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Two-nucleon spectral function of the 16O nucleus using the lowest-order constrained variational
state-dependent correlation functions of the Reid and Av18 interactions
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In this work, the two-nucleon spectral functions (TNSFs) are defined in terms of the state- and the density-
dependent correlation functions in the framework of the lowest-order constrained variational (LOCV) method
to calculate the TNSF of the 16O nucleus in the 16O(e, e′NN )14C reaction. The Reid soft-core (Reid68) and the
Av18 potentials are used as the internucleon interactions. Since, the short-range correlation effects are imposed
on the wave functions for the individual channels (e.g., the 1S0 and 3PJ channels); therefore, the defect wave
functions are obtained for various channels such that the high relative momenta (p > 4 fm−1) are ignored. The
resulting TNSFs for the 16O nucleus are compared with those of the dressed random phase approximation
(DRPA) calculations of Geurts et al. and the experimental predictions, especially those of Onderwater et al.,
(NIKHEF group), where reasonable agreement is found. It is shown that the optimized state-dependent defect
wave functions have substantial effects on the TNSF and it is not justified to use the simplified parametrized
two-body correlation functions in all of the channels. In agreement with the experimental data of Onderwater
et al., the knockout of a 1S0 pair proton dominates the above reaction cross section. Finally, it is demonstrated
that the 0+ and 2+ peaks, which are expected to be observed in the above reaction cross section, are moved to
the lower momenta of out-going protons when the state-dependent correlation functions are imposed.
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I. INTRODUCTION

The high-energy inelastic electron scattering experiments
from the hadrons and the nuclei, have played a leading
role in understanding of the structure of these systems. In
particular, the two-nucleon knockout reactions (e, e′NN ) are
a powerful tool to investigate two-body correlations in nuclei.
The (e, e′NN ) cross section is related to the two-nucleon
spectral functions (TNSFs) which yield the probability to
remove two nucleons with momenta k1 and k2 from a nucleus,
leaving the residual system with the excitation energy ω. So
the TNSF contain information on the nuclear structure, the
nucleon-nucleon correlations and, in particular, the nucleon-
nucleon interactions. One of the features of each nucleus TNSF
is the short-range correlations (SRCs) that carry information
about nucleon-nucleon correlations and interactions among the
constituents of the specific system, which is approximately
the same for different nuclei (A � 4). In contrast to the
SRCs, the long-range correlations (LRCs) are sensitive to the
whole nuclear system and behave differently when one moves
from light nuclei to heavier nuclei. They are related to the
low-energy excitations of the nucleus and can be quite different
from those in the light nuclei, for which the low-energy
excitations are rather sensitive to the shell structure. On the
other hand, the nuclear forces indeed are the main factor in
the stability of the nucleus, because the LRC and the SRC are
much larger than the electrical forces and should be taken into
account in calculating any quantity in the above collisions.
So one cannot ignore these correlations, even for a very
fast probe (i.e., sent to the target), on the assumption that
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at higher energies the nuclear system can be visualized as a
noninteracting Fermi gas.

The spectral function of the many-fermion systems can
give us the important quantities of interests; for example, the
one-particle ground-state energy, but this may not suffice in
the case of three and more nucleon interactions. However,
by calculating the TNSF of a nucleus, one can extract the
correlation energy between the two particles and finally find
the total ground-state energy of the system. Therefore, as was
pointed out, the calculation of the TNSF of a nucleus is an
important quantity of interest. In recent years, quite a number
of theoretical works have been implemented for calculating the
two-proton spectral functions with different approximations
[1–8]. In these calculations the SRC and the LRC effects have
been taken into account by using the different approximations,
which have been able to closely explain the experimental
properties of the target ground state [1–4]. Barbieri et al. has
also considered the 16O(e, e′np) reaction with the inclusion of
the � isobar current. The LRCs, which describe the collective
motion of nucleons at low energy, were calculated by this
group within a model space by solving the hole-hole (hh)
DRPA equations.

Obviously, as was mentioned before, the nucleon-nucleon
correlations has a major role in the (e, e′NN ) reactions than
the (e, e′N ) reactions. The description of these reactions
have been implemented by the Pavia group [9–13]. The
abundant experimental results have been also obtained until
one can estimate short-range and long-range correlations for
the different distances [8,14,15]. In one of the experimental
studies, it is shown that the 1S0 proton-pair emission in the
16O(e, e′pp)14C reaction is more dominant than the other
proton-pair relative states [8,14,15].
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The aim of the present work is to calculate the TNSF of the
16O nucleus in the framework of the lowest-order constrained
variational (LOCV) formalism, which is capable of producing
the optimized state and the density dependent correlation
functions. The validity of the LOCV method, as well as its
application to nuclear matter and finite nuclei, has been fully
discussed in the works of Owens et al. [16–18] and Modarres
et al. [19–24].

So, the article goes as follows: Section II is started by
introducing the fundamental definition of the TNSF and writ-
ing down these functions for nucleons with high momentum.
We have already studied the one-nucleon-removal spectral
function in the impulse approximation (IA) [25–27]. In the
IA, two assumptions are mainly made: (1) at high momentum
transfer, the target is seen as a set of discrete particles, and (2)
the final-state interactions (FSIs) which take place between the
hit constituent and the (A − 1)-particle spectator system are
assumed to be negligible [25]. But in the case of the TNSF,
one should focus mainly on the two-nucleon correlations
and, for example, the shell structures in the specific nucleus.
Therefore, in Sec. III, the short- and long-range correlations
are considered by using (i) the LOCV correlation functions,
(ii) the two-nucleon interactions, and (iii) the appropriate
model space for our single-particle shell structure with inclu-
sion of the wave functions of individual nucleons in the har-
monic oscillator basis. The correlated, uncorrelated, and de-
fect wave functions in terms of the different channel correlation
functions are also defined. Finally, in the last section, (IV), the
numerical results of the two-proton spectral functions and the
corresponding 16O(e, e′NN )14C cross section are discussed
by using the Reid soft-core [28] (Reid68) and Av18 [29] inter-
actions and comparing the final-state energies of 14C nucleus
with the experimental results to analyze the preciseness of the
LOCV approximation against the other theoretical approaches
such as the DRPA [1–3,5] as well as the experimental
data [8,14,15].

II. CALCULATION OF TNSF OF
MANY-FERMION SYSTEMS

The TNSF of many-fermion systems are usually written as

Shh(p1, p2, , p′
1, p′

2, ω) = 1

π
ImGhh(p1, p2, , p′

1, p′
2, ω),

(1)

where, in the upper complex plane, the two-particle Green
function [30] Ghh is simply defined by

Ghh(p1, p2, , p′
1, p′

2, ω)

= 〈0|a†
p′

1
a
†
p′

2

1

H − E0 + ω − iη
ap2ap1 |0〉. (2)

Now, if one substitutes equation (2) into equation (1), it is
found that

Shh(p1, p2, , p′
1, p′

2, ω)

= 〈0|a†
p′

1
a
†
p′

2
δ(ω + H − E0)ap2ap1 |0〉. (3)

In the above equation H, |0〉, (ψA
0 ), E0, and ω are the total

Hamiltonian, the ground state, the ground-state energy, and
the excitation energy of the target system, respectively. One
can simplify equation (3) by using the orthogonality relation
(i.e.,

∑
n |n〉〈n| = 1). Therefore, we have

Shh(p1, p2, , p′
1, p′

2, ω)

=
∑

n

〈
ψA

0

∣∣a†
p′

1
a
†
p′

2
|ψn,A−2〉〈ψn,A−2|ap2ap1

∣∣ψA
0

〉

×δ(ω − (E0,A − En,A−2)), (4)

where, as we stated before, ψA
0 is the target ground state

(in this work the 16O nucleus), and ψn,A−2 denotes the nth
excited state of the residual nucleus (in this work the 14C
nucleus). a

†
p (ap) are the creation (destruction) operators of

nucleons with momentum p. Now we can expand the creation
(destruction) operators in terms of the shell-model quantum
numbers to write the TNSF in terms of the final states with
angular momentum J . Therefore, it is assumed that

ap = a|p〉 =
∑

η

a|η〉〈η|p〉 =
∑

η

φη(p)aη, (5)

where η = {nη, lη, jη,mη}. The pair wave function of the
creation (destruction) particles in the angular momentum
coupled form of J and M is written as [30–32]

	JM
ab (p′

1, p′
2) =

∑
mγ mδ

(jγ mγ jδmδ|JM)φγ (p′
1)φδ(p′

2). (6)

In the above equation, the Clebsch-Gordan coefficient is em-
ployed and the indices a and b denote the basis states without
the magnetic quantum number (ma) (i.e., a = {na, la, ja}).
Then, it is possible to write equation (4) in terms of the angular
momentum J and simplify the resulting equation by using
equations (5) and (6):

Shh
J (p1, p2, , p′

1, p′
2, ω)

=
∑
n,M

〈
ψA

0

∣∣(a†
p′

1
a
†
p′

2
)JM |ψn,A−2〉〈ψn,A−2|(ap2ap1 )JM

∣∣ψA
0

〉

×δ(ω − (E0,A − En,A−2)), (7)

where

(a†
p′

1
a
†
p′

2
)JM =

∑
ab

	�JM
ab (p′

1, p′
2)(a†

aa
†
b)JM,

(8)
(ap1ap2 )JM =

∑
cd

	JM
cd (p1, p2)(acad )JM.

The TNSF can be evaluated in terms of the coupled wave
function and the two-nucleon-removal amplitude (Xn�

abJ ) (also
see Table I and the related discussion in the Sec. IV):

Shh
J (p1, p2, , p′

1, p′
2, ω)

=
∑

n

∑
abcd,M

	�JM
ab (p′

1, p′
2)Xn�

abJ Xn
cdJ 	JM

cd (p1, p2)

×δ(ω − (E0,A − En,A−2)), (9)

where

Xn�
abJ = 〈

ψA
0

∣∣|(a†
aa

†
b)J |∣∣ψn,A−2

J
〉
. (10)
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In above equations, again the completeness relations∑
n |ψn,A−2

J 〉〈ψn,A−2
J | = 1 for the final states (i.e., the 14C

nucleus) have been used. Therefore, the different states are
orthogonal:

〈
ψ

n,A−2
J

∣∣ψn′,A−2
J ′

〉 = δJJ ′δnn′ ,

which topic this point that (acad )JM |ψA
0 〉 are the superposition

of states (e.g., |ψn,A−2
JM 〉) as far as Xn

abJ are nonzero. This con-
dition decreases the number of statements for the calculation
of Shh

J .

III. LOCV STATE AND DENSITY-DEPENDENT
CORRELATION FUNCTIONS f ( p)

α (r12, ρ)
AND NUCLEUS WAVE FUNCTION ψA

0

In order to proceed further, beside the harmonic oscillator
wave functions that are used as the single-particle state of
the 16O nucleus, the two-body correlation functions in the
specific channels (e.g., 1S0, 3PJ , etc.) are needed. They are
taken from our LOCV calculation for the nuclear matter at
the given density of the 16O nucleus [see equations (27)–(30),
below]. So it is useful to briefly introduce the application of
the LOCV formalism to nuclear matter and nuclei.

The nuclear matter Hamiltonian is usually written as

H =
∑

i

Ti + 1

2

∑
i �=j

Vij , (11)

where Ti and Vij are the one-body kinetics and the two-body
nucleon-nucleon potential operators, respectively. While Ti

is −h̄2∇i
2/(2m), Vij has a complicated structure of the vari-

ous phenomenological nucleon-nucleon potentials. The Reid
soft-core potential (Reid68) [28] has the channel-dependent
structure with the following operator dependency:

Vij =
∑
α,k

vα
k (ij )Ok, (12)

where α = {J, L, S, T } (the relative quantum numbers of
two nucleons) and k = 1, 2, 3 [note that vα

k (ij ) are channel
dependent]. Ok are operators and are equal to 1, S12 (the
noncentral tensor operator for the NN → NN transition), and
L · S (the spin-orbit coupling).

On the other hand, the operator-type potentials such as the
Argonne Av18 interaction [29], which is also intended to be
used in this work, are usually written as follows:

Vij =
∑

k

vk(ij )Ok(ij ), (13)

where, respectively,

Ok=1 to Ok=14

= 1, (σ1 · σ2), (τ1 · τ2), (σ1 · σ2)(τ1 · τ2), S12, (τ1 · τ2)S12,

× L · S, (τ1 · τ2)L · S, L2, (τ1 · τ2)L2, (σ1 · σ2)

× L2, (σ1 · σ2)(τ1 · τ2)L2, (L · S)2, (τ1 · τ2)(L · S)2,

(14)

with the four additional operators which break the charge
independence in the Av18 interaction:

Ok=15 to Ok=18 = T12, (σ1 · σ2)T12, S12T12, (τz1 + τz2).

(15)

T12 is the corresponding noncentral isotensor operator.
The eighteen components of the above operators, vk(r12)
are purely central functions with no additional dependence
on the two nucleons’ relative quantum numbers (α) [29]
[unlike the Reid-type interactions, there is no explicit channel
dependency for the functions, vp(r12)], and they are labeled
c, σ, τ, στ, t, tτ, ls, lsτ, l2, l2σ, l2τ, l2στ, ls2, ls2τ, T ,

σT , tT , and τz.
In the LOCV formalism, we consider a trial many-body

wave function of the following form to evaluate the Rayleigh-
Ritz upper bound to the ground-state energy [33,34]:

ψv = F	, (16)

where 	 is a slater determinant of the plane waves of the A
independent nucleons,

	 = A
∏

i

exp(i�ki · �ri). (17)

F is the A-body correlation operators which will be approxi-
mated by its Jastrow type [35]; namely,

F(1 · · ·A) = S
∏
i>j

F(ij ), (18)

and A and S are antisymmetrizing and a symmetrizing
operators, respectively. The cluster expansion energy is written
as [16–24]

E([f ]) = 1

A
〈ψv |H |ψv〉
〈ψv | ψv〉 = E1 + E2 + E3 + · · · � E0, (19)

where E0 is the true ground-state energy of nuclear matter.
In the lowest order, the above series are truncated after the
two-body cluster term E2. The one-body term E1 is just the
familiar Fermi gas kinetic energy:

E1 = 1

A
∑

i

Ti = 1

A
∑

i

h̄2ki
2

2m
= 3

5

h̄2kF
2

2m
, (20)

where kF = ( 3
2π2ρ)1/3 and ρ are the Fermi momentum and the

density of uniform nuclear matter, respectively. The two-body
energy E2 is

E2 = 1

2A
∑
ij

〈ij | V(12) | ij 〉a, (21)

and the “effective interaction operator” V(12) [33–35] is

V(12) = − h̄2

2m

[
F(12),

[∇2
12,F(12)

]] + F(12)V (12)F(12).

(22)

The two-body matrix elements 〈ij |O|ij 〉a are antisymmetrized
with respect to the single-particle plane waves, and the
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two-body correlation operators F(ij ), which depend on the
different channels and the density, are defined as [16–24]

F(ij ) =
3∑

α,p=1

f (p)
α O(p)

α (ij ). (23)

Again, α = {J, L, S, T } and the operators O(p)
α (ij ) are

assumed as follows:

O(p)
α = 1, S12. (24)

The values of p are set to unity for L = 0 and the spin-triplet
channels with L �= J �= 1. But for the L = J ± 1 channels,
it takes the values of 2 and 3. As in our previous works, it
is also required that the correlation functions f (1)

α , f (2)
α , and

(f (3)
α ) heal to the Pauli function fP (r) (zero),

fP (r) =
{

1 −
[

3

2
l(kF r)

]2}−1/2

, (25)

where JJ (x) are the spherical Bessel functions

l(x) = J1(x)

x
. (26)

Note that, in our previous works [16–24], the coupled
tensor channels have been projected to ( 2

3 + 1
6SI

12) and
( 1

3 − 1
6SI

12) operators in order to have the same boundary
condition for all correlation functions. Then, in this format,
one finds f (2)

α = [ 2
3F (2)

α + 1
3F (3)

α ] and f (3)
α = 1

6 [F (2)
α − F (3)

α ],
where F (2)

α , F (3)
α → fP (r); that is, the same boundary con-

dition as the pure central channels (the shapes of the LOCV
state-dependent correlation functions in the various channels
are given in the Figs. 4 to 7 of Ref. [36]).

The normalization constraint 〈ψv | ψv〉 = 1 that we impose
on the channel two-body correlation functions f

(p)
α , as well

as the coupled and the uncoupled differential equations
coming from the Euler-Lagrange equations, are described in
Refs. [16–24].

Now, the works of Modarres et al. [23,24,37,38] are
followed to calculate approximately the two-body wave func-
tions and the two-nucleon overlap functions for each channel
by using the above density- and state-dependent correlation
functions in the harmonic oscillator basis, similar to the dressed
random phase approximation (DRPA) of Refs. [1–3]. As usual,

r = 1√
2

(r1 − r2) = 1√
2

r12,

(27)

R = 1√
2

(r1 + r2) =
√

2R12,

are defined and (here again it is assumed that {α =
L, J, S, T } with abbreviations [j ] = 2j + 1, etc., and the
first and the second curly brackets are the 6 − j and the 9 − j

symbols [31], respectively),

ψA,α,(p)(r, R) =
∑

[a,b]∈M �=(α,p)

Cabf
(p)
α

(√
2r, ρ

(
R√

2

))

×〈r, R|α, nL,NL〉, (28)

with [the model space M is explained after equation (34) and
[a, b] means a summation over all of the quantum numbers,

except those indicated],

Cab = 1√
2
{[ja][jb][J ][λ]2[S][J ][T ](1 − (−1)l+S+T )} 1

2

×
{L L λ

S J J

} ⎧⎪⎨
⎪⎩

la
1
2 ja

lb
1
2 jb

λ S J

⎫⎪⎬
⎪⎭

×(−1)(L+λ+J+S)〈nala, nblb, λ | nL,NL, λ〉, (29)

where the local-density approximation has been used
[23,24,37,38]; that is, 1

2 [ρ(|r1|) + ρ(|r2|)] is replaced by
ρ(| R√

2
|) = ρ( |r1+r2|

2 ). 〈nala, nblb, λ|nL,NL, λ〉 are the famil-
iar Brody-Moshinsky brackets [39] and a and b run over the
occupied orbits in the independent-particle model. In the above
equations, the uncorrelated one-body density is defined as
follows in terms of the harmonic oscillator wave functions
for each nucleus:

ρ(rj) =
A∑
i

|〈rj|i, h̄ω〉|2. (30)

ψA
0 (r, R) can be calculated for given A by summing over α

and p in equation (28). However, in this work, the complexity
of the center-of-mass dependence of the correlation functions
is ignored and the input correlation functions for each channel
is used at the empirical nuclear matter density (i.e., 0.17 fm−3)
with the corresponding channel energy (this approximation
will be investigated in future works). So, with this assumption,
equation (28) reads

ψA,α,p(r, R)

=
∑
a,b

Cabf
p
α (

√
2r, ρ = 0.17)〈r, R|α, nL,NL〉, (31)

which can be simply separated into the relative and the center-
of-mass coordinate,

ψA,α,p(r, R)

=
∑
a,b

Cab

[
f p

α (
√

2r, ρ = 0.17)〈r|α, nL〉][〈R|NL〉]. (32)

The radial part of the above equation in the different channels
and in terms of our channel-, tensor-, and density-dependent
correlation functions, which will be used to calculate the defect
function [1,2], can be written as follows:

ψ(1S0) = f
(1)

1S0
φ(1S0),

ψ(3P0) = f
(1)

3P0
φ(3P0),

ψ(3P1) = f
(1)

3P1
φ(3P1),

(33)
ψ(3P2) = [

f
(1)

3P2−3F2
− 2

5f
(2)

3P2−3F2

]
φ(3P2)

+ 6
√

6f
(2)

3P2−3F2
φ(3F2),

ψ(1D2) = f
(1)

1D2
φ(1D2),

ψ(3F2) = [
f

(1)
3P2−3F2

− 8
5f

(2)
3P2−3F2

]
φ(3F2)

+ 6
√

6f
(2)

3P2−3F2
φ(3P2),
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where the quantities φ are the relative parts of the two-nucleon
harmonic oscillator wave functions in the related channel.
Obviously, the Fourier transform of equations (32) or (33)
can be used to calculate ψA,α,p(p, P) or ψA,α,p(p) by ignoring
the center-of-mass dependence.

In order to calculate the TNSF for the 16O(e, e′pp)14C
reaction:

Shh
J (p1, p2, , p′

1, p′
2, ω)

=
∑

n

∑
[abcd]∈M �=J ,M

��JM
ab (p′

1, p′
2)Xn�

abJ Xn
cdJ �JM

cd

×(p1, p2)δ
(
ω − En,A−2

J
)
, (34)

in which the uncorrelated shell-model wave functions
	JM

cd (p1, p2) have been replaced by the correlated ones [i.e.,
�JM

cd (p1, p2)]. So, one should calculate �JM
ab (p1, p2) and

Xn
abJ [see equations (6) and (10), respectively] in the center of

mass and the relative coordinate in momentum space. This
can be done by using equations (23), (28), and (29). The
16O and 14C nucleus wave functions, which are needed in
equation (10), are defined as

ψA=16
0 (r, R) =

∑
α,p

ψA=16,α,(p)(r, R), (35)

and

ψ
n,A=14
J (r, R) =

∑
[a,b]∈M �=J

Cabf
(p)
α

(√
2r, ρ

(
R√

2

))

×〈r, R|α, nL,NL〉, (36)

respectively. For calculation of �JM
cd (p1, p2) the following

equation is used:

�JM
ab (p1, p2) = [F(|p1 − p2|)]J=J+L+S 	JM

ab (p1, p2). (37)

Then, by inserting the equations (35) and (36) in equation (10)
and using the Wigner-Eckart theorem for the reduced second-
rank tensor [31], the matrix elements in question (i.e., the shell
model amplitudes) can be evaluated. Note that, in the above
equations, the summation over the shell-model configurations
has also been limited to the model space M which is discussed
in Refs. [1–3]. So, in this work, the SRC and the LRC are
considered in the LOCV approximation, but with a similar
procedure as that of Refs. [1–3], which will be discussed
below. In Refs. [1–3], the Bethe-Goldstone equation (BGE)
has been used for consideration of both the SRC and the LRC.
In these references, the SRC has also been discussed in the
framework of the correlated basis function (CBF) method [40].
However, in the CBF formalism, the correlated many-body
wave functions are not fully state dependent and usually are
simply parametrized [1–3,40–43]. In the present paper, the
model space M is also limited to the 1s up to the 2p 1f

harmonic oscillator shell-model configuration (rather than the
1s and the 1p shells, but up to the large 100h̄ω in the harmonic
oscillator basis) in the 16O nucleus. With these assumptions,
as was discussed in the introduction, the SRC and the LRC are
treated independently within the correlation functions f

(p)
α and

the shell-model amplitude Xn
cdJ , respectively, with the limited

space M [1–4].

Finally, analogous to the BGE, from equation (28), the total
defect wave functions can be written as [also see equation (33)]

χα(r, R) =
∑

[a,b]∈M �=α

Cab

[
f p

α

(√
2r, ρ

(
R√

2

))
− 1

]

×〈r, R|α, nL,NL〉, (38)

and with the omission of this center-of-mass dependence of
the correlation functions [see equation (32)],

χα(r, R) =
∑

[a,b]∈M �=α

Cab

[
f p

α (
√

2r, ρ = 0.17) − 1
]

×〈r|α, nL〉〈R|NL〉, (39)

where, similar to Ref. [3], the Fourier transform of the relative
part of equation (39), χα(r), can be used to calculate the defect
wave functions, χα(p). For example:

χ
1S0 (r) = R00(r)

[
f

(1)
1S0

(ρ = 0.17, r) − 1
]
, (40)

in which R00(r) is the relative part, with n = 0, L = 0,
of the two-nucleon harmonic oscillator wave function, etc.
As was pointed out before, the shape of our state- and
density-dependent correlation functions has been given in
Ref. [36]. But it is clearly seen from equation (38) that, in
general, it is not possible to factorize the calculated defect
function for the finite nuclei into the product of wave functions
depending on the relative and center-of-mass coordinate [1]
[see discussion after equation (33) of this reference], unless
one averages over the center-of-mass coordinate. But here
our correlation functions are state dependent and the different
states are orthogonal to each other. On the other hand, because
of the LOCV normalization constraint, which comes from the
convergence of the cluster expansion [22,34],

〈� | �〉 = 1 + κ2 + κ3 + · · · , (41)

and the overshot behavior of the LOCV correlation functions,
we have κ2 = 0 and κ3 � 10−3. So in the LOCV framework,
even the normalization of the total wave function is satisfied
(see Refs. [23,24]).

As was stated in the introduction and in the above equations,
both the short- and the long-range parts of the nucleon
correlations have been employed (i.e., the SRC) via the
state- and the density-dependent correlation functions from
our LOCV calculation with the inclusion of nucleon-nucleon
interactions and the LRC by the long-range parts of the
correlation functions (note that our correlation functions
satisfy the Pauli functions, so they do not become unity in
the short distances) and the harmonic oscillator configuration
space of the removal pair (i.e., the shell structure and the
removal energy). Finally, equation (34) can be transformed to
the relative and the center-of-mass momentum coordinates of
the pair particle with the similar relation as the one used for
coordinate space in equation (27):

Shh
J (p, P, , p′, P′, ω)

=
∑

n

∑
[abcd]∈M �=J ,M

��JM
ab (p′, P′)Xn�

abJ Xn
cdJ �JM

cd (p, P)

×δ
(
ω − En,A−2

J

)
. (42)
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We use the same harmonic oscillator parameters, the config-
urations, the transformation, etc., which have been adapted
in Refs. [1–3,44] for the calculation of the TNSF of the 16O
nucleus (see the next section for the numeric values of our
LOCV two-nucleon removal amplitudes).

IV. RESULTS, DISCUSSION, AND CONCLUSION

In Fig. 1, the defect wave functions, which are the Fourier
transform of the radial part of equation (39), are plotted by
using our calculated LOCV correlation functions [36] in the
different channels for two potentials: the Av18 and the Reid68.
There is not much difference between the defect wave functions
of Av18 and Reid68 interactions, especially in the 1S0 and
the 3P1 channels. A very similar momentum dependence is
also observed for the above defect wave functions in the other
channels. The diamonds are the results of BGE-DRPA [1,2]
calculation with the Reid68 potential. There is reasonable
agreement between the LOCV and the BGE-DRPA defect
wave functions. Geurts et al. have also compared their BGE-
DRPA defect wave functions with those of CBF [1–3,40–43]
(the filled diamonds), but with the Av14 interaction. Similar
discrepancies are also observed between the BGE-DRPA and
the CBF results. Since there is not much difference between
the Av14 and Av18 interactions, one can conclude that our
defect functions are much closer to those of BGE-DRPA than
the CBF, since, as we stated before, in the CBF calculation

the correlation functions are not fully state dependent but are
simply parametrized (i.e., they are not functionally optimized).

Our LOCV two-proton-removal amplitudes from the 16O
nucleus to the 14C nucleus ground state 0+ are given in
Table I. There is not much difference between the amplitudes
calculated by us and those given in Table I of Ref. [3]. Similar
to the above conclusion, the present result shows that the
harmonic oscillator wave functions for each configuration have
the main effect on the calculation of the two-proton-removal
amplitudes.

The calculated TNSF, equation (42), for the removal of a 1S0

proton pair from the 16O nucleus in terms of the energy ω to the
final state in the 14C nucleus, relative to the ground-state energy
of the nucleus 16O, are plotted in Fig. 2 by using the Reid68
potential. Note that the first 0+ state only comes from the
two-proton separation energy. In the above figure the excited
energy is calculated from Ek = T + Eα

2 [16–22], where T =
(2n + L + 2N + L + 3)h̄ω0 [23,24,37,38]. Here, α =1S0 and
ω0 = 16.3 MeV [23,24,37,38], which is near to the oscillator
parameter that has been used in the DRPA calculations [1,2]
(also see Table I and the similar table in Ref. [3] for the choice
of a harmonic oscillator configurations). As was pointed out
above, there are not many differences between our Xn�

abJ and
those of Geurts et al. in Ref. [3]. If one considers the 0+ peak
to have zero energy, then this figure shows that the 2+ peak (the
strongest peak) and the 2+/0+ peak have 6.5 and 10.8 MeV
energies, respectively, which are closer to the experimental
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FIG. 1. Defect wave functions calculated for different channels with Reid68 (dashed curve) and Av18 (full curves) potentials by using LOCV
state- and density-dependent correlation functions. The diamonds (filled diamonds) are the BGE-DPRA (CBF) calculations of references [1,2]
with the Reid68 (Av14) potential.
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TABLE I. LOCV two-proton-removal amplitudes Xn�
abJ for

16O(e, e′pp)14C reaction explained in the text for the model space 0s

up to 1p0f . The quantum number ρ is the total number of harmonic
oscillator quanta of the pair: ρ = 2n + L + 2N + L.

n N ρ 0+

1S0; L = 0 0 1 2 − 0.353
1 0 2 0.353
0 0 0 0.088
1 1 4 − 0.069
0 2 4 0.038
2 0 4 0.038
1 2 6 0.023
2 1 6 − 0.023

3p1; L = 1 0 0 2 0.610
0 1 4 +0.030
1 0 4 − 0.030

1D2; L = 2 0 0 4 0.023
n N ρ 2+

1S0; L = 2 0 0 2 0.580
1 0 4 +0.016
0 1 4 − 0.012

3p1; L = 1 0 0 2 − 0.213
3p2; L = 1 0 0 2 − 0.362
1D2; L = 0 0 0 2 − 0.580

0 1 4 +0.016
1 0 4 − 0.012
n N ρ 1+

3p0; L = 1 0 0 2 +0.526
3p1; L = 1 0 0 2 +0.480
3p2; L = 1 0 0 2 − 0.590

data [1,2,8,14,15,45,46] with respect to those of DRPA. The
diamonds show the results of the DRPA of Refs. [1,2] with
the same potential. There are overall agreements between the
calculated 1S0 TNSF. However, our calculations show that the
stronger peak (2+) exists at higher energies with respect to
those of DRPA,. while the second peak appears at the lower
energy. We do not find much difference between our calculated
TNSF with the Reid68 or Av18 interaction. In contrast to Geurts
et al. [1], the 1− peak contribution is not spread out, and it has
been appeared around 16.1 MeV.

In Fig. 3, the similar calculations as above are performed for
the 3PJ removal of a proton pair of the 16O nucleus for L = 0
(the heavy full curve) and 1 (the light full curve). The results of
Geurts et al. [1,2] are also given for comparison. There is very
good agreement between the LOCV and the DRPA methods
in the case of L = 1. But for L = 0, the TNSFs are shifted
to higher energy with respect to the DRPA ones. Our 1+ peak
is at 11.5 MeV, which agrees well with the experimental data
(i.e., 11.37 MeV [8,14,15,45,46]).

The TNSF for the removal of a 1D2 proton pair by using the
Reid68 and Av18 potentials are plotted in Fig. 4. In this figure
again the ground state 0+ peak and the strong 2+ peak exist.
As before, there is not much difference between the TNSF
calculated with the Reid68 or Av18 interaction. It seems that
the peaks have shifted to higher energy with the slight changes
in the peak maximum. On the other hand, the peaks are as

 0
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FIG. 2. TNSF equation (42) for the removal of 1S0 proton pair
from 16O nucleus in terms of energy ω of final states in 14C nucleus
relative to ground-state energy 16O nucleus (with Reid68 interaction).
The radial relative quantum number is zero (n = 0) and the total
angular momentum L for the center-of-mass coordinates is the same
as that of final states. The peaks labeled 0+, 2+, 2+/00, and 1− are
nearly the final states of the 14C nucleus calculated in the LOCV
framework. The diamonds are the DRPA of Refs. [1,2] (with the
Reid68 interaction).

strong as for the 1S0 case. The 1D2 knockout pair has not been
investigated theoretically or experimentally.

The superposition of the spectral functions (SSF)
Ŝ(p′

1, p′
2, E) leads to the removal of two protons with the final

momenta p′
1 and p′

2 from the 16O nucleus with the final 14C
nucleus at the 0+ ground state or the first-excited 2+ state
and are plotted in the Figs. 5 to 8 for the Reid68 and Av18

interactions. This quantity gives a sensible estimate of the
e +16 O → e′ + 2p +14 C cross section in which the virtual

 0
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FIG. 3. TNSF for removal of a 3PJ proton pair in terms of energy
ω from 16O nucleus for different center-of-mass angular momenta
L = 0 and L = 1 with respect to the final states of 14C nucleus. The
peaks labeled 0+, 2+,1+, and 2+/0+ are for L = 1. In these plots, the
full and the heavy full curves represent the LOCV calculations with
the Reid68 interaction. The diamonds and the triangles are obtained
from the DRPA approximations of Refs. [1,2] (again with the Reid68
potential).
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FIG. 4. TNSF for removal of a 1D2 proton pair from 16O nucleus
by using LOCV formalism. The full curve is for the Reid68 potential
and the heavy full curve is for the Av18 potential. The peaks point to
the probable final states of the 14C nucleus at an energy of about 73.1
MeV and are due to the SRC, which existed in Figs. 2 and 3 as well.

photon with momentum q is assumed to couple to one of the
detected protons. Since the above cross section is proportional
to the square of the nuclear charge operator transition matrix
element, it becomes equal to the following relation for the
corresponding channel α in momentum space [1,2,9]:

Ŝα(p′
1, p′

2, E) = Sα(p′
1 − q, p′

2, p′
1 − q, p′

2, E)

+Sα(p′
1 − q, p′

2, p′
1, p′

2 − q, E)

+Sα(p′
1, p′

2 − q, p′
1 − q, p′

2, E)

+ Sα(p′
1, p′

2 − q, p′
1p′

2 − q, E). (43)

Similar to Refs. [1,2], in the above figures, the kinematics and
angles of momentum are chosen according to the configuration
of the detectors of the proposed measurements (in 1994) at
NIKHEF [8,9,14,15,47,48]; that is, the photon momentum q
is fixed along the z axis, with length 313 MeV/c, and the
momenta p′

1 and p′
2 are in the same plane with q at −49
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FIG. 5. Superposition of spectral functions Ŝ in Eq. (43), which
is suitable for calculation of cross section of 16O(e, e′pp)14C reaction.
This function is the probability of the removal of two protons with
the final momenta p1 and p2 leading to the final 0+ ground state or the
first-excited 2+ (see Fig. 6) state in the 14C nucleus, using the Reid68
interaction.
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FIG. 6. Superposition of spectral functions Ŝ in equation (43),
which is suitable for calculation of cross section of 16O(e, e′pp)14C
reaction. This function is the probability of the removal of two protons
with the final momenta p1 and p2 leading to the final 0+ ground state
or the first-excited 2+ state in the 14C nucleus, by using the Reid68
interaction.

and 123 degrees with respect to this transferred momentum
q, respectively. Obviously, the delta functions in the spectral
functions are removed. Figures 5 and 7 demonstrate the calcu-
lated SSF with the Reid68 interaction, which can be compared
to the Figs. 9 and 6.8 of Refs. [1] and [2], respectively. Looking
at these figures, one can conclude that the inclusion of the
LOCV state-dependent correlation functions push Ŝ(p′

1, p′
2, E)

to the lower momenta. On the other hand, our results have
better agreement with Fig. 6.9 of the Ref. [2], in which
the parametrized state-independent correlation functions are
imposed in the DRPA calculation. Now, the interaction is
switched from the Reid68 interaction to the Av18 potential, and
it is clearly seen that the peaks remain approximately in the
same place but become much stronger. In general, the peaks are
the effect of short-range correlation and should be observed in
experiments [8,9,14,15,47,48], as will be discussed later. The
plots of omission of SRC are also demonstrated in Figs. 9 and
6.8 of Refs. [1] and [2], respectively, in which, as is expected,
the above peaks in the (p′

1; p′
2) plane have disappeared. The
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FIG. 7. Superposition of spectral functions Ŝ in equation (43),
which is suitable for calculation of cross section of 16O(e, e′pp)14C
reaction. This function is the probability of the removal of two protons
with the final momenta P1 and p2 leading to the final 0+ ground state
or the first-excited 2+ (see Fig. 8) state in the 14C nucleus, by using
the Av18 interaction.
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FIG. 8. Spectral function Ŝ in equation (43), which is suitable for
calculation of cross section of 16O(e, e′pp)14C reaction. This function
is the probability of removal of two protons with the final momenta
P1 and p2 leading to the final 0+ ground state or the first-excited 2+

state in the 14C nucleus (the Av18 interaction).

only experimental results which were finally published by the
NIKHEF groups are those of Refs. [8,14,15]. The quantities
of interest according to these experiments, especially those of
Ref. [8], are calculated. In these experiments [8,14,15], the
knockout proton detectors subtend the solid angles of 225 and
550 msr and accept protons with energies from 69 to 215 MeV
and from 44 to 171 MeV, respectively. The data are taken
at an energy transfer ωγ = 210 MeV/c and |q| = 300 MeV
and the emission angles of the forward proton with respect
to q are between 20◦ and 40◦. If the missing energies and
momenta are defined as Em = ωγ − T1 − T2 − TA−2 and pm =
q − p1 − p2, respectively, then the excitation energies of the
A − 2 nucleus (14C) are given by Ex = Em − SNN (SNN ). On
the other hand, the cross section can be factorized in terms of
the TNSF of each channel [8]. In Figs. 9 and 10, Sα(pm, Ex)
are plotted according to the above experimental inputs for the
α = 1S0 and 3PJ channels, respectively. In both channels, our
LOCV results are in good agreement with Fig. 2 of Ref. [8],
especially for the corresponding peaks (i.e., 0+, 2+, 2+/0+ and
1+). However, in the 3PJ channels, the peaks are not as strong
as for the experimental case (i.e., smaller cross section). Note
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FIG. 9. TNSF S(Ex, pm) for knockout of 1S0 pair from 1p shell
in the 16O nucleus. See text for more explanations.
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FIG. 10. Same as Fig. 9 but for 3PJ channels.

that, in the Ref. [8], the contribution of the 1D2 the channel
has been ignored.

Finally, in Fig. 11, the similar quantity as above is plotted
in terms of the missing momentum, but for different ranges of
excitation energies (i.e., −5 < Ex < 20 MeV). This range can
be attributed to the emission of predominantly the two-proton
knockout (p < 4 fm−1). The full and the dash curves are the
corresponding parts of 1S0 and the 3PJ , respectively, while the
heavy full curves are the total contributions to the cross section.
The pluses are the best fit to the corresponding experimental
data according to Ref. [8]. Again, an overall agreement
with the data for the different range of excitation energies
is fined.

In conclusion, the two-nucleon spectral functions of the 16O
nucleus are calculated by using the lowest-order constrained
variational state-dependent correlation functions with the two
inputs interactions; namely, the Reid68 and Av18 potentials.
The spectral functions were obtained in terms of the defect
wave functions and the binding energy of two protons in the
16O nucleus in the limited harmonic oscillator shell-model

 0  100  200  300  400

15<Ex<20 MeV

 0

 0.2

 0.4

 0.6

 0.8

 0  100  200  300

m(MeV/c) P

10<Ex<15 MeV

5<Ex<10 MeV

 0

 0.2

 0.4

 0.6

 0.8

 1

 -5<Ex<5 MeV

S
 (

ar
b.

 u
ni

ts
) 

FIG. 11. Measured 16O(e, e′pp)14C cross section (TNSF) in
terms of missing momentum and different range of excitation
energies. The full curves are 1S0, the dash curves are 3PJ , the heavy
full curves are the total, and the pluses are the sum of all channels
from the experimental data [8].
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space. Both the long- and short-range correlations for the
calculation of two-proton-removal spectral functions were
taken into account. It was shown that the defect functions for
all channels are important (ignorable) for low (high) relative
momenta, p < 4 fm−1 (p > 4 fm−1). The LOCV TNSF were
compared both with the theoretical (DRPA) calculation and
the experimental data (Onderwater et al.). It was shown that
1S0 proton-pair emission in the 16O(e, e′pp)14C reaction is
dominant with respect to the other proton-pair relative states.
It was also demonstrated that the 0+ and the 2+ peaks, which
were expected to be observed in the the above reaction cross

section, moved to lower momentum of out-going protons,
when the state-dependent correlation functions were imposed.
In this work we ignored the center-of-mass dependence of our
state-dependent correlations. We hope in our future work that
this dependence can be taken into account.
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