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Ab initio study of the photoabsorption of 4He
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There are some discrepancies in the low-energy data on the photoabsorption cross section of 4He. We calculate
the cross section with realistic nuclear forces and explicitly correlated Gaussian functions. Final-state interactions
and two- and three-body decay channels are taken into account. The cross section is evaluated using two methods:
With the complex scaling method the total absorption cross section is obtained up to the rest energy of a pion,
and with the microscopic R-matrix method cross sections for both 4He(γ, p)3H and 4He(γ, n)3He are calculated
below 40 MeV. Both methods give virtually the same result. The cross section rises sharply from the 3H + p

threshold, reaching a giant resonance peak at 26–27 MeV. Our calculation reproduces almost all the data above
30 MeV. We stress the importance of 3H + p and 3He + n cluster configurations on the cross section as well as
the effect of the one-pion exchange potential on the photonuclear sum rule.
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I. INTRODUCTION

Nuclear strength or response functions for electroweak
interactions provide us with important information on the
resonant and continuum structure of the nuclear system as
well as detailed properties of the underlying interactions.
In this paper we focus on the photoabsorption of 4He. The
experimental study of (γ, p) and (γ, n) reactions on 4He has
a long history over the last half century. See Refs. [1–3]
and references therein. Unfortunately, the experimental data
presented so far are in serious disagreement, and thus a
measurement of the photoabsorption cross section is still
actively performed with different techniques in order to resolve
this enigma [4,5].

Calculations of the cross section on 4He have been
performed using several methods focusing on, e.g., the peak
position of the giant electric dipole (E1) resonance, charge
symmetry breaking effects, and E1 sum rules [6–8]. The
photoabsorption cross section has extensively been calculated
using the Lorentz integral transform (LIT) method [9], among
others, which does not require calculating continuum wave
functions. In the LIT method the cross section is obtained
by inverting the integral transform of the strength function,
which is calculable using square-integrable (L2) functions.
The calculations in Refs. [8,10,11] were done with realistic
nucleon-nucleon (NN ) plus three-nucleon force (3NF) in-
teractions, specifically the Argonne v18 NN potential plus
Urbana IX 3NF and the N3LO NN plus N2LO 3NF, while
that of Ref. [12] was with the correlated Argonne v18
potential, constructed within the unitary correlation operator
method.

In calculations with realistic interactions some aspects of
singular nature, especially the short-range repulsion, have
been appropriately replaced with effective ones that adapt
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to the model space of the respective approaches, that is,
the hyperspherical harmonics method [10,12] and the no-
core shell model [11]. All of these calculations show a
cross section that disagrees with the data [1], especially in
the low excitation energy near the 3H + p threshold. The
resonance peak obtained theoretically appears at about 27 MeV
consistently with the experiments [2,4,5], but in marked
difference from that of Ref. [1].

We have recently reported that all the observed levels
of 4He below 26 MeV are well reproduced in a four-body
calculation using bare realistic nuclear interactions [13,14].
It is found that using the realistic interaction is vital to
reproducing the 4He spectrum as well as the well-developed
3N + N (3H + p and 3He + n) cluster states with positive
and negative parities. In this calculation the wave functions
of the states are approximated as a combination of explicitly
correlated Gaussians [15,16] reinforced with a global vector
representation for the angular motion [17,18]. Furthermore,
this approach has very recently been applied to successfully
describe four-nucleon scattering and reactions [19,20] with
the aid of a microscopic R-matrix method (MRM) [21].
It is found that the tensor force plays a crucial role in
accounting for the astrophysical S factors of the radiative
capture reaction 2H(d, γ ) 4He as well as the nucleon transfer
reactions, 2H(d, p)3H and 2H(d, n)3He [19].

The aim of this paper is to examine the issue of the
photoabsorption cross section of 4He. Because four-body
bound-state problems with realistic NN interactions can be
accurately solved with correlated Gaussians, it is interesting
to apply that approach to a calculation of the photoabsorption
cross section. For this purpose we have to convert the
continuum problem to such a bound-state-like problem that
can be treated using the L2 basis functions. Differently from
the previous theoretical calculations [3,10–12], we employ
a complex scaling method (CSM) [22–24] for avoiding the
construction of the continuum wave functions. One of the
advantages of the CSM is that the cross section can be directly
obtained without recourse to an inversion technique as used
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in the LIT. We will pay special attention to the following
points:

(i) Use a realistic interaction as it is.
(ii) Include couplings with final decay channels explicitly.

(iii) Perform calculations in both the MRM and the CSM as
a cross-check.

Here point (i) indicates that the interaction is not changed
to an effective force by some transformation. This looks
appealing because the cross section may depend on the D-state
probability of 4He [7] and hence the effect of the tensor force on
the cross section could be seen directly. In point (ii) we make
use of the flexibility of the correlated Gaussians to include
such important configurations that have 3H + p, 3He + n, and
d + p + n partitions. Because of this treatment the effects
of final-state interactions are expected to be fully taken into
account. Point (iii) is probably the most significant in our
approach. We mean by this point that the photoabsorption cross
section is calculated using two independent methods. In the
MRM we directly construct the continuum wave function and
calculate the cross sections for the radiative capture reactions,
3H(p, γ )4He and 3He(n, γ )4He. These cross sections are
converted to the photoabsorption cross section using a formula
due to the detailed balance. In the CSM we make use of
the fact that the final continuum states of 4He, if rotated on
the complex coordinate plane, can be expanded in the L2

functions. Consistency of the two results, if attained, serves
as strong evidence that the obtained cross section is reliable.
We hope to shed light on resolving the controversy from our
theoretical input.

In Sec. II we present our theoretical prescriptions to cal-
culate the photoabsorption cross section. The two approaches,
the CSM and the MRM, are explained in this section with
emphasis on the method of how discretized states are employed
for the continuum problem. We give the basic inputs of our
calculation in Sec. III. The details of our correlated basis
functions are given in Sec. III B, and various configurations
needed to take into account the final-state interactions as
well as two- and three-body decay channels are explained in
Sec. III D. We show results on the photoabsorption cross
section in Sec. IV. The E1 strength function and the transition
densities calculated from the continuum discretized states are
presented in Sec. IV A. A comparison of CSM and MRM cross
sections is made in Sec. IV B. The photonuclear sum rules are
examined in Sec. IV C. The calculated photoabsorption cross
sections are compared to experiment in Sec. IV D. Finally, we
draw conclusions of this work in Sec. V.

II. FORMULATION OF PHOTOABSORPTION
CROSS-SECTION CALCULATION

A. Basic formula

The photoabsorption takes place mainly through the E1
transition, which can be treated by perturbation theory. The
wavelength of the photon energy Eγ (MeV) is about 1240/Eγ

(fm), so that it is long enough compared to the radius of 4He
even when Eγ is close to the rest energy of a pion. The
photoabsorption cross section σγ (Eγ ) can be calculated by

the formula [25]

σγ (Eγ ) = 4π2

h̄c
Eγ

1

3
S(Eγ ), (1)

where S(E) is the strength function for the E1 transition,

S(E) = Sμf |〈�f |M1μ|�0〉|2δ(Ef − E0 − E). (2)

The symbol M1μ denotes the E1 operator, and �0 and �f

are the wave functions of the ground state with energy E0 and
the final state with excitation energy Ef of 4He, respectively.
The recoil energy of 4He is ignored, so that Eγ is equal to
the nuclear excitation energy E. The symbol Sμf indicates a
summation over μ and all possible final states f . The final
state of 4He is actually a continuum state lying above the 3H +
p threshold, and it is normalized according to 〈�f ′ |�f 〉 =
δ(Ef ′ − Ef ). The summation for the final states in Sμf can be
taken by using the closure relation, leading to a well-known
expression for the strength function,

S(E) = − 1

π
Im

∑
μ

〈�0|M†
1μ

1

E − H + E0 + iε
M1μ|�0〉,

(3)

where a positive infinitesimal ε ensures the outgoing wave
after the excitation of 4He. For the sake of simplicity, hereafter
we omit E0 and E is interpreted as being shifted by E0. A
method of calculation of S(E) in the CSM is presented in
Sec. II B.

A partial photoabsorption cross section σ AB
γ (Eγ ) for

the two-body final state comprising nuclei A and B can
be calculated in another way. With use of the detailed balance
the cross section is related to that of its inverse process, the
radiative capture cross section σ AB

cap (Ein) [26], induced by the
E1 transition, at incident energy Ein = Eγ − Eth,

σ AB
γ (Eγ ) = k2(2JA + 1)(2JB + 1)

2k2
γ (2J0 + 1)

σ AB
cap (Ein), (4)

where Eth is the A + B threshold energy. Here JA and JB

are the angular momenta of the nuclei A and B, and J0(= 0)
is the angular momentum of the ground state of 4He. The
wave number k is

√
2μABEin/h̄

2, where μAB is the reduced
mass of the two nuclei and kγ is the photon wave number,
Eγ /h̄c. The photoabsorption cross section σγ (Eγ ) is equal to

the sum of σ
3H p
γ (Eγ ) and σ

3He n
γ (Eγ ) provided that three- and

four-body breakup contributions are negligible. A calculation
of the radiative capture cross section will be performed in the
MRM as explained in Sec. II C.

The fact that we have two independent methods of calcu-
lating σγ (Eγ ) is quite important to assess their validity.

B. Complex scaling method

The quantity S(E) of Eq. (3) is evaluated using the CSM,
which makes a continuum state that has an outgoing wave in
the asymptotic region damp at large distances, thus enabling
us to avoid an explicit construction of the continuum state. In
the CSM the single-particle coordinate rj and momentum pj
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are subject to a rotation by an angle θ :

U (θ ) : rj → rj e
iθ , pj → pj e

−iθ . (5)

Applying this transformation in Eq. (3) leads to

S(E) = − 1

π
Im

∑
μ

〈�0|M†
1μU−1(θ )R(θ )U (θ )M1μ|�0〉,

(6)

where R(θ ) is the complex scaled resolvent,

R(θ ) = 1

E − H (θ ) + iε
(7)

with

H (θ ) = U (θ )HU−1(θ ). (8)

A key point in the CSM is that within a suitable range of
positive θ the eigenvalue problem

H (θ )�JMπ
λ (θ ) = Eλ(θ )�JMπ

λ (θ ) (9)

can be solved in a set of L2 basis functions 
i(x),

�JMπ
λ (θ ) =

∑
i

Cλ
i (θ )
i(x). (10)

We are interested in �JMπ
λ (θ ) with Jπ = 1−. With the solution

of Eq. (9), an expression for S(E) reads [27,28]

S(E) = − 1

π

∑
μλ

Im
D̃λ

μ(θ )Dλ
μ(θ )

E − Eλ(θ ) + iε
, (11)

where

Dλ
μ(θ ) = 〈(

�JMπ
λ (θ )

)∗∣∣M1μ(θ )|U (θ )�0〉,
(12)

D̃λ
μ(θ ) = 〈(U (θ )�0)∗|M̃1μ(θ )

∣∣�JMπ
λ (θ )

〉
,

with

M1μ(θ ) = U (θ )M1μU−1(θ ) = M1μeiθ ,
(13)

M̃1μ(θ ) = U (θ )M†
1μU−1(θ ) = M†

1μeiθ .

Note that the energy of the bound state of H in principle
remains the same against the scaling angle θ . Also U (θ )�0

is to be understood as a solution of Eq. (9) for Jπ = 0+,
corresponding to the ground-state energy [28]. This stability
condition will be met only when convergence is reached
with respect to both the size and form of the model space
adopted.

In such a case where sharp resonances exist, the angle
θ has to be rotated to cover their resonance poles on the
complex energy plane [23,24]. A choice of θ is made by
examining the stability of S(E) with respect to the angle. One
of the advantages of the CSM is that one obtains directly the
continuous cross section from Eq. (3).

C. Microscopic R-matrix method

The calculation of σ AB
cap (Ein) involves the matrix element

of M1μ between the scattering state initiated through the
A + B entrance channel and the final state, i.e., the ground

state of 4He. See, e.g., Ref. [29]. The scattering problem is
solved in the MRM. As is discussed in detail for four-nucleon
scattering [20,30], an accurate solution for the scattering
problem with realistic NN potentials in general requires
a full account of couplings of various channels. In the
present study we include the following two-body channels:
3H( 1

2
+

) + p,3He( 1
2

+
) + n, d(1+) + d(1+), pn(0+) + pn(0+),

and pp(0+) + nn(0+). Here, for example, 3H( 1
2

+
) stands for

not only the ground state of 3H but also its excited states.
The latter are actually unbound, and these configurations
together with the ground-state wave function are approximated
by diagonalizing the intrinsic Hamiltonian for the p + n + n

system in L2 basis functions. Similarly, pn(0+), pp(0+), and
nn(0+) stand for the two-nucleon pseudo states with isospin
T = 1.

The total wave function �JMπ may be expressed in terms
of a combination of various components,

∑
AB �JMπ

AB , with

�JMπ
AB =

NA∑
i=1

NB∑
j=1

∑
I,�

A
[[



A,i
JAπA



B,j

JBπB

]
I

χc

]
JM

, (14)

where A is the antisymmetrizer, and, e.g., NA is the basis size
for the nucleus A, 


A,i
JAπA

is the intrinsic wave function of its
ith state with angular momentum JA and the parity πA, and
χc is the relative motion function between the two nuclei. The
angular momenta of the two nuclei are coupled to the channel
spin I , which is further coupled with the partial wave � for the
relative motion to the total angular momentum JM . The index
c denotes a set of (i, j , I , �). The parity π of the total wave
function is πAπB(−1)�.

In the MRM the configuration space is divided into two
regions, internal and external, by a channel radius. The total
wave function in the internal region, �JMπ

int , is constructed by
expanding χc(r) in terms of r�exp(−ρr2)Y�(r̂) with a suitable
set of ρ, while the total wave function in the external region,
�JMπ

int , is represented by expressing χc with Coulomb or
Whitakker functions depending on whether or not the channel
is open. The scattering wave function and the S matrix are
determined by solving a Schrödinger equation

[H − E + L̃]�JMπ
int = L̃�JMπ

ext (15)

in the internal region together with the continuity condition
�JMπ

int = �JMπ
ext at the channel radius. Here L̃ is the Bloch

operator. See Ref. [21] for details.
In the MRM, the 4He ground-state wave function is

approximated by means of an expansion on multichannel
configurations of the type shown in Eq. (14).

III. MODEL

A. Hamiltonian

The Hamiltonian we use reads

H =
∑

i

Ti − Tcm +
∑
i<j

vij +
∑

i<j<k

vijk. (16)

The kinetic energy of the center-of-mass motion is subtracted
and the two-nucleon interaction vij consists of nuclear and
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Coulomb parts. As the NN potential we employ Argonne v8′
(AV8′) [31] and G3RS [32] potentials that contain central,
tensor and spin-orbit components. The L2 and (L · S)2 terms
in the G3RS potential are omitted. The NN potential of AV8′

type contains eight pieces: vij = ∑8
q=1 v(q)(rij )O(q)

ij , where

v(q)(rij ) and O(q)
ij are the radial form factors and the operators

characterizing each piece of the potential. The operators are
defined as O(1)

ij = 1, O(2)
ij = σ i · σ j , O(3)

ij = τ i · τ j , O(4)
ij =

σ i · σ jτ i · τ j , O(5)
ij = Sij , O(6)

ij = Sijτ i · τ j , O(7)
ij = (L · S)ij ,

and O(8)
ij = (L · S)ijτ i · τ j , where Sij is the tensor operator,

and (L · S)ij is the spin-orbit operator. For the sake of later
convenience, we define Vq by

Vq =
∑
i<j

v(q)(rij )O(q)
ij . (17)

The AV8′ potential is more repulsive at short distances and
has a stronger tensor component than the G3RS potential.
Due to this property one has to perform calculations of high
accuracy, particularly when the AV8′ potential is used, to avoid
the onset of numerical instabilities of the type described by
Witała and Glöckle [33]. Reproducing the two- and three-
body threshold energies is vital for a realistic calculation of
σγ (Eγ ). To this end we add 3NF vijk , and we adopt a purely
phenomenological potential [34] that is determined to fit the
inelastic electron form factor from the ground state to the first
excited state of 4He as well as the binding energies of 3H, 3He,
and 4He.

B. Gaussian basis functions

Basis functions defined here can apply to any number N of
nucleons. The basis function we use for an N -nucleon system
takes a general form in the LS coupling scheme of



(N)π
(LS)JMT MT

= A
[
φ

(N)π
L χ

(N)
S

]
JM

η
(N)
T MT

. (18)

We define spin functions by a successive coupling of each spin
function χ 1

2
(i):

χ
(N)
S12S123...SMS

= [
. . .

[[
χ 1

2
(1)χ 1

2
(2)

]
S12

χ 1
2
(3)

]
S123

. . .
]
SMS

. (19)

Since taking all possible intermediate spins (S12, S123, . . .)
forms a complete set for a given S, any spin function χ

(N)
S

can be expanded in terms of the functions (19). Similarly,
the isospin function η

(N)
T MT

can also be expanded using a set

of isospin functions η
(N)
T12T123...T MT

. In the MRM calculation we
use a particle basis that in general contains a mixing of total
isospin T , which is caused by the Coulomb potential.

There is no complete set that is flexible enough to de-
scribe the spatial part φ

(N)π
L . For example, harmonic-oscillator

functions are quite inconvenient to describe spatially extended
configurations. We use an expansion in terms of correlated
Gaussians [17,18]. As demonstrated in Ref. [35], the Gaussian
basis leads to accurate solutions for few-body bound states
interacting with the realistic NN potentials.

Two types of Gaussians are used. One is a basis expressed
in a partial wave expansion,

φ
(N)π
�1�2(L12)�3(L123)...LML

(a1, a2, . . . , aN−1)

= exp
( − a1x

2
1 − a2x

2
2 − . . . − aN−1x

2
N−1

)
× [. . . [[Y�1 (x1)Y�2 (x2)]L12Y�3 (x3)]L123 . . .]LML

(20)

with

Y�(r) = r�Y�(r̂). (21)

Here the coordinates x1, x2, . . . , xN−1 are a set of relative
coordinates. The angular part is represented by successively
coupling the partial wave �i associated with each coordinate.
The values of ai and �i as well as the intermediate angular mo-
menta L12, L123, . . . are variational parameters. The angular
momentum �i is limited to �i � 2 in the present calculation.
This basis is employed to construct the internal wave function
�JMπ

int of the MRM calculation.
The other is an explicitly correlated Gaussian with a global

vector representation [14,17,18,20],

φ
(N)π
L1L2(L12)L3LML

(A, u1, u2, u3)

= exp(−x̃Ax)[[YL1 (ũ1x)YL2 (ũ2x)]L12YL3 (ũ3x)]LML
, (22)

where A is an (N−1) × (N−1) positive definite symmetric
matrix and ui is an (N − 1)-dimensional column vector.
Both A and ui are variational parameters. The tilde symbol
denotes a transpose, that is, x̃Ax = ∑N−1

i,j=1 Aij xi · xj and

ũi x = ∑N−1
k=1 (ui)k xk . The latter specifies the global vector

ui responsible for the rotation. The basis function (22) will
be used in the CSM calculation. Actually, the choice of the
angular part of Eq. (22) is here restricted to L3 = 0. With the
two global vectors any Lπ state but 0− can be constructed with
a suitable choice of L1 and L2.

Apparently, the basis function (22) includes correlations
among the nucleons through the nonvanishing off-diagonal
elements of A. In contrast to this, the basis function (20) takes
a product form of a function depending on each coordinate, so
that the correlation is usually accounted for by including the so-
called rearrangement channels that are described with different
coordinate sets [36]. A great advantage of Eq. (22) is that
it keeps its functional form under coordinate transformation.
Hence one needs no such rearrangement channels but can
use just one particular coordinate set, which enables us to
calculate Hamiltonian matrix elements in a unified way. See
Refs. [14,20] for details.

The variational parameters are determined by the stochastic
variational method [17,18]. It is confirmed that both types of
basis functions produce accurate results for the ground-state
properties of 3H, 3He, and 4He [14]. Table I lists the properties
of 3H and 4He obtained using the basis (22). Included L1

and L2 values are the same as those used in Refs. [13,14].
Both potentials of AV8′ + 3NF and G3RS + 3NF reproduce
the binding energy and the root-mean-square radius of 4He
satisfactorily. The G3RS + 3NF potential gives a slightly
larger radius and a smaller D-state probability P (2, 2) than
the AV8′ + 3NF potential.
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TABLE I. Ground-state properties of 3H and 4He calculated with
the correlated Gaussians (22) using the AV8′ and G3RS potentials
together with 3NF. Here E,

√〈r2
p〉, and

√〈r2
pp〉 denote the energy, the

root-mean-square radius of the proton distribution, and the root-mean-
square relative distance of protons, respectively, and P (L, S) stands
for the probability (in percent) of finding the component with total
orbital angular momentum L and spin S. The experimental energy
of 4He is −28.296 MeV and the point proton radius is 1.457(14)
fm [37].

AV8′ + 3NF G3RS + 3NF
3H 4He 3H 4He

E (MeV) − 8.41 − 28.43 − 8.35 − 28.56√〈r2
p〉 (fm) 1.70 1.45 1.74 1.47√〈r2
pp〉 (fm) – 2.41 – 2.45

P (0, 0) 91.25 85.56 92.85 88.33
P (2, 2) 8.68 14.07 7.10 11.42
P (1, 1) 0.07 0.37 0.05 0.25

C. Two- and three-body decay channels

As is well known, the electric dipole operator

M1μ =
4∑

i=1

e

2
(1 − τ3i

)(r i − x4)μ

= − e

2

√
4π

3

4∑
i=1

τ3iY1μ(r i − x4)

= e

2

√
4π

3

{
1

2
(τ31 − τ32 )Y1μ(x1)

+ 1

3
(τ31 + τ32 − 2τ33 )Y1μ(x2)

+ 1

4
(τ31 + τ32 + τ33 − 3τ34 )Y1μ(x3)

}
(23)

is an isovector, where x4 is the center-of-mass coordinate of
4He, and xi is the Jacobi coordinate: x1 = r2 − r1, x2 = r3 −
1
2 (r1 + r2), x3 = r4 − 1

3 (r1 + r2 + r3). This operator excites
the ground state of 4He to those states that have JπT = 1−1
insofar as a small isospin admixture in the ground state of
4He is ignored. Moreover, those excited states should mainly
have an (L, S) = (1, 0) component, because the ground state
of 4He is dominated by the (0, 0) component. See Table I.
Excited states with S = 1 or 2 components will be weakly
populated by the E1 transition through the minor components
(12%–14%) of the 4He ground state.

According to the R-matrix phenomenology as quoted in
Ref. [38], two levels with JπT = 1−1 are identified. Their
excitation energies and widths in MeV are, respectively,
(Ex, �) = (23.64, 6.20), (25.95, 12.66). We have recently
studied the level structure of 4He and succeeded in reproducing
all the known levels below 26 MeV [13]. By including the 3NF,
two 1−1 states are predicted at about 23 and 27 MeV in case of
the AV8′ potential. They are however not clearly identified as
resonances in a recent microscopic scattering calculation [20].
In Sec. IV A, we will show that three states with strong E1

strength are obtained below 35 MeV in a diagonalization using
the L2 basis and will discuss the properties of those states.

Low-lying excited states with JπT = 1−1 decay to 3H + p

and 3He + n channels via a P wave. Possible channel spins
2I+1�J that the 3H + p or 3He + n continuum state takes are
1P1 and 3P1 [20]. The main component of the 1P1 continuum
state is found to be (L, S) = (1, 0) while that of the 3P1

continuum state is (1, 1). Thus it is expected that the E1
excitation of 4He is followed mainly by the 3H + p and
3He + n decays in the 1P1 channel, which agrees with the
result of a resonating group method calculation including the
3H + p, 3He + n, and d + d physical channels [7].

The two-body decay to d + d is suppressed due to isospin
conservation. Above the d + p + n threshold at 26.07 MeV,
this three-body decay becomes possible where the decaying
pn pair is in the T = 1 state. In fact, the cross section to this
three-body decay is observed experimentally [1].

D. Square-integrable basis with Jπ T = 1−1

The accuracy of the CSM calculation crucially depends on
how completely the L2 basis functions 
i(x) for JπT = 1−1
are prepared for solving the eigenvalue problem (9). We
attempt to construct the basis, paying attention to two points:
the sum rule of E1 strength and the decay channels as discussed
in Sec. III C. As the E1 operator (23) suggests, we will
construct the basis with JπT = 1−1 by choosing the following
three operators and acting them on the basis functions that
constitute the ground state of 4He: (i) a single-particle (sp)
excitation built with Y1μ(r1 − x4), (ii) a 3N + N (3H + p

and 3He + n) two-body disintegration due to Y1μ(x3), and
(iii) a d + p + n three-body disintegration due to Y1μ(x2).
See Fig. 1. The basis (i) is useful for satisfying the sum
rule, and the bases (ii) and (iii) take care of the two- and
three-body decay asymptotics. These cluster configurations
will be better described using the relevant coordinates rather
than the single-particle coordinate. It should be noted that
the classification label does not necessarily indicate strictly
exclusive meanings because the basis functions belonging to
the different classes have some overlap among others because
of their nonorthogonality.

We will slightly truncate the ground-state wave functions
of 3H, 3He, and 4He when they are needed to construct the
above 1− 1 configurations, (i) and (ii). With this truncation a
full calculation presented in Sec. IV will be possible without
excessive computer time. As shown in Table I, the ground

(i) Single-particle
       excitation

(ii) 3N+N two-body
      disintegration

(iii) d+p+n three-body
        disintegration

FIG. 1. (Color online) Three patterns for the dipole excitations
for 4He. Thick solid lines denote the coordinates on which the spatial
part of the E1 operator acts.
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states of these nuclei contain a small amount (less than 0.5%)
of the L = 1 component, so that we omit this component
and reconstruct the ground-state wave functions using only
L1 = 0, 2 and L2 = L3 = 0 in Eq. (22). The energy loss is
found to be small compared to the accurate energy of Table I.
For example, in the case of AV8′+3NF, the loss is 0.23 MeV
for 3H in 64 basis dimension and 1.53 MeV for 4He in 200
basis dimension. The truncated ground-state wave function is
denoted �

(3)
1
2 M 1

2 MT
for 3N and �

(4)
0000 for 4He.

Note, however, that we use the accurate wave function �0

of Table I for the 4He ground state in computing S(E) with
Eq. (11).

1. Single-particle excitation

As is well known, applying the E1 operator on a ground
state leads to a coherent state that exhausts all the E1 strength
from the ground state. The coherent state is however not an
eigenstate of the Hamiltonian. In analogy to this, the basis of
type (i) is constructed as follows:

�
sp
f = A

[



(4)
0 (i)Y1(r1 − x4)

]
1M

η
(4)
T12T12310, (24)

where 

(4)
0 (i) is the space-spin part of the ith basis function

of �
(4)
0000. We include all the basis functions and all possible

T12, T123 for the four-nucleon isospin state with T MT = 10.
The truncated basis 


(4)
0 (i) consists of either [φ(4)+

0 χ
(4)
0 ]0 or

[φ(4)+
2 χ

(4)
2 ]0 in the notation of Eq. (18). The former contains no

global vector, while the latter contains one global vector. Since
Y1(r1 − x4) is rewritten as Y1(w̃x) with w̃ = (− 1

2 ,− 1
3 ,− 1

4 ),
the basis (24) contains at most two global vectors and reduces
to the correlated Gaussian (22). For example, the basis with
the latter case can be reduced, after angular momentum
recoupling, to the standard form with L1 = 2, L2 = 1:[[

φ
(4)+
20(2)02(A, u1)χ (4)

1 3
2 2

]
0Y1(r1 − x4)

]
1M

=
∑

L12=1,2,3

√
2L12 + 1

15

[
φ

(4)−
21(L12)0L12

(A, u1, w)χ (4)
1 3

2 2

]
1M

. (25)

Each L12 component of [φ(4)−
21(L12)0L12

(A, u1, w)χ (4)
1 3

2 2
]1M is in-

cluded as an independent basis function in what follows.

2. 3N + N two-body disintegration

In this basis the nucleon couples with the ground and pseudo
states of the 3N system. Their relative motion carries P -wave
excitations, and it is described as a combination of several
Gaussians. The basis function takes the following form:

�3N+N
f = A

[



(3)
J3

(i) exp
( − a3x

2
3

)
[Y1(x3)χ 1

2
(4)]j

]
1M

× [
η

(3)
T12

1
2
η 1

2
(4)

]
10, (26)

where 

(3)
J3

(i) is the space-spin part of the ith basis function

of �
(3)
1
2 M 1

2 MT
. The value of j takes 1

2 and 3
2 , and J3 takes any

of 1
2 , 3

2 , and 5
2 that, with j , can add up to angular momentum

1. The parameter a3 is taken in a geometric progression as

12.5/1.42(k−1) (k = 1, 2, . . . , 15) in fm−2. As in the basis of the
single-particle excitation the space-spin part is again expressed
in correlated Gaussians (22) with at most two global vectors,
where one of the global vectors is Y1(x3) = Y1(w̃x) with w̃ =
(0, 0, 1). All the basis states with different values of J3 and j

are included independently.

3. d + p + n three-body disintegration

In this basis the relative motion between 3N and N is an S

wave but the 3N system is excited to the d + N configuration
with P -wave relative motion. Here d does not necessarily
mean its ground state but includes pseudo states with angular
momenta Jπ

2 = 0+, 1+, 2+, 3+. The spatial part is however
taken from the basis functions of the deuteron ground state.
The three-body basis function takes the following form:

�
d+p+n
f = A

[



(dN)
J3

(i) exp
( − a3x

2
3

)
[Y0(x3)χ 1

2
(4)] 1

2

]
1M

× [
η

(3)
0 1

2
(123)η 1

2
(4)

]
10, (27)

with



(dN)
J3

(i) = [
�

(2)
J2

(i) exp
( − a2x

2
2

)
[Y1(x2)χ 1

2
(3)]j

]
J3

, (28)

where �
(2)
J2

(i) is the (pseudo) deuteron wave function men-
tioned above. Both J3 and j take 1

2 and 3
2 . All possible sets

of J3, J2 and j values that satisfy the angular momentum
addition rule are included in the calculation. Both a2 and a3 are
again given in a geometric progression, 3.125/1.42(k−1) (k =
1, 2, . . . , 10) in fm−2. Note that Y1(x2) = Y1(w̃x) with w̃ =
(0, 1, 0). After the orbital and spin angular momenta are re-
coupled, the basis (27) leads to the following space-spin parts:
[φ(4)−

L11(L)0Lχ
(4)
1S123S

]1M with L1 = 0 or 2, and all possible values
of L, S123, S are allowed. These are included independently.
Note that the matrix A of φ

(4)−
L11(L)0L becomes diagonal.

The adopted model space for AV8′ (G3RS) + 3NF includes
7400 (7760) basis states, of which 1200 (1560) are of the form
(i), 3000 (3000) are of the form (ii), and 3200 (3200) of the
form (iii).

IV. RESULTS

A. Discretized strength of electric dipole transition

Continuum states with JπT = 1−1 are discretized by
diagonalizing the Hamiltonian in the basis functions defined
in Sec. III. These discretized states provide us with an
approximate distribution of the E1 strength. Figure 2 displays
the reduced transition probability

B(E1, λ) =
∑
Mμ

∣∣〈�1M−
λ (θ = 0)

∣∣M1μ|�0〉
∣∣2

(29)

as a function of the discretized energy Eλ(θ = 0). The
calculations were performed in each basis set of (i)–(iii) as
well as a full basis that includes all of them. The distribution
of B(E1, λ) depends rather weakly on the potentials.

As expected, three types of basis functions play a distinctive
and supplementary role in the E1 strength distribution. The
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FIG. 2. (Color online) Discretized strength of the E1 transitions in 4He. See the text for the calculations classified by sp, 3N + N ,
d + p + n, and Full.

basis functions (i) produce strongly concentrated strength
at about 27 MeV and another peak above 40 MeV. The
(L, S) = (1, 0) component of these states is about 95%. With
the 3N + N two-body configurations (ii), we obtain two peaks
in the region of 20–30 MeV and one or two peaks at around 35
MeV. The two peaks at about 25 MeV may perhaps correspond
to the 1− levels with T = 1 at 23.64 and 25.95 MeV with
very broad widths [38]. Note, however, that a microscopic
four-nucleon scattering calculation presents no conspicuous
resonant phase shifts for 3P1 and 1P1 channels [20]. The
three-body configurations (iii) give relatively small strength
broadly in the excitation energy above 30 MeV. The three
prominent peaks at around 25–35 MeV are still present in
the full basis calculation. This implies that the low-lying
strength mainly comes from the 3N + N configuration. We
will return to this issue in Sec. IV D. The three discretized
states are labeled by their excitation energies Ei in what
follows.

Table II shows the properties of the three states Ei that
present the largest strength in the full basis calculation. The
expectation value of each piece of the Hamiltonian is a
measure of its contribution to the energy. We see that the
central (V4: σ i · σ jτ i · τ j ) and tensor (V6: Sijτ i · τ j ) terms are
major contributors among the interaction pieces. The one-pion
exchange potential (OPEP) consists of V6 and V4 terms, so
that the tensor force of the OPEP is found to play a vital role.
The value of P (L, S) in the table is obtained by the squared
coefficient (Cλ

LS)2 of the expansion

�1M−
λ (θ = 0) =

∑
LS

Cλ
LS�

(4)−
(LS)1M10, (30)

where �
(4)−
(LS)1M10 is normalized. Note that no basis functions

with Lπ = 0− are included in the present calculation as they
are not expressible in the two global vectors. As expected, all
of the three states dominantly consist of the (1, 0) component,
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TABLE II. Properties of the three 1−1 states that exhibit strong
B(E1) strength. The excitation energy E and the expectation values
are given in units of MeV. The value of P (L, S) is given in percent.
See Table I for the ground-state energy of 4He.

E AV8′ + 3NF G3RS + 3NF

23.96 27.05 33.02 24.08 27.25 33.43

〈H 〉 −4.46 −1.38 4.60 −4.48 −1.31 4.88
〈T 〉 51.21 54.78 43.71 44.34 48.37 49.65
〈V1〉 6.42 6.37 4.44 −0.14 −0.24 −0.31
〈V2〉 −3.41 −3.68 −1.61 −3.07 −3.38 −2.94
〈V3〉 −2.17 −2.15 −1.65 −3.81 −3.75 −3.43
〈V4〉 −23.83 −24.04 −16.09 −20.45 −20.81 −18.46
〈V5〉 0.22 0.22 0.14 −0.41 −0.41 −0.37
〈V6〉 −30.60 −30.51 −22.71 −20.60 −20.64 −18.80
〈V7〉 4.79 4.77 3.55 2.33 2.33 2.13
〈V8〉 −6.76 −6.73 −4.96 −2.37 −2.38 −2.15
〈V3NF〉 −0.74 −0.86 −0.55 −0.72 −0.85 −0.85
〈VCoul〉 0.42 0.45 0.32 0.41 0.45 0.42

P (1, 0) 87.18 84.58 82.70 90.12 88.47 79.73
P (1, 1) 4.76 7.47 7.59 3.18 4.89 13.86
P (2, 1) 0.16 0.25 0.22 0.09 0.13 0.36
P (1, 2) 0.89 0.74 4.56 0.85 0.76 0.95
P (2, 2) 2.17 1.99 1.40 1.89 1.79 1.41
P (3, 2) 4.85 4.97 3.53 3.86 3.95 3.69

which can be excited, by the E1 operator, from the main com-
ponent (0, 0) of the 4He ground state. We see a considerable
admixture of the S = 2 components especially with L = 3 in
the three states. This is understood from the role played by the
tensor force that couples the S = 0 and 2 states. In fact, the S =
2 states lose energy due to large kinetic energy contributions
but gain energy owing to the coupling with the main component
with (1, 0) through the tensor force. For example, for the
E1 state, the diagonal matrix elements of the kinetic energy,
〈�(4)−

(L2)1M10|T |�(4)−
(L2)1M10〉, are 196.5 (160.3), 198.6 (161.5),

199.3 (162.3) MeV for L = 1, 2, 3 with AV8′ (G3RS) + 3NF,
while the tensor coupling matrix elements between (1, 0) and
(L, 2) states, 〈�(4)−

(10)1M10|V5 + V6|�(4)−
(L2)1M10〉, are, respectively,

−54.5 (−40.2), −70.8 (−52.1), −84.0 (−61.9) MeV for
L = 1, 2, 3 states.

The E1 transition density is defined as

ρλ(r) = 〈
�10−

λ (θ = 0)
∣∣ 4∑

i=1

δ(|r i − x4| − r)

r2

×Y10(r i − x4)
1 − τ3i

2
|�0〉, (31)

which gives the E1 transition matrix element through

〈
�10−

λ (θ = 0)
∣∣M10|�0〉 =

√
4π

3
e

∫ ∞

0
ρλ(r)r2 dr. (32)

Figure 3 displays the transition densities for the three states
Ei of Table II that give the large E1 matrix elements. The
dependence of the transition density on the interaction is rather
weak except for the third state labeled by E3. The transition
density extends to significantly large distances mainly due to
the effect of the 3N + N configurations, so that for a reliable

-0.02

 0
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 0.04

 0.06

 0.08

 0.1

 0.12

 0  2  4  6  8  10

r2 ρ λ
 [f

m
]

r [fm]

AV8’, E1

E2

E3

G3RS, E1

E2

E3

FIG. 3. (Color online) Transition densities for the three dis-
cretized states listed in Table II that have strong E1 strength.

evaluation of B(E1, λ) the basis functions for JπT = 1−1
must include configurations that reach far distances. The peak
of r2ρλ(r) appears at about 2 fm, which is much larger than
the peak position (1.1 fm) of r2ρg.s.(r), where ρg.s.(r) is the
ground-state density of 4He. A comparison of the transition
densities of the second (E2) and third (E3) states suggests
that near r ≈ 2–6 fm they exhibit a constructive pattern in the
second state and a destructive pattern in the third state.

B. Test of CSM calculation

The strength function (11) calculated in the CSM using the
full basis is plotted in Fig. 4 for some angles θ . Both AV8′ +
3NF and G3RS + 3NF potentials give similar results. With
θ = 10◦, S(E) shows some oscillations whose peaks appear

 0

 0.03

 0.06

 0.09

 0.12

 0.15

S
 [e

2 fm
2 M

eV
-1

]

AV8’+3NF
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θ=15°
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 0.06
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G3RS+3NF

FIG. 4. (Color online) Electric dipole strength functions obtained
by using the CSM with different rotational angles θ .
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FIG. 5. (Color online) Comparison of the photoabsorption cross
sections calculated with the CSM and the MRM.

at the energies of the discretized states shown in the full
calculation of Fig. 2. To understand this behavior we note
that the contribution of an eigenstate λ to S(E) is given by a
Lorentz distribution

1

π

1

(E − Ec)2 + 1
4�2

c

∑
μ

[
1

2
�cReD̃λ

μ(θ )Dλ
μ(θ )

− (E − Ec)ImD̃λ
μ(θ )Dλ

μ(θ )

]
, (33)

where Eλ(θ ) = Ec − i
2�c. For small angles, Ec is not very

different from the discretized energy Eλ(θ = 0) and �c is
small, and therefore the strength at E ≈ Ec comes mostly
from the eigenstate λ alone because the contribution from the
neighboring states can be neglected. The oscillatory behavior
diminishes with increasing θ or �c, and finally we obtain one
broad peak at 26–27 MeV. As shown in the figure, convergence
is reached at about θ = 17◦. One might consider θ = 17◦
a little too small to cover the two 1− 1 states noted in Sec.
III C. Attempting at including them by increasing θ will lead
to numerically unstable and unphysical results particularly
near the 3H + p threshold with the present basis dimension.
Though the strength should in principle vanish below the
threshold energy, those eigenstates λ which have large values
of �c may contribute to the strength near the threshold and
therefore it would be in general hard to obtain vanishing
strength just below the threshold. After some trial-and-error
calculations we choose θ = 17◦ as an acceptable angle
hereafter.

Figure 5 compares the photoabsorption cross sections
σγ (Eγ ) between the CSM and the MRM. By the rotation θ

the energy of 3H slightly shifts from the value of θ = 0◦. This
difference is adjusted by shifting the theoretical threshold to the
experimental one. As already mentioned, the σγ (Eγ ) value of

the MRM is defined as a sum of σ
3H p
γ (Eγ ) and σ

3He n
γ (Eγ ). Both

methods give almost the same cross section, which convinces
us of the validity of the CSM calculation. A little difference
appears especially at an energy close to the threshold. We
think that the reason for that is partly because the model space
employed is not exactly the same in the two cases, partly
because the MRM calculation does not take into account the
three- and four-body decay channels, and partly because the
CSM cross section may not be very accurate near the threshold
energy as mentioned above.

A comparison of σγ (Eγ ) between theory and experiment
will be made in Sec. IV D.

C. Photonuclear sum rules

Photonuclear sum rules are related to the moments of
different order of σγ (Eγ ). The moment is defined as

mκ (Emax) =
∫ Emax

0
Eκ

γ σγ (Eγ ) dEγ . (34)

The moments m0, m−1, and m−2 are called the Thomas-
Reiche-Kuhn, bremstrahlung, and polarizability sum rules, re-
spectively. These moments for Emax → ∞ are expressed with
the ground-state expectation values of appropriate operators,
and thus they carry interesting electromagnetic properties of
nuclei [39,40]. As is well known, they are expressed as

m−1(∞) = G
(

Z2
〈
r2
p

〉 − Z(Z − 1)

2

〈
r2
pp

〉)
,

(35)

m0(∞) = G 3NZh̄2

2AmN

(1 + K),

where G = 4π2e2/3h̄c and mN is the nucleon mass. Here 〈r2
p〉

stands for the mean square radius of the proton distribution
and 〈r2

pp〉 for the mean square relative distance of protons. See
Table I.

The enhancement factor K is given as a sum of the
contributions from the potential pieces, K = ∑8

q=1 Kq, where

Kq = 2AmN

3NZh̄2e2

1

2

∑
μ

〈�0|[M†
1μ, [Vq,M1μ]]|�0〉. (36)

For the NN potential of AV8′ type, K gains contributions from
the potential piece with the τ i · τ j dependence, i.e., the charge-
exchange interaction. The values of Kq are listed in Table III.
For the sake of reference, we also show the expectation value
〈Vq〉 for the ground state of 4He. Roughly half of the respective
total values, K and

∑
q〈Vq〉, come from the tensor (V6) and

central (V4) terms. Since the OPEP contains both V6 and V4

terms, it is instructive to know what values the OPEP predicts
for 〈Vq〉 and Kq . The radial form factor v(q)(r) of the OPEP
is made to vanish for r � 1 fm in order to estimate the role
of the OPEP in the medium- and long-range parts of the NN

interaction. As shown in Table III, the OPEP explains most
of the contributions from the V6 term. However, the OPEP is
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TABLE III. Contributions of the eight pieces Vq of the NN

potential to the enhancement factor K and to the ground-state energy
of 4He given in MeV. The values in parentheses are contributions of
the OPEP that are calculated as explained in the text. The D-state
probability of the deuteron is 5.77% for AV8′ and 4.78% for G3RS.

q O(q)
ij AV8′ + 3NF G3RS + 3NF

〈Vq〉 Kq 〈Vq〉 Kq

1 1 17.39 0 1.07 0
2 σ i · σ j −9.59 0 −8.75 0
3 τ i · τ j −5.22 0.011 −9.11 0.059
4 σ i · σ jτ i · τ j −59.42 0.460 −51.80 0.474

(−12.51) (0.187) (−12.50) (0.191)
5 Sij 0.75 0 −0.93 0
6 Sijτ i · τ j −70.93 0.574 −47.16 0.484

(−68.65) (0.667) (−59.37) (0.610)
7 (L · S)ij 11.09 0 5.53 0
8 (L · S)ijτ i · τ j −15.93 0.061 −5.65 0.025

Total −131.9 1.11 −116.8 1.04

not enough to account for the V4 contribution. Other central
forces of V4 type contribute in the medium-range part of the
NN interaction.

The two large contributions originate from the matrix
elements for the (L, S) = (0, 0)–(2,2) couplings and the (0,0)–
(0,0) diagonal channels, respectively. The AV8′ potential has a
stronger tensor component than the G3RS potential, predicting
a slightly larger value for K . The present value of K is smaller
than in other calculations, e.g., 1.14 with the Reid soft-core
potential [41], 1.29 with the AV14 + UVII potential [42], and
1.44 with the AV18 + UIX potential [8].

The continuum discretized 1−1 states calculated with
θ = 0◦ satisfy the sum rule for m−1(∞) almost perfectly:
99.6% for AV8′ + 3NF and 99.7% for G3RS + 3NF. This
implies that the present basis functions sufficiently span the
configuration space needed to account for all the strengths of
the E1 transition.

Figure 6 displays the convergence of the various moments
with respect to the upper limit of the integration. It is surprising
that even the moments calculated from the discretized states
with θ = 0◦ lead to a good approximation, already at Emax =
60 MeV, to the moments obtained with the CSM. The moment
m−2 converges well at the rest energy of a pion, but the moment
m0 is still increasing beyond that energy. Our moments appear
consistent with those calculated with the potential of Argonne
v18 + UIX in the LIT method [8]. For Emax = 135 MeV
we obtain m−2 = 0.0710 mb MeV−1, m−1 = 2.36 mb [96%
of m−1(∞)], and m0 = 92.0 mb MeV [73% of m0(∞)] with
AV8′ + 3NF, while the corresponding values with G3RS +
3NF are 0.0725 mb MeV−1, 2.45 mb [96% of m−1(∞)], and
97.1 mb MeV [80% of m0(∞)], respectively. We estimate the
m0 value for Emax = 135 MeV using the experimental cross
sections [43]. The extracted value is 100 ± 5 mb MeV, which
agrees fairly well with our theoretical values noted above. See
also Fig. 11 later.

 0.1
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FIG. 6. (Color online) Moments of the photoabsorption cross
section as a function of the upper limit of the integration. The moments
with the discretized states (θ = 0◦) are also plotted. The AV8′ + 3NF
potential is used. The units of mκ are mb MeVκ+1.

D. Comparison with experiment

We compare in Fig. 7 the photoabsorption cross sections
for the reactions 4He(γ, p) 3H and 4He(γ, n) 3He between
the MRM calculation and experiment. The calculated cross
sections do not depend on the potentials up to about 25 MeV,
and then the AV8′ + 3NF potential predicts slightly smaller
values than the G3RS + 3NF potential beyond the resonance
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FIG. 7. (Color online) Photoabsorption cross sections of
4He(γ, p) 3H and 4He(γ, n) 3He reactions compared between the
MRM calculation and experiment. Solid curve: AV8′ + 3NF; dashed
curve: G3RS + 3NF. The thin dotted curve is the LIT calculation
with the Malfliet-Tjon potential taken from Ref. [3]. The data are
taken as follows: open circles [1], squares [5], closed circles [45],
and triangles [2].
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FIG. 8. (Color online) Ratio of the photoabsorption cross sections
of 4He(γ, p)3H and 4He(γ, n)3He. The data are taken as follows: open
circles [1], closed circles [45], and triangles [46].

peak. The MRM result for the (γ, p) cross section agrees
rather well with the 1983 evaluation [44] as well as the
very recent data [5], but it disagrees with the data [1] in the
low-energy region. The 4He(γ, n) 3He cross section obtained
in the MRM is much larger than that of the 1983 evaluation
in the energy region of 25–35 MeV. The (γ, n) data are
considerably scattered among the experiments. Compared
to the recent data [2], the MRM result is consistent with
experimental results in 25–28 MeV but is considerably larger
than that obtained from experiment in 30–40 MeV. The MRM
cross sections of both (γ, p) and (γ, n) reactions agree fairly
well with the new data [45] beyond 30 MeV. Compared to the
LIT calculation [3] with the simple Malfliet-Tjon potential,
our cross sections of both (γ, p) and (γ, n) are similar to their
results that include final-state interactions. It is noted that in
our MRM calculation the peak height of the giant resonance is
slightly lower and the resonance width is slightly broader than
in the LIT calculation [3].

Figure 8 shows the cross section ratio of σ
3Hp
γ /σ

3Hen
γ ,

which is an important quantity to test the charge symmetry
of the nuclear interaction. In the present calculation only
the Coulomb potential breaks the charge symmetry. Both the
AV8′ + 3NF and G3RS + 3NF potentials give virtually the
same ratio. The calculated ratio is consistent with the recent
measurements [1,45,46] as well as the theoretical calculations
[3,47]. It is interesting to note that the ratio of the data [1]
agrees very well with our result though each of the (γ, p) and
(γ, n) cross sections is considerably smaller than our cross
section. According to the 1983 evaluation [44] the ratio is as
large as 1.5 in the 25–30 MeV region. We think this is probably
attributed to the inefficiency of observing the cross section of
4He(γ, n)3He compared to that of 4He(γ, p)3H. The rise of the
ratio below 22 MeV is simply due to the difference between
the 3H + p and 3He + n thresholds.

We display in Fig. 9 the total photoabsorption cross section
σγ (Eγ ) calculated with the CSM. The two potentials give
qualitatively the same results, but a careful look shows that
the resonance energy and the width given by the AV8′ +
3NF potential are slightly smaller than those obtained with the
G3RS + 3NF potential. The calculation predicts a sharp rise
of the cross section from the threshold, which is observed by
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FIG. 9. (Color online) Comparison of the photoabsorption cross
section between the CSM calculation with θ = 17◦ and experiment.
The data are taken as follows: closed triangles [43], squares [48],
open circles [1], closed circles [45], and open triangles [4].

several measurements [4,43] but not in the data of Ref. [1]. Our
result is consistent with the LIT calculations [10–12] starting
from the realistic interactions especially in the cross section
near the threshold. It seems that the data [4,45] indicate a
small rise of the cross section at 31 MeV, but no such behavior
appears in the theory.

It is noted that the data of Ref. [4] appear to predict slightly
smaller cross sections than our result though the shape of
the cross section agrees well. This experiment is actually
not a direct measurement using photons but is based on the
excitation of the analog states of 4He via the 4He(7Li,7Be)
reaction. By an ingenious technique to separate spin-nonflip
cross sections from spin-flip cross sections, the σγ (Eγ ) values
were deduced, apart from an overall multiplicative factor.
The factor was fixed by comparing to the sum of (γ, p) and
(γ, n) cross sections at 40 MeV that are taken from the 1983
evaluation [44]. The factor could be slightly larger, however,
if it were determined according to the data of Refs. [43,45]
and/or if the σγ (Eγ ) value at 40 MeV were contributed from a
partial cross section (γ, pn) [1]. Then the agreement between
experiment and theory would likely improve.

As noted above, serious disagreement between the theory
and the experiment [1] is observed at an energy below 30 MeV.
Other theoretical calculations [3,10–12] with the LIT also
disagree with the experiment. The experiment makes use of
pulsed photons produced via the Compton backscattering of
laser photons with high-energy electrons. The cross sections
for the two- and three-body decay channels were measured in
an event-by-event mode. Since the photons have some intensity
distributions with respect to Eγ , the cross section measured
is actually a weighted mean of ideal cross sections that are
free from the spread of the photon energies and are to be
compared to the theoretical cross section. To see the extent
to which the energy averaging changes the cross section, we
have calculated such cross sections that are weighted by the
same distribution functions as used in Refs. [1,45]. Figure 10
compares the σγ (Eγ ) values calculated in this way with
experiment. The weighting procedure gives a different effect
on the cross section between below and above 30 MeV: Above
30 MeV the original theoretical cross sections change only
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FIG. 10. (Color online) The photoabsorption cross section
weighted by the intensity distributions of photons as used in the
experiment [1,45]. Solid and dotted curves are the original theoretical
cross sections. Open and closed triangles are the weighted cross
sections with AV8′ + 3NF, while open and closed squares are the
results with G3RS + 3NF. Open and closed circles are the data taken
from Refs. [1,45].

little and very good agreement with experiment is attained
except for the data at 31 MeV. In contrast to this, below 30 MeV
the cross sections tend to decrease toward the experimental
data points. However, the decrease is not large enough to fill
the gap between theory and experiment. The disagreement
observed at the low-energy region still remains to be accounted
for. The experimental method for the generation of incident γ

rays used in Refs. [1,45] appears to be very similar to that
of Ref. [5], but the method of detecting the particles after the
photoabsorption is different. We hope that the discrepancy at
the low-energy region will be resolved experimentally.

It is interesting to compare the cross section at high energy.
The calculation in the high-energy region is hard in the MRM
but is not difficult in the CSM. A comparison is made in
Fig. 11, where Eγ reaches the rest energy of a pion. The
G3RS + 3NF potential appears to reproduce the data [43]
more precisely between 40 and 80 MeV, but in the other
energy region both potentials give equally good results. As
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FIG. 11. (Color online) Decomposition of the photoabsorption
cross section into the 3N + N and other contributions. See the text
for how the decomposition is made. The data are taken from Ref. [43].

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

σ γ
 [m

b]

AV8’+3NF

Total
σγ (S=0)

σγ (S=2)

Others

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 20  25  30  35  40  45  50  55  60

Eγ [MeV]

G3RS+3NF

FIG. 12. (Color online) Decomposition of the photoabsorption
cross section into contributions specified by the total spin S. See the
text for details.

mentioned in Sec. IV C, the integrated cross section m0 for
Emax = 135 MeV is found to agree fairly well with the value
estimated using the experimental cross sections. Since the
CSM calculation reproduces the total photoabsorption cross
section, it is meaningful to analyze the contribution of the
two-body decay channels to σγ (Eγ ). This decomposition can
be performed by restricting the sum over the eigenstates λ in
Eq. (11) to those whose complex energies lie on the rotating
continua starting from the 3H + p and 3He + n thresholds
[23,24,27]. The cross section labeled as 3N + N in the figure
denotes this partial cross section. It constitutes a major part
of the total cross section. The cross section labeled Others in
the figure is obtained by subtracting the 3N + N cross section
from the total cross section. As seen in the figure, this quantity
is not necessarily positive because of an interference effect. It
consists of the three- and four-body decay contributions and
more importantly of the interference term of the two-body and
other decay amplitudes.

Another physically interesting decomposition of σγ (Eγ )
is to make use of the total spin S. As listed in Table I, the
ground state of 4He contains by more than 85% the S = 0
main component and the S = 2 minor component. The S = 1
component is negligible. Since the E1 operator does not
change the spin, it makes sense to decompose the σγ (Eγ )
value according to the spin channels. Figure 12 displays
the decomposition into the partial contributions of σγ (S =
0), σγ (S = 2), and Others, where Others denotes not only
theS = 1 contribution but also the interfering terms between
the different spin amplitudes. This partial cross section, e.g.,
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σγ (S = 0), is sensitive to the probability of finding the S = 0
(and at the same time L = 0) components in the ground
state of 4He. If this partial cross section can be measured
experimentally, it would give us information on the D-state
probability in the ground state of 4He, which is closely related
to the strength of the tensor force of the NN interaction.

V. CONCLUSIONS

Motivated by the discrepancy in the low-energy data on
the photoabsorption cross section of 4He, we have performed
ab initio calculations for the cross section using realistic
nuclear forces. Our approach takes proper account of the
most important ingredients for a description of four-nucleon
dynamics, e.g., correlated motion of the nucleons in both the
ground and continuum states of 4He, effects of the tensor force,
(3N + N )-cluster configurations, and final-state interactions
in the process of the photodisintegration.

We have applied two different methods, the complex scaling
method and the microscopic R-matrix method, to obtain the
cross section. The merit of the CSM is that one needs no
explicit construction of continuum states but nevertheless gets
the photoabsorption cross section in a way similar to bound-
state problems. The reliability of our approach is confirmed by
observing that the two independent methods lead to virtually
the same cross section in 20–40 MeV region.

In the energy region between 30 and 40 MeV the calculated
cross sections for 4He(γ , p)3H and 4He(γ , n)3He are found
to agree with the very recent measurements [5,45]. The
total photoabsorption cross section calculated up to the rest
energy of a pion is also in fair agreement with most of
the available data [4,43,45,48] except for the one [1,45] in
the low-energy region of 20–30 MeV. The calculated total
cross section sharply rises from the 3H + p threshold and
reaches a peak at about 26–27 MeV consistently with the
Lorentz integral transform calculations, but in disagreement
with the data [1,45]. Hoping to resolve this discrepancy, we
have allowed for the energy spread of the photon beams in
the measurement and calculated the energy-averaged cross

sections using the the same distribution functions as those in
Ref. [1,45]. The cross sections in fact decrease below 30 MeV
but it turns out that the change is not large enough to account
for the discrepancy.

The configurations that the MRM calculation takes in the in-
ternal region are represented by several two-cluster partitions.
The 3H + p and 3He + n cluster configurations, among others,
are most important for reproducing the photoabsorption cross
section in the energy region of 20–35 MeV. This is further
corroborated from the analysis of the transition densities as
well as the decomposition of the cross section into the 3N + N

contribution.
The electric dipole transition occurs mainly from the major

component with (L, S) = (0, 0) of the 4He ground state to the
(1, 0) component of the 1−1 continuum states. It should be
noted, however, that both the ground and 1−1 excited states
gain energy largely from the tensor force, and in fact we have
seen an important role of the tensor force induced by the
one-pion exchange in enhancing the photoabsorption cross
section as well as the photonuclear sum rule.

In this work we have presented the analysis of the electric
dipole strength function. A similar analysis for 4He will
be possible for other strength functions induced by, e.g.,
Gamow-Teller and spin-dipole operators that probe different
spin-isospin responses of 4He. A study along this direction is
underway and will be reported elsewhere.
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