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Variational procedure for nuclear shell-model calculations and energy-variance extrapolation
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We discuss a variational calculation for nuclear shell-model calculations and propose a new procedure for the
energy-variance extrapolation (EVE) method using a sequence of the approximated wave functions obtained by the
variational calculation. The wave functions are described as linear combinations of the parity, angular-momentum
projected Slater determinants, the energy of which is minimized by the conjugate gradient method obeying the
variational principle. The EVE generally works well using the wave functions, but we found some difficult
cases where the EVE gives a poor estimation. We discuss the origin of the poor estimation concerning shape
coexistence. We found that the appropriate reordering of the Slater determinants allows us to overcome this
difficulty and to reduce the uncertainty of the extrapolation.
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I. INTRODUCTION

The role of large-scale shell-model calculation has been
increasing in nuclear structure physics with the recent devel-
opment of faster parallel-computing capabilities. The most
popular method to perform shell-model calculations is the
Lanczos method and its variants, which can handle O(1011)
configurations. However, the feasibility of this method is
still hampered by the exponential increase of the Hilbert
space of the model space as a function of the number of
nucleons. To overcome this difficulty, much effort has been
given to developing approximation schemes to an exact shell-
model diagonalization method [1–8]. These approximation
methods truncate the whole Hilbert space to a relatively
small subspace which is determined by various sophisticated
methods. Therefore, the approximated energy in the subspace
always provides us with an upper limit to the exact energy
because of the variational principle, and an unavoidable small
gap remains between the approximated energy and the exact
energy.

This gap can be removed by extrapolation, which has been
intensively studied from various perspectives [9–17]. The
fundamental ingredient of these studies is the extrapolation
of the approximated eigenenergy by expanding the subspace
into full Hilbert space. One realization of this spirit is the
exponential convergence method (ECM) [9], in which the
approximated eigenenergy is extrapolated as an exponential
function of the dimension of the truncated subspace. Another
scheme of the extrapolation is utilizing the energy variance of
a sequence of the approximated wave functions [12]. In this
scheme, the approximated eigenenergy is extrapolated as a
polynomial function of the corresponding energy variance be-
cause the energy variance of the exact wave function vanishes.
The uncertainty of the extrapolated energy is expected to be
small because the function used for extrapolation is a first- or
second-order polynomial, while the corresponding function is
exponential in the ECM. This energy-variance extrapolation

(EVE) was introduced in condensed matter physics [18] and
applied to various approximations in nuclear shell-model
calculations [12,14–17].

In this article, we report how the EVE method works with
the approximated wave function represented by the linear
combination of the parity, angular-momentum projected Slater
determinants, such as the Monte Carlo shell model (MCSM)
[17]. A case in which the EVE is difficult is reported in
Ref. [19]. We discuss the origin of this case with relation
to shape coexistence and how the case is solved by choosing
an appropriate reordering of the Slater determinants.

We explain the variational calculation to generate a se-
quence of approximated wave functions using the MCSM
and conjugate gradient (CG) method [20] in Sec. II. In
Sec. III, we discuss how the simple EVE method works. We
also show a typical case in which the EVE shows a poor
result. In Sec. IV, we introduce the reordering technique
of the extrapolation method to remedy this difficulty, and
demonstrate the feasibility of the method.

II. APPROXIMATED WAVE FUNCTIONS

We briefly describe how to construct the truncated sub-
space to the full Hilbert space in the nuclear shell-model
calculations. The approximated wave function is written as
a linear combination of angular-momentum-projected, parity-
projected Slater determinants,

|�N 〉 =
N∑

n=1

J∑
K=−J

f N
n,KP Jπ

MK |φn〉, (1)

where N is the number of the basis states, which corresponds
to the “MCSM dimension” in Ref. [21]. P Jπ

MK is the angular-
momentum, parity projector defined as

P Jπ
MK = 1 + π�

2

2I + 1

8π2

∫
d� DI

MK

∗
(�)eiαĴz eiβĴy eiγ Ĵz , (2)
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where � ≡ (α, β, γ ) represents the Euler angles, and DI
MK

denotes Wigner’s D function. � denotes the parity transfor-
mation. Each |φn〉 is a deformed Slater determinant,

|φn〉 =
∏
k

(∑
l

D
(n)
lk c

†
l

)
|−〉, (3)

where c
†
i denotes a creation operator of single particle state

i and |−〉 denotes an inert core. The coefficient f N
n,K is

determined by the diagonalization of the Hamiltonian matrix
in the subspace spanned by the projected Slater determinants,
P Jπ

MK |φn〉. This diagonalization also determines the energy,
EN ≡ 〈�N |H |�N 〉, as a function of N . Note that the di-
mension of the subspace is the product of the number of
states, N , and the degree of freedom of the z component
of angular momentum, 2J + 1. We increase N until EN

converges enough, or the extrapolated energy converges.
The coefficient D(n) is given by a variational calculation

utilizing the auxiliary field Monte Carlo technique and the
CG method. Each D(n) is determined by minimizing EN=n

while keeping D(1),D(2), . . . , D(n−1), in a manner similar to
the MCSM [2], the few-dimensional basis approximation [3],
and the hybrid multideterminant method [6]. We perform the
MCSM procedure in a small number of steps to get the initial
states of the CG process in order to avoid a trap by local
minima. Since the D(n) is determined sequentially, hereafter,
we call this procedure the sequential conjugate gradient (SCG)
method.

The energy variance of the approximated wave function
|�N 〉 is also evaluated as 〈
H 2〉N = 〈�N |H 2|�N 〉 − E2

N . The
energy, energy gradient, and energy variance are evaluated
under the angular-momentum, parity projection technique
throughout this work. In this sense, our method is a “variation
after projection”.

III. ANOMALOUS KINK IN THE EV PLOT

The 72Ge is a typical case such that the relation between
the energy and its variance is not monotonic, which is
reported in Ref. [19]. This nucleus exhibits a feature of shape
coexistence due to the N = 40 magicity [22], and this is
considered to be a main reason for ill behavior as will be
discussed later. In the 72Ge shell-model calculation, we take
the f5pg9 shell, which consists of 0f5/2, 1p3/2, 1p1/2, and
0g9/2 single-particle orbits, as a model space and the effective
interaction JUN45 is used [22]. The m-scheme dimension of
72Ge reaches 140,050,484, which can be handled directly by
recent shell-model diagonalization codes. The exact values in
Fig. 1 represent the results of the shell-model diagonalization
utilizing the code MSHELL64 [23].

Figure 1 shows the energy and energy variance of |�N 〉
with 1 � N � 100 for the 0+

1 state. The |�N 〉 is obtained by
the SCG method. Hereafter, we call the plot of the energy as
a function of a variance “EV plot”. In the EV plot concerning
the 0+

1 state, one can find a similar anomalous kink in the case
of the MCSM [19]. This kink reduces the region available
for the second order fit, and deteriorates the certainty of the
extrapolation, resulting in a 50 keV overestimation. To obtain

FIG. 1. (Color online) Energy vs. energy variance plot of the
ground state and 0+

2 state of 72Ge by the SCG method. The circles
and triangles show the energies and energy variances of 0+

1 and 0+
2 ,

respectively. The lines are fitted for these points using a second-order
polynomial.

the 0+
2 energy, additional 100 bases are generated by the SCG

method for minimizing EN (0+
2 ). The dashed line in Fig. 1 is

fitted for the points concerning J = 0+
2 , whose extrapolation

agrees with the exact energy well, but a small underestimation
remains.

Figure 2 shows the total energy surface provided by the
Q-constrained Hartree-Fock calculation [24] using the same
shell-model Hamiltonian. There are two low-energy regions
corresponding to the shape coexistence phenomenon [22].
In order to discuss the intrinsic structures of the 0+

1 and 0+
2

wave functions, we plot the deformation of each unprojected
basis state |φn〉 of the SCG wave function |�N 〉 in Fig. 2.
The location of the scattered circles shows the quadrupole
deformation, namely, 〈φn|Q0|φn〉 and 〈φn|Q2|φn〉 where QM

is an M component of the mass quadrupole operator and |φn〉 is
rotated so that 〈φn|Q±1|φn〉 = 0. It is interesting to see that the
circles scatter in a broad region of the energy surface, not near
the local minima, but on the hillside and triaxially deformed
regions due to the effect of the configuration mixing and the
“variation after projection.”

The area of each scattered circle on Figs. 2(a) and 2(b) is
proportional to the overlap probability of each projected basis
state with the resulting many basis states, 1

N |〈�N |P J |φn〉|2,
where N is the normalization factor, N = 〈φn|P J |φn〉. Con-
cerning the 0+

1 state shown in Fig. 2(a), the overlap probability
is rather small and 0.54 at most. The circles with relatively
large overlap scatters in a broad region of the energy surface.
The overlap probability with P J |φ1〉, e.g., the Hartree-Fock
solution with the variation after projection is 0.32, which is
modest. This overlap implies that the 0+

1 state is described
by a linear combination of a relatively large number of basis
states essentially, or the effect of the configuration mixing
plays an important role. On the other hand, in Fig. 2(b), the
points of the large overlap concentrate near the spherical
region concerning the 0+

2 state. The overlap probabilities
corresponding to these points are large with the 0+

2 many-basis
state, and the probability is 0.67 at most. This means that the
wave function can be well approximated by a few number
of projected Slater determinants, or mean-field description
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FIG. 2. (Color online) Total energy surface of the 72Ge by the
Q-constrained Hartree-Fock calculation. The scattered circles denote
the deformation of the basis states of the SCG wave functions for
(a) 0+ ground state, and (b) second 0+ state. The contour width is
250 keV.

works far better than in the case of the 0+
1 state. This property

makes the first few SCG basis states for minimizing 0+
1 energy

dominated by the 0+
2 state, not by the 0+

1 state. These different
properties of the 0+

1 and 0+
2 wave functions give rise to the

different behavior of energy convergence as a function of
the number of basis states, which makes extrapolation with
a number of basis states difficult [19].

In Fig. 1, the variance shows the local minimum at E =
−182 MeV, which is near the energy of the 0+

2 state. This
figure indicates that the wave function comprised of the first
ten bases are dominated by the true 0+

2 state, not the 0+
1 state.

This is consistent with the discussion using the energy surface
in the previous paragraph.

Such an anomalous kink in the EV plot is also seen in the
8+

1 state of 56Ni with the FPD6 effective interaction [25]. 56Ni
is known to have shape coexistence [26], which is consistent
with the previous discussion. This situation may occur in the
case where the next lowest energy eigenvalue is close to the
target one and the mean-field solution favors the next lowest
state.

IV. EVE AND REORDERING OF BASIS STATES

The emergence of the anomalous kink discussed in Sec. III
gives rise to a large uncertainty of the EVE. In order to
remove such a kink and to improve the precision, we introduce
the reordering of basis states of the SCG wave function,
represented in Eq. (1).

The SCG wave function comprises a set of Nm basis
states, |φn〉 with 1 � n � Nm. These basis states also give
us a sequence of approximated wave functions, |�N 〉 with
1 � N � Nm, which is used for the simple EVE method.
Meanwhile, reordering these Nm basis states using a permu-
tation, σ (n), yields another sequence of approximated wave
functions,

∣∣�(ro)
N

〉 =
N∑

n=1

J∑
K=−J

f
N(ro)
n,K P Jπ

MK

∣∣φ(ro)
n

〉
, (4)

where |φ(ro)
n 〉 = |φσ (n)〉. The corresponding energy E

(ro)
N , and

the energy variance 〈
H 2〉(ro)
N provide us with a new EV plot.

By reordering the basis states with σ (n), we can simulate
another truncation scheme. Because the behavior of the fitted
line in the EV plot depends on the truncation scheme [13], we
remove an anomalous behavior of the EV plot and make the
extrapolation stable by using an appropriate σ (n). We describe
the way how to obtain an appropriate order of basis states in
this section.

A. Procedure of reordering technique

The relation of the energy and its variance is usually
assumed to be expressed as a second-order polynomial.
Because a second-order-term error is roughly estimated as
δc2(〈
H 2〉N )2, where δc2 is a second-order-term error of
χ -square fitting, the uncertainty of the second order term often
causes a relatively large error of the extrapolated value in
case 〈
H 2〉N , is not small enough. If we can find an order
of the basis states in which the fitted curve is a first-order
polynomial, the error of the extrapolation will come mainly
from the coefficient of the first-order term, which can be
estimated as roughly proportional to δc1〈
H 〉N , where δc1 is
the first-order-term error of χ -square fitting. This error should
be far smaller than that of second-order polynomial if 〈
H 2〉N
is large. Thus, our strategy is to select the order of the basis
states, in which the fitted curve is close to linear, by changing
the order of the basis states.

Now, we discuss the relation between energy difference and
energy variance following the idea of Ref. [13]. We define the
energy difference δE between the energy expectation value
E = 〈�|H |�〉 of the approximated wave function |�〉 and
the lowest exact energy eigenvalue E0 as

δE = 〈�|H |�〉 − E0, (5)

and the energy variance of the approximated wave function as

〈
H 2〉 = 〈�|H 2|�〉 − 〈�|H |�〉2. (6)

An approximate ground state |�〉 can be decomposed into
the exact eigenstate, |ψ0〉, and the rest of the component,
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|ψr〉 as

|�〉 = c|ψ0〉 + d|ψr〉, (7)

where c2 + d2 = 1. |ψr〉 is expanded by the exact excited states
such as

|ψr〉 =
∑
n�=0

cn|ψn〉. (8)

By defining the moments Dj as

Dj =
∑
n�=0

c2
n(En − E0)j , (9)

we obtain

δE = d2D1, (10)

〈
H 2〉 = d2D2 − (d2D1)2. (11)

By eliminating d2, we obtain

〈
H 2〉 = D2

D1
δE − (δE)2. (12)

In Eq. (11), 〈
H 2〉 is written as a second-order polynomial of
δE, which explains the parabola shape of the EV plot in Fig. 1
(circles below −182 MeV). The authors of Ref. [13] solve δE

as a function of 〈
H 2〉, which is shown to be approximated as a
second-order polynomial. Now, we assume δE is proportional
to 〈
H 2〉, which is realized in the case D2

D1
→ ∞. Because of

∂(δE)
∂〈
H 2〉 |δE=0 = D1

D2
, we reorder the basis states so that ∂(δE)

∂〈
H 2〉 is
as small as possible, resulting in linear proportionality.

In practice, we perform the following procedure:

(i) A fixed number, Nm, of the basis states is obtained by
the SCG method.

(ii) Choose the Nmth basis state |φ(ro)
Nm

〉 from Nm candidates

by minimizing
E

(ro)
Nm−1−E

(ro)
Nm

〈
H 2〉(ro)
Nm−1−〈
H 2〉(ro)

Nm

.

(iii) Set N as Nm − 1. Choose the N th basis state, |φ(ro)
N 〉

from N candidates (basis states except for already fixed
states, |φ(ro)

N ′ 〉 with N + 1 � N ′ � Nm) by minimizing
E

(ro)
N−1−E

(ro)
N

〈
H 2〉(ro)
N−1−〈
H 2〉(ro)

N

.

(iv) Set N as N − 1. The previous step is iterated recursively
up to determining the first state, |φ(ro)

1 〉.
Note that this procedure needs no additional heavy com-

putation to the SCG, because the matrix elements of energy
and its variances are evaluated once and stored, and we only
require the diagonalization of the matrix whose dimension is
N � Nm 
 100 for each candidate order of the basis states.

As a result, we obtain a fitted line which is closest to linear in
the provided set of basis states. Because the reordering makes
the gradient of the EV plot as small as possible, the anomalous
kink discussed in Sec. III vanishes, which is demonstrated in
the following subsection.

B. 72Ge in f5 pg9 shell

We apply the reordering technique to the 72Ge in f5pg9

shell. The filled circles in Fig. 3 shows the EV plot with the

FIG. 3. (Color online) Energy vs. energy variance plot for the
ground state and 0+

2 state of 72Ge in f5pg9 shell. The open triangles
are obtained by the CG method without reordering and the solid
circles are with reordering. The inset shows a magnified view for the
0+

2 energy around 〈
H 2〉 
 0. See text for detail.

reordering technique. The anomalous kink of the 0+
1 state

vanishes in the plot with reordering, and the point moves
smoothly and approaches the exact energy on the y axis as
usual [17]. These points are fitted by a first-order polynomial,
which is shown as a dashed line. Unlike the fit without
reordering, these points are on the line in a large range of
the energy variance which can be used for the fitting. This
makes the extrapolation procedure stable.

Figure 4(a) shows the EV plot provided by the SCG method
with a various number of basis states, Nm = 10, 20, 30, 40, and
50. At each Nm, the last ten points are used to make the fitted
line. While the extrapolated values of Nm = 10 apparently
underestimate the ground state energy, the value converges as
a function of Nm for Nm � 30.

Discussing the stability of the extrapolated value is difficult
because all the energy-variance points with reordering change
by increasing the N . To discuss this stability, we show the

FIG. 4. (Color online) (a) Energy vs. energy variance plot of
the ground state energy of 72Ge in the f5pg9 shell with the SCG
wave function and reordering. Nm = 10 (orange crosses), 20 (green
diamonds), 30 (red triangles), 40 (blue squares), and 50 (open black
circles). (b) Extrapolated value vs. the number of basis states, Nm.
The exact energy is also shown by the dotted line. The solid points and
open blue triangles denote the extrapolated energies with first-order
fitting and reordering, and those with second-order fitting without
reordering, respectively.
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FIG. 5. (Color online) (a) Energy vs. energy variance plot for the
0+

1 and 2+
1 states of 64Ge in the pfg9 shell obtained by the SCG

method. (b) Extrapolated energies with reordering (filled circles) and
without reordering (open triangles) as functions of Nm.

extrapolated energy itself with the reordering technique as a
function of Nm. Figure 4(b) shows the convergence property of
the extrapolated energy as a function of Nm. The extrapolated
energy with reordering using the last ten points, or (Nm − 9)th,
(Nm − 8)th, . . . , Nmth points, converges well within a few
keV for Nm > 40. On the other hand, the extrapolated value
without reordering shows a large fluctuation due to the kink
in the EV plot.

The inset of Fig. 3 shows the EV plot concerning J = 0+
2 .

The open triangles and the fitted line show the energy and
variance without reordering. Its extrapolation underestimates
20 keV, the exact value, while the extrapolated value with
the reordering technique agrees with the exact one within the
6 keV error. The reordering technique reduces the error of
the extrapolation even in the case of the simple EVE without
reordering, and works well.

C. 64Ge in p f g9 shell

In Ref. [17], we show a demonstration of the validity of the
MCSM and energy variance by 64Ge in the pf + g9/2-shell
model space, which consists of 0f7/2, 0f5/2, 1p3/2, 1p1/2, and
0g9/2 single-particle orbits. We use the PFG9B3 effective
interaction [27], which was also used in Refs. [17,28]. The
m-scheme dimension of the system reaches 1.7 × 1014, which
cannot be reached by the conventional Lanczos diagonaliza-
tion technique. In the present work, this nucleus is taken as an
example again. We show the results using the SCG method and
by extrapolation with the reordering technique in Fig. 5. As you

can see, the extrapolated energies with reordering technique
well converge in a relatively small number of basis states. In
this case, the energies with reordering agree well with those
without reordering, and those of the MCSM method which are
shown in Ref. [17].

V. SUMMARY

We have discussed variational procedures, the SCG method,
for nuclear shell-model calculations. Based on the SCG wave
functions, we propose a new procedure of energy variance
extrapolation, which can solve a complex problem due to shape
coexistence.

For example, the simple EVE is difficult to solve at the
0+

1 state of 72Ge with the JUN45 interaction. In this case,
the anomalous kink appears in the EV plot, which shows the
transition of the approximated wave function from the second
lowest state to the lowest state. We discussed its origin in view
of shape coexistence, and found that the reordering technique
of the basis states allows us to extrapolate the eigenenergy
successfully even in this case.

We demonstrated that the reordering technique in the EV
plot allows us to make a linear fit; and therefore, the reordering
of the basis states makes the extrapolation procedure stable
and suppresses the uncertainties of the extrapolated value.
This procedure is expected to be quite useful into performing
the precise estimate of nuclear energies based on large-scale
shell-model calculations and no-core shell-model calculations
[21]. For the estimation of observables other than energy, such
as quadrupole moment, the order which was used in the present
work is not suitable for the extrapolation procedure. We are
investigating a way to determine an order suitable for the
extrapolation of these observables.
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