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Relativistic effect of spin and pseudospin symmetries
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Dirac Hamiltonian is scaled in the atomic units h̄ = m = 1, which allows us to take the nonrelativistic limit
by setting the Compton wavelength λ → 0. The evolutions of the spin and pseudospin symmetries toward
the nonrelativistic limit are investigated by solving the Dirac equation with the parameter λ. Setting the λ

transformation from the original Compton wavelength to 0, the spin splittings decrease monotonously in all spin
doublets, and the pseudospin splittings increase in several pseudospin doublets, show no change, or even reduce
in several other pseudospin doublets. The various energy splitting behaviors of both the spin and pseudospin
doublets with λ are well explained by the perturbation calculations of the Dirac Hamiltonian in the present units.
It indicates that the origin of spin symmetry is entirely due to the relativistic effect, while the origin of pseudospin
symmetry cannot be uniquely attributed to the relativistic effect.
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It is well known that the spin and pseudospin symmetries
play a critical role in the shell structure and its evolution. The
introduction of the spin-orbit potential to the single-particle
shell model can well explain the experimentally observed
existence of magic numbers for nuclei close to the valley of
β stability [1,2]. To understand the near degeneracy observed
in heavy nuclei between two single-particle states with the
quantum numbers (n − 1, l + 2, j = l + 3/2) and (n, l, j =
l + 1/2), the pseudospin symmetry (PSS) was introduced by
defining the pseudospin doublets (ñ = n − 1, l̃ = l + 1, j =
l̃ ± 1/2) [3,4], which has explained numerous phenomena in
nuclear structure including deformation [5], superdeformation
[6], identical bands [7], and magnetic moment [8]. Because
of these successes, there have been comprehensive efforts to
understand their origins as well as the breaking mechanisms.
For the spin symmetry (SS), the spin-orbit potential can be
obtained naturally from the solutions of the Dirac equation.
Thus, the SS can be regarded as a relativistic symmetry.
For the PSS, its origin has not been fully clarified until
now. It is worth reviewing some of the major progresses in
understanding the underlying mechanism of PSS. In Ref. [9],
a helicity unitary transformation of a nonrelativistic single-
particle Hamiltonian was introduced to discuss the PSS in the
nonrelativistic harmonic oscillator. The particular condition
between the coefficients of spin-orbit and orbit-orbit terms was
indicated in the corresponding nonrelativistic single-particle
Hamiltonian for the requirement of PSS. The same kind of
unitary transformation was considered in Ref. [10], where
the application of the helicity operator to the nonrelativistic
single-particle wave function maps the normal state (l, s)
onto the pseudostate (l̃, s̃), while keeping all other global
symmetries. A substantial progress was achieved in Ref. [11],
where the relativistic feature of PSS was recognized. The
pseudo-orbital angular momentum l̃ is nothing but the orbital
angular momentum of the lower component of the Dirac
spinor, and the equality in magnitude but difference in sign of
the scalar potential S and vector potential V was suggested as
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the exact PSS limit. Meng et al. showed that exact PSS occurs
in the Dirac equation when the sum of the scalar S and vector V

potentials is equal to a constant [12]. Unfortunately, the exact
PSS cannot be met in real nuclei, much effort has been devoted
to the cause of splitting. In Refs. [13–15], it was pointed out that
the observed pseudospin splitting arises from a cancellation of
the several energy components, and the PSS in nuclei has
a dynamical character. A similar conclusion was reached in
Refs. [16,17]. In addition, it was noted that, unlike the spin
symmetry, the pseudospin breaking cannot be treated as a
perturbation of the pseudospin-symmetric Hamiltonian [18].
The nonperturbation nature of PSS has also been indicated in
Ref. [19]. Regardless of these pioneering studies, the origins
of the spin and pseudospin symmetries have not been fully
understood in the relativistic framework. Recently, we have
checked the PSS by use of the similarity renormalization group
and shown explicitly the relativistic origin of this symmetry
[20]. However, the dependence of the quality of PSS on the
relativistic effect has not been checked until now. In this paper,
we study the evolution of the spin and pseudospin symmetries
from the relativistic to the nonrelativistic to explore the
relativistic relevance of this symmetries.

The Dirac equation of a particle of mass m in external scalar
S and vector V potentials is given by

H = c�α · �p + β(mc2 + S) + V, (1)

where �α and β are the usual Dirac matrices. For a spherical
system, the Dirac spinor ψ has the form

ψ = 1

r

(
iGnκ (r) φκmj

(ϑ, ϕ)

Fnκ (r) �σ · r̂φκmj
(ϑ, ϕ)

)
, (2)

where n is the radial quantum number and mj is the projection
of angular momentum on the third axis. κ = ±(j + 1/2) with
“−” for aligned spin (s1/2, p3/2, etc.), and “+” for unaligned
spin (p1/2, d3/2, etc.). Splitting off the angular part and leaving
the radial functions satisfy the following equation:(

mc2 + �(r) −c d
dr

+ cκ
r

c d
dr

+ cκ
r

−mc2 + �(r)

)(
G (r)

F (r)

)
= ε

(
G (r)

F (r)

)
, (3)
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where �(r) = V (r) + S(r) and �(r) = V (r) − S(r). Based
on Eq. (3), a lot of work has been carried out to check the
origins of the spin and pseudospin symmetries [11,13–15,18,
19]. Although they are recognized as the symmetries of the
Dirac Hamiltonian, the important role of the relativistic effect
is still not very clear. In order to explore the relativistic effects
of this symmetries, the atomic units h̄ = m = 1 are adopted
instead of the conventional relativistic units h̄ = c = 1 in the
present system. For simplicity, the operator H is measured in
unit of the rest mass, mc2. Then the equation (3) is presented
as (

1 + λ2� λ
(− d

dr
+ κ

r

)
λ

(
d
dr

+ κ
r

) −1 + λ2�

) (
G (r)

F (r)

)
= ε

(
G (r)

F (r)

)
, (4)

where the Compton wavelength λ = h̄/mc = 1/c. In these
units, the result in the nonrelativistic limit can be obtained in
a very simple, intuitive, and straightforward manner by taking
the speed of light c → ∞ or the Compton wavelength λ → 0,
which is not possible in the latter units since c = 1.

In order to investigate the evolution from the relativistic
to the nonrelativistic, λ is regarded as a parameter and the
original Compton wavelength λ = h̄/mc is labeled as λ0.
The relativistic result corresponds to the solution of Eq. (4)
with λ = λ0. The result in the nonrelativistic limit can be
obtained from Eq. (4) by setting λ → 0. Thus, the evolution
from the relativistic to the nonrelativistic can be checked by
transforming λ from λ0 to 0. Then, the relativistic effects
of the spin and pseudospin symmetries can be investigated
by extracting the energy splittings between the spin or
pseudospin doublets, and these symmetries that develop
toward the nonrelativistic limit can be checked, and vice
versa.

In order to make this clear, we have solved Eq. (4) for a
Woods-Saxon type potential for �(r) and �(r), i.e., �(r) =
�0f (a�, r�, r) and �(r) = �0f (a�, r�, r) with

f (a0, r0, r) = 1

1 + exp
(

r−r0
a0

) . (5)

The corresponding parameters are determined by fitting the
energy spectra from the RMF calculations for 208Pb (see
Ref. [21]). The energy spectra of Eq. (4) are calculated by
expansion in harmonic oscillator basis.

The single-particle energy varying with the parameter λ

is displayed in Fig. 1, where it can be seen that the energy
decreases monotonously with λ decreasing for all the levels
available. The trend of energy with λ is toward the direction
of the nonrelativistic limit. With the decreasing of λ, the
calculation is closer to the nonrelativistic result. When λ is
reduced to λ/λ0 = 0.1, the solution of Eq. (4) is almost the
same as the nonrelativistic result. Furthermore, for the different
single-particle states, the sensitivity of energy to λ is different.
For the spin unaligned states, the decreasing of energy is faster
than that for the spin aligned states, which leads to the energy
splittings of the spin doublets which reduce with decreasing λ.
When λ is reduced to λ/λ0 = 0.1, the spin-orbit splittings
almost disappear for all the spin doublets. These indicate
that the spin symmetry becomes better as λ decreases, and

FIG. 1. (Color online) Variation of single particle energy with
λ/λ0.

the spin symmetry breaking is entirely due to the relativistic
effect.

To better understand the preceding claim, the energies in
several λ values are listed in Table I for all single-particle
levels. For comparison, Table I does also display the data
of the nonrelativistic calculations (the last column), which
are obtained by solving the Schrödinger equation Hψ(r) =
Eψ(r) with H = − h̄2

2m
( d2

dr2 − l(l+1)
r2 ) + �(r). From Table I,

it can be seen that the relativistic spin-orbit splitting (λ =
λ0) is considerably large. This splitting decreases with the
decreasing of λ. When λ/λ0 = 0.001, the energy of the spin
unaligned state in conjunction with that of the spin aligned
state degenerates to the nonrelativistic result. These indicate
that Eq. (4) reproduces well the process of development
from the relativistic to the nonrelativistic, and both results
of the relativistic and nonrelativistic can be obtained well
from Eq. (4) with an appropriate value of λ. Hence, the
relativistic effects of the spin and pseudospin symmetries can
be checked from the solutions of the Dirac equation with the
parameter λ.

In order to recognize clearly the relativistic effect of spin
symmetry, the energy splittings of spin doublets varying with
λ are plotted in Fig. 2, where it is shown that the energy
splittings decrease monotonously with reducing λ for all the
spin partners. When λ is reduced to λ/λ0 = 0.1, the energy
splittings of all the spin doublets are almost reduced to zero.
The detailed observation shows that the energy splittings
are more sensitive to λ for the states with higher orbital
angular momentum in the same radial quantum number. For
the states with the same orbital angular momentum, the
energy splittings appear as crosses in the different radial
quantum numbers. These reflect that the relativistic sensitivity
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TABLE I. The relativistic bound energies (E = ε − m, in MeV) of a Dirac particle for the Woods-Saxon potential with λ/λ0 =
1, 0.5, 0.1, 0.01, 0.001. The last column represents the nonrelativistic results, which are obtained from the solutions of the Schrödinger
equation Hψ(r) = Eψ(r) with H = − h̄2

2m
( d2

dr2 − l(l+1)
r2 ) + �(r).

λ/λ0 1 0.5 0.1 0.01 0.001 non

1s1/2 −59.206 −60.756 −61.109 −61.123 −61.123 −61.123
2s1/2 −41.592 −47.056 −48.305 −48.353 −48.353 −48.353
3s1/2 −18.358 −27.968 −30.287 −30.376 −30.377 −30.377
1p3/2 −52.763 −55.631 −56.306 −56.332 −56.332 −56.332
1p1/2 −52.263 −55.578 −56.304 −56.332 −56.332
2p3/2 −31.401 −38.680 −40.396 −40.462 −40.463 −40.463
2p1/2 −30.611 −38.576 −40.393 −40.462 −40.463
3p3/2 −7.694 −17.957 −20.633 −20.737 −20.738 −20.738
3p1/2 −6.999 −17.822 −20.628 −20.737 −20.738
1d5/2 −45.234 −49.459 −50.493 −50.533 −50.534 −50.534
1d3/2 −44.055 −49.329 −50.489 −50.533 −50.534
2d5/2 −20.999 −29.752 −31.897 −31.980 −31.981 −31.981
2d3/2 −19.573 −29.543 −31.890 −31.980 −31.981
1f7/2 −36.882 −42.381 −43.786 −43.841 −43.842 −43.842
1f5/2 −34.775 −42.137 −43.779 −43.841 −43.842
2f7/2 −10.759 −20.436 −22.933 −23.031 −23.032 −23.031
2f5/2 −8.777 −20.102 −22.922 −23.031 −23.032
1g9/2 −27.921 −34.508 −36.276 −36.346 −36.347 −36.346
1g7/2 −24.701 −34.114 −36.264 −36.346 −36.347
1h11/2 −18.545 −25.944 −28.044 −28.127 −28.128 −28.128
1h9/2 −14.117 −25.366 −28.025 −28.127 −28.128
1i13/2 −8.942 −16.792 −19.167 −19.262 −19.263 −19.263
1i11/2 −3.361 −16.000 −19.141 −19.262 −19.263

is different for the states with different quantum numbers.
When λ is reduced to zero, the spin-orbit splittings disappear
for all the spin partners, the nonrelativistic results are obtained

FIG. 2. (Color online) The energy splittings of spin doublets
�E = En,l−1/2 − En,l+1/2 varying with λ/λ0.

in excellent agreement with those from the solutions of the
Schrödinger equation. Namely, the spin-orbit splitting arises
completely from the relativistic effect, and can be treated as a
perturbation of the spin-symmetric Hamiltonian as indicated in
Ref. [18].

Different from the spin symmetry, the relativistic origin
of pseudospin symmetry is more complicated. In Fig. 3, we
display the energy splittings of pseudospin doublets varying
with the parameter λ. From there, it can be observed that
the energy splittings increase significantly with λ decreasing
for the pseudospin partners (2g9/2,1i11/2), (2f7/2,1h9/2), and
(3p3/2,2f5/2). Especially for (2g9/2,1i11/2), the increasing of
energy splitting is very obvious. For the doublets (2d5/2,1g7/2),
the increasing of energy splitting with decreasing λ is relatively
small. When λ/λ0 decreases below 0.6, the energy splitting
goes toward a stable value. The same phenomenon also appears
in the doublet (3s1/2,2d3/2). However for the pseudospin
doublets (2p3/2,1f5/2) and (2s1/2,1d3/2), an opposite evolution
of energy splitting with λ is disclosed. It shows that the origin
of pseudospin symmetry is more complicated than that of
spin symmetry. The pseudospin splitting cannot be attributed
uniquely to the relativistic effect. The quantum number of
single-particle states and the shape of the potential have an
important influence on this symmetry.

In order to better understand the relativistic effects of the
spin and pseudospin symmetries, we expand perturbatively
the Dirac Hamiltonian in Eq. (4) to analyze the effects of each
higher-order term on the energy splitting behaviors of both
spin and pseudospin doublets. Following Ref. [20], for the
Dirac particle, the expanded Hamiltonian up to the order 1/m3
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FIG. 3. (Color online) The energy splittings of pseudospin dou-
blets �E = En,l̃−1/2 − En−1,l̃+1/2 varying with λ/λ0.

is

H = � (r) + p2

2m
− λ2 1

2m2

(
Sp2 − S ′ d

dr

)
− λ2 κ

r

�′

4m2

+ λ4 S

2m3

(
Sp2 − 2S ′ d

dr

)
+ λ4 κ

r

S�′

2m3
+ λ2 �′′

8m2

− λ2 p4

8m3
− λ4 �′2 − 2�′�′ + 4S�′′

16m3
, (6)

FIG. 4. (Color online) The spin energy splittings of each com-
ponent Oi (i = 1, 2, . . . , 5) varying with λ, where the splittings
caused by the O1, O2, . . ., O5 are respectively labeled as “nonrela,”
“dynam1,” “spin-orb1,” “dynam2,” “spin-orb2,” and the total energy
splitting is labeled as “total.”

where p2 = − d2

dr2 + κ(κ+1)
r2 . Based on the same considerations

as Ref. [20], H is decomposed into the eight components:
�(r) + p2

2m
, −λ2 1

2m2 (Sp2 − S ′ d
dr

), −λ2 κ
r

�′
4m2 , +λ4 S

2m3 (Sp2 −
2S ′ d

dr
), +λ4 κ

r
S�′
2m3 , +λ2 �′′

8m2 , −λ2 p4

8m3 , −λ4 �′2−2�′�′+4S�′′
16m3 ,

which are respectively labeled as O1,O2, . . . , O8. O1 cor-
responds to the Hamiltonian in the nonrelativistic limit,
i.e., the Schrödinger part of H . O2(O4) is the dynami-
cal term relating to the order 1/m2(1/m3). O3(O5) is the
spin-orbit coupling corresponding to the order 1/m2(1/m3).
The eigenvalues of H are calculated with the fully same
�(r) and �(r) as that in calculating the exact solutions of
Eq. (4).

For recognizing the relativistic effect of SS, we analyze the
reason why the energies of the spin unaligned states decrease
faster than those of the spin aligned states when λ decreases.
As an illustrated example, we display the energy splittings
of every component Oi(i = 1, 2, . . . , 5) varying with λ for
the spin doublets (1p1/2, 1p3/2) and (1g7/2, 1g9/2) in Fig. 4,
where we neglect the results of O6,O7, and O8 because
their contributions to the energy splitting are minor and do
not influence on the total energy splitting behavior with λ.
From Fig. 4 it can be seen that the contributions of all the
Oi(i = 2, 3, 4, 5) to the energy splittings between the spin
unaligned states and the spin aligned states are positive, and
the positive energy splittings decrease with decreasing λ. It
is for this reason that the energies of the spin unaligned
states decrease faster than those of the spin aligned states
with decreasing λ. Compared with O3 (the spin-orbit coupling
corresponding to the order 1/m2), and the contributions of
O2, O4, and O5 to the spin energy splittings are relatively
minor. The total energy splittings are dominated by the
contribution of O3 when λ is sufficiently small. This means
that, as the relativistic effect becomes weak, the spin splittings
are almost entirely due to the spin-orbit coupling. For the
different spin partners, the energy splitting behaviors with λ

are same except for the extent of splittings, as displayed in
Fig. 4 for the spin doublets (1p1/2, 1p3/2) and (1g7/2, 1g9/2).
These indicate that the spin symmetry originates completely
from the relativistic effect, and possesses the perturbation
attribute claimed in Ref. [18]. To understand the relativistic
effect of PSS, we analyze the cause of the various energy
splitting behaviors of pseudospin doublets. In Fig. 5, we show
the energy splittings of each component Oi(i = 1, 2, . . . , 5)
varying with λ for the pseudospin partners (2s1/2, 1d3/2) and
(2f7/2, 1h9/2). From there, it can be seen that the pseudospin
energy splittings caused by the Schrödinger part of H are
dominated. This splittings are reduced by the contribution
of spin-orbit coupling, and added by the contribution of
dynamical terms. For the pseudospin partner (2s1/2, 1d3/2),
with the decreasing of λ, the contribution of the pseudospin
breaking (the dynamical terms) declines faster than that of
the pseudospin improvement (the spin-orbit coupling), which
results in better PSS when λ decreases. However for the
(2f7/2, 1h9/2), the energy splittings caused by the pseudospin
breaking varying with λ are relatively slower than that by
the spin-orbit coupling, which leads to the PSS becoming
worse with decreasing λ. These cause the different energy
splitting behaviors of pseudospin doublets with λ. Hence, the
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FIG. 5. (Color online) The same as Fig. 4, but for the pseudospin
energy splittings.

pseudospin splitting cannot be regarded as a perturbation in
agreement with the claim in Ref. [18].

In addition to the energy splittings associated with the
relativistic effects, the wave function splittings between the
(pseudo)spin doublets are also associated with the relativistic
effects. An illustrated example is displayed in Fig. 6, where
the upper component of the Dirac spinor for the states 1g7/2,9/2

is depicted in several λ values. From Fig. 6, it can be seen that
the wave function splitting of the spin doublet is obvious for a
relativistic particle (λ/λ0 = 1). With the development toward
the nonrelativistic direction (to reduce λ), the wave function
splitting of the spin doublet decreases, which is in agreement
with the case of level splitting. For the pseudospin symmetry,
the lower component of the Dirac spinor for the pseudospin
doublet (2g9/2,1i11/2 ) is drawn in Fig. 7 in several λ values. The
wave function splitting of the pseudospin doublet is obvious
when λ/λ0 = 1. Different from the spin splitting, we cannot
see that the pseudospin splitting reduces with λ decreasing,
which is consistent with the case of level splitting.

FIG. 6. (Color online) The upper component of the Dirac
spinor G(r)/r for the spin doublet (1g7/2,1g9/2) with λ/λ0 =
1.0, 0.8, 0.6, 0.4.

FIG. 7. (Color online) The lower component of the Dirac spinor
F (r)/r for the pseudospin doublet (2g9/2,1i11/2) with λ/λ0 =
1.0, 0.8, 0.6, 0.4.

In summary, the Dirac Hamiltonian is scaled in the atomic
units h̄ = m = 1, which allows us to take the nonrelativistic
limit by setting the speed of light c → ∞ or the Compton
wavelength λ → 0. The evolution toward the nonrelativistic
limit is investigated from the solutions of the Dirac equation by
a continuous transformation of the parameter λ. The solutions
of the Dirac equation corresponding to λ = h̄/mc and λ = 0
represent, respectively, the relativistic result and that in the
nonrelativistic limit. To transform the parameter λ from h̄/mc

to 0, the solutions of the Dirac equation show the evolution
from the relativistic to the nonrelativistic limit. The relativistic
effects of the spin and pseudospin symmetries are checked
from the solutions of the Dirac equation with the parameter λ.
It shows that the spin splittings decrease monotonously with
reducing λ for all the spin partners. When λ is reduced to zero,
the spin-orbit splittings disappear, which is in agreement with
the result in the nonrelativistic calculations. For the pseudospin
symmetry, the energy splittings increase in several partners,
show no change, or even decrease in another set of partners.
Compared with the spin symmetry, the origin of pseudospin
symmetry is more complicated, and cannot be attributed
uniquely to the relativistic effect. The quantum number of
single-particle states and the shape of the potential have an
important influence on this symmetry. By the perturbation
calculations of the Dirac Hamiltonian, the various energy
splitting behaviors of both spin and pseudospin doublets
with λ are explained, which originates from the different
contributions of each component to the energy splittings. The
result supports the claim in Ref. [18], the spin splitting can be
treated as a perturbation, while the pseudospin splitting cannot
be regarded as a perturbation. The same conclusion can also
be obtained from the wave function.
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