and the proton number of the initial system. The mentioned states
are described by different sets of BCS angles and phases but have equal number of nucleons. As a matter of fact the two-body
interaction whose matrix element is calculated is nothing else but the particle-particle interaction of the Fermi type. These
comments prove that to calculate such a matrix element is an important step in describing some important physical processes.

The average (A6) is symmetric under interchange of the indices and 〈Jα+Jβ−〉fi = 〈Jβ−Jα+〉fi. Complex conjugation of (A6)
allows us to find 〈Jα−Jβ−〉fi.

When shells are the same, the result is as follows:

〈Jα+Jα+〉fi = −Q
−1/2
f (N + 4)Q−1/2

f (N )
jα

2
exp(iψα + iψ ′

α) tan(ρ ′
α/2) cot(ρα/2)

×
N/2∑
n=0

(−)n[exp(iψ ′
α − iψα) tan(ρ ′

α/2) tan(ρα/2)]n(N + 2 − 2n)Qα
fi(N + 2 − 2n) (A8)

= −Q
−1/2
f (N + 4)Q−1/2

i (N )jα(2jα + 1) exp(2iψ ′
α) tan2(ρ ′

α/2)

×
N/2∑
n=0

(−)n[exp(iψ ′
α − iψα) tan(ρ ′

α/2) tan(ρα/2)]n(n + 1)Qfi(N − 2n), (A9)

〈Jα+Jα−〉fi = −Q
−1/2
f (N )Q−1/2

i (N )

{
N

2
Qα

fi(N ) + (jα + 1/2)
N/2∑
n=1

(−)n+1[exp(iψ ′
α − iψα) tan(ρ ′

α/2) tan(ρα/2)]n

× (2njα − 1)Qfi(N − 2n)

}
. (A10)

The representations (A8) and (A9) are equivalent.
The formalism also provides an expression for the average as a sum over the quantum numbers α for a fixed number of

particles as well. However, the number of shells is usually much larger than N , and the ratio between � and N indicates the
accuracy of the solution of the variational problem. The higher the ratio, the higher the accuracy. For this reason, the summation
over the number of particles is easier from the computational point of view, and it is therefore preferable. Also, the recursive
computation of the function Qfi(N ) starting from small numbers of particles is simpler.

The function Qfi(N ) can be written in the form [38]

Qfi(N ) =
∑

N1+N2+...=N

∏
α

(�α/2)!

(�α/2 − Nα/2)!(Nα/2)!
[exp(−iψ ′

α + iψα) sin(ρ ′
α/2) sin(ρα/2)]Nα/2[cos(ρ ′

α/2) cos(ρα/2)]�α/2−Nα/2.

(A11)

Here the summation is over all sets of even occupation numbers Nα , whose sum is the total number of particles. In the special
case of a single shell, we reproduce Eq. (6.2).
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