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Pion production in nucleon-nucleon collisions in chiral effective field theory: Next-to-next-to-
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A complete calculation of the pion-nucleon loops that contribute to the transition operator for NN → NNπ up-
to-and-including next-to-next-to-leading order (N2LO) in chiral effective field theory near threshold is presented.
The evaluation is based on the so-called momentum counting scheme, which takes into account the relatively
large momentum of the initial nucleons inherent in pion-production reactions. We show that the significant
cancellations between the loops found at next-to-leading order (NLO) in the earlier studies are also operative at
N2LO. In particular, the 1/mN corrections (with mN being the nucleon mass) to loop diagrams cancel at N2LO,
as do the contributions of the pion loops involving the low-energy constants ci , i = 1, . . . , 4. In contrast to the
NLO calculation however, the cancellation of loops at N2LO is incomplete, yielding a nonvanishing contribution
to the transition amplitude. Together with the one-pion exchange tree-level operators, the loop contributions
provide the long-range part of the production operator. Finally, we discuss the phenomenological implications of
these findings. In particular, we find that the amplitudes generated by the N2LO pion loops yield contributions
comparable in size with the most important phenomenological heavy-meson exchange amplitudes.
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I. INTRODUCTION

The reaction NN → NNπ has been extensively studied
both theoretically and experimentally over the past decades.
However, the near-threshold regime is still not yet fully
understood. After the first high-quality data for pp → ppπ0

[1] became available (further experimental data can be found
in, e.g., the review article [2], with the latest measurements in
Refs. [3,4]), it quickly became clear that the original models
failed to reproduce the new data. For example, the model
of Ref. [5] fell short by a factor of two for the reaction
pp → dπ+ and by an order of magnitude for pp → ppπ0.
Various attempts were made to identify the phenomenological
mechanisms responsible for this discrepancy.

The first theoretical paper to explain quantitatively the cross
section pp → ppπ0 was Ref. [6]. The new contribution in [6]
originated from the short ranged, irreducible currents con-
structed directly from the nucleon-nucleon potential. A phe-
nomenological interpretation of this mechanism was provided
in Ref. [7], where the exchange of heavy mesons (mostly σ and
ω) followed by a pion emission via a nucleon-antinucleon pair
(the so-called Z mechanism) was calculated. The mechanism
was also shown to provide the missing strength for pp → dπ+
in Refs. [8,9]. An alternative mechanism is based on the
pion-nucleon rescattering diagram where the off-shell pion-
nucleon amplitude plays a crucial role. It is well known that
the isoscalar pion-nucleon scattering length is very small (see
Refs. [10] for its most recent determination) as a result of a
cancellation of individually sizable terms which have different
energy dependencies. It therefore appeared natural that, in the
off-shell kinematics relevant for the pion-production reaction,
the amplitudes are significantly enhanced. This mechanism

was also shown to be capable of describing the experimental
data in both pp → ppπ0 [11,12] as well as pp → dπ+ [13]
reactions. At this point there was no way to decide which of
the mechanisms described captures the correct physics.

Since pion interactions are largely controlled by the chiral
symmetry of the strong interaction, one might naturally expect
that chiral perturbation theory (ChPT) provides the proper tool
to resolve the above-mentioned discrepancy. However, the use
of the standard ChPT power counting, which is based on the as-
sumption that all relevant momenta are effectively of the order
of the pion mass, was not very successful. The first calculations
in this framework were done at tree level up to N2LO for both
pp → ppπ0 [14–16] as well as for pp → dπ+ [13,17]. These
studies revealed, in particular, that the discrepancy between
theory and experiment increases for the neutral channel due
to a destructive interference of the direct pion production and
the isoscalar rescattering contributions at NLO in standard
counting. In addition, some loop contributions at N2LO were
found in Refs. [18,19] to be larger than the NLO contribution,
revealing a problem regarding the convergence of the standard
ChPT power counting.

It was soon realized that the large initial nucleon momentum
at threshold p, p = | �p | = √

mNmπ , which is significantly
larger than the pion mass mπ , requires the modification of
the standard power counting. The corresponding expansion
parameter in the new scheme is

χ = p/�χ � 0.4, (1)

with �χ being the chiral symmetry-breaking scale of the order
of 1 GeV. Here and in what follows, this power counting will
be referred to as the momentum counting scheme (MCS). This
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modification was proposed in Refs. [14,17] while the proper
way to treat this scale was first presented in Ref. [20] and
implemented in Ref. [21] (see Ref. [2] for a review article). The
MCS expansion is performed with two distinct parameters;
namely, the initial nucleon momentum p and the pion mass
mπ , where mπ/p ∼ p/�χ . The pion loop diagrams start to
contribute at a given order in the expansion parameter, which
can be identified based on the power counting and, unlike the
standard ChPT power counting, continue to contribute at all
higher MCS orders.

Due to the fact that the �-nucleon (�-N) mass splitting is
numerically of the order of p, the � isobar should be explicitly
included as a dynamical degree of freedom [14]. This general
argument was confirmed numerically in phenomenological
calculations [22–24]; see also Refs. [14,17,21,25] where the
effect of the � in NN → NNπ was studied within chiral
effective field theory (EFT). However, in this paper we focus
on contributions from nucleons and pions only. The � degree
of freedom will be included in a subsequent publication [26].

In the MCS, pion p waves are given by tree level
diagrams up to N2LO, and the corresponding calculations of
Refs. [20,27] showed a satisfactory agreement with the data.
Meanwhile, for pion s waves, loop diagrams start to contribute
individually already at NLO. However, they turned out to
cancel completely both for the neutral [21] and charged [28]
pion production; a result which is reproduced in this paper. To
obtain this result for charged pion production, it is crucial to
consistently take into account a contribution related to nucleon
recoil in the πN vertex as explained in detail in Ref. [28]. As a
by-product of the consistent treatment of nucleon recoil effects
in Ref. [28], the rescattering one-pion exchange amplitude
at LO was found to be enhanced by a factor of 4/3 which
was sufficient to overcome the apparent discrepancy with the
data in the charged channel. The first attempts to study the
subleading loop contributions were taken in Refs. [29,30].

In this paper we advance the analysis for NN → NNπ

at threshold to N2LO. In particular, we evaluate all loop
contributions at N2LO that involve pion and nucleon degrees of
freedom. A complete calculation of all operators at N2LO (tree
level and loops) including the � degree of freedom, and the
subsequent convolution with the pertinent NN interactions in
the initial and final states, will be reported elsewhere. We will
show in this paper that, also at N2LO, significant cancellations
occur and that only very few loop topologies contribute to the
final amplitude.

The paper is structured as follows: In Sec. II we present our
formalism and discuss the hierarchy of diagrams as follows
from our power counting. The next two sections are devoted to
a detailed discussion of the results for the loop topologies
proportional to the axial-vector nucleon coupling constant
gA to the third (Sec. III) and the first power (Sec. IV). In
particular, we reproduce the cancellation of all NLO terms
found in Ref. [28] and demonstrate that a similar cancellation
pattern also takes place among the loop contributions at N2LO.
In the latter case, however, the cancellation is not complete.
Section V contains a compact summary of the results of
Secs. III and IV. Here, we also give explicitly the finite loop
contributions which survive the above mentioned cancellation.
In Sec. VI the regularization procedure for the loop integrals

is outlined. In this section we also compare the finite pieces
of our loops at N2LO to the size of the contact 4Nπ operator
estimated based on phenomenological calculations. Finally, in
Sec. VII we summarize the results of the paper and discuss
phenomenological implications of the observed cancellation
of loop contributions.

II. FORMALISM AND POWER COUNTING

A. Reaction amplitude and Lagrangian densities

The most general form of the threshold amplitude for the
pion-production reaction N1( �p ) + N2(− �p ) → N + N + π

in the center-of-mass frame can be written as

Mth(NN → NNπ )

= [A1i(�σ1 − �σ2) · �p + A2(�σ1 × �σ2) · �p](τ 1 + τ 2) · φ∗

+ (�σ1 + �σ2) · �p[B1i(τ 1 − τ 2) + B2(τ 1×τ 2)] · φ∗, (2)

where �σ1, �σ2, τ 1, and τ 2 are the spin and isospin operators
of nucleons 1 and 2. The final-state pion’s three-component
isospin wave function is denoted by φ [e.g., φ = (0, 0, 1) for
π0 production and φ = (1, i, 0)/

√
2 for π+ production].

However, as follows from the angular momentum conser-
vation and the Pauli selection rule for the NN system, a final
s-wave pion in NN → NNπ can be produced via two angular
momentum transition channels only; namely, 3P0 → 1S0s and
3P1 → 3S1s, where we use the spectroscopic notation 2S+1LJ

for the NN states while the lower case s corresponds to
the l = 0 pion partial wave in the overall center-of-mass
system. Therefore, the two spin-isospin structures in Eq. (2) are
redundant, and the reaction amplitude, which acknowledges
the Pauli principle, can be rewritten without loss of generality
as [21,31]

Mth(NN → NNπ ) = A(�σ1 × �σ2) · �p(τ 1 + τ 2) · φ∗

+B(�σ1 + �σ2) · �p(τ 1 × τ 2) · φ∗, (3)

with A = A1 + A2 and B = B1 + B2. To derive Eq. (3) we
used the fact that the spin (isospin) matrix element for the
operator Ô = i(�σ1 − �σ2) · �p [Ô = i(τ 1 − τ 2) · φ∗] is equal
to that of Ô = (�σ1 × �σ2) · �p [Ô = (τ 1 × τ 2) · φ∗] for s-wave
pion production.

The amplitude A in Eq. (3) contributes to 3P0 → 1S0s,
which is the relevant transition amplitude for neutral pion pro-
duction in pp → ppπ0. Conversely, the amplitudeB in Eq. (3)
contributes to the charge pion production in pp → dπ+,
driven by the 3P1 → 3S1s transition operator. Furthermore,
in some channels such as, for example, pp → pnπ+, both
amplitudes A and B contribute in a certain linear combination.

It is convenient to write down the threshold reaction ampli-
tudes in the form where the relevant spin-angular structure of
the initial and final nucleon pairs are shown explicitly:1

Mpp→ppπ0 = 4iA( �S · p̂)I ′†,
(4)

Mpp→dπ+ = −2
√

2iB( �S × p̂) · �ε.

1The connection of the amplitudes A and B to the observables is
given in, for example, Ref. [27].
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Here, �ε is the deuteron polarization vector, p̂ is the unit vector
of the initial relative momenta of two nucleons, and �S =
χT

2 σy �σχ1/
√

2 and I ′† = χ
†
1′σyχ

∗
2′/

√
2 denote the normalized

spin structures of the initial spin-triplet and final spin-singlet
states, respectively.

The main goal of this paper is to derive the contributions
to A and B that originate from loop diagrams. The loop
diagrams can be separated into two different kinds: the
ones involving only pion and nucleon degrees of freedom
and the ones involving �(1232) excitations in the inter-

mediate states. In this paper we concentrate on the first
kind only where we include all relevant contributions at
orders NLO and N2LO in the MCS as detailed in the
next section. An evaluation of all MCS N2LO operators
containing explicitly the � will be presented in an upcoming
publication [26].

Our calculations are based on the effective chiral La-
grangian in which the lowest-order (LO) πN interaction terms
read in the σ gauge [32,33] (more details on the pion-nucleon
Lagrangian can be found, e.g., in Ref. [34])

L(1)
πN = N †

[
1

4f 2
π

τ · (π̇ × π ) + gA

2fπ

τ · �σ
(

�∇π+ 1

2f 2
π

π(π · �∇π)

)]
N + · · · . (5)

The next-higher-order interaction terms have the form

L(2)
πN = 1

8mNf 2
π

[iN †τ · (π × �∇π ) · �∇N + H.c.] − gA

4mNfπ

[
iN †τ ·

(
π̇+ 1

2f 2
π

π(π · π̇ )

)
�σ · �∇N + H.c.

]

− gA

8mNf 3
π

N †π · (�σ · �∇)(π̇ × π )N + 1

f 2
π

N †
[(

c3 + c2 − g2
A

8mN

)
π̇2 − c3( �∇π )2 − 2c1m

2
ππ2

− 1

2

(
c4 + 1

4mN

)
εijkεabcσkτc∂iπa∂jπb

]
N + · · · . (6)

In the equations above, fπ denotes the pion decay constant, gA is the axial-vector coupling of the nucleon, and N (π )
corresponds to the nucleon (pion) field. The ellipses represent further terms which are not relevant for the present study.

The Lagrangian density for the leading 4π vertex also needed for the calculation reads in the σ gauge

L(2)
ππ = 1

2f 2
π

(π · ∂μπ )(π · ∂μπ ) − m2
π

8f 2
π

π4.

The leading-order NN interaction Lagrangian, which will be used in the next subsection for the purposes of power counting,
is

LNN = − 1
2CS(N †N )(N †N ) − 1

2CT (N † �σN )(N † �σN ).

The loop diagrams (at N2LO) lead to ultraviolet (UV) divergent integrals. These UV divergencies are removed by expressing
the bare low-energy constants (LECs) accompanying the five-point contact vertex at the same order in terms of renormalized
ones. The relevant 4Nπ N2LO Lagrangian is given in Ref. [14] as

L4Nπ = d ′
1 + e1

2mNfπ

[iN †(τ · π̇ )�σ · �∇NN †N + H.c.] − e1

2mNfπ

{i[N †(τ · π̇ )�σN ] · (N † �∇N ) + H.c.}

+ e2

2mNfπ

{i[N †(τ · π̇ )�σ × �∇N ] · (N † �σN ) + H.c.}, (7)

where the LECs d ′
1 and ei , i = 1, 2, are2 O(1/f 2

π mN ). As
a consequence of the Pauli principle, only two independent
linear combinations of Lagrangian contact terms contribute
to the transition matrix elements A and B. We will denote
the corresponding amplitudes by ACT and BCT for future
reference. The relation of ACT and BCT to the coefficients
d ′

1, e1, and e2 will be discussed in detail in Sec. VI.

2Notice that the above expressions are not related to the relativistic
corrections, with the nucleon mass being introduced solely for
dimensional reasons.

B. Diagrams and power counting

In ChPT the expansion parameter is Q/�χ , where Q is
identified either with a typical momentum of the process or
mπ . The key assumption for convergence of the theory is Q 

�χ . As mentioned in the introduction, the reaction NN →
NNπ at threshold involves momenta of “intermediate range”
p ≈ √

mπmN larger than mπ but still smaller than �χ ∼ mN .
In the MCS we are thus faced with a two-scale expansion.
For near threshold s-wave pion production, the outgoing two-
nucleon pair has a low relative three-momentum p′ and appears
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LO:

NLO:

TypeII IIIa b IV

DirectDirect WT

Box bBox aType IIIType Type

FIG. 1. (Color online) Complete set of diagrams up to NLO (in the �-less theory). Solid (dashed) lines denote nucleons (pions). Solid dots
correspond to the leading vertices from L(1)

πN and L(2)
ππ , as given in the main text, � stands for the subleading vertices from L(2)

πN whereas the
blob indicates the possibility to have both leading and subleading vertices. The NN contact interaction is represented by the leading S-wave
LECs CS and CT from LNN . The red square in the box diagrams indicates that the corresponding nucleon propagator cancels with parts of the
πN vertex and leads to the irreducible contribution (see text for further details).

therefore predominantly in S wave. We therefore assign p′ an
order mπ and introduce the expansion parameter

χ � p′

p
� mπ

p
� p

mN

. (8)

The diagrams containing only pion and nucleon degrees
of freedom that contribute to the reaction NN → NNπ up
to NLO in our expansion are shown in Fig. 1. Details of the
evaluations of each of the loop diagrams can be found in
appendices A and B. The first two diagrams in the first line
are sometimes called the “direct” one-nucleon diagrams in the
literature, whereas the last (rightmost) diagram is called the
rescattering diagram. We will discuss both next.

At leading order one needs to deal with the “direct” pion
emission from a single nucleon where the nucleon recoil πNN

vertex of L(2)
πN (6) is necessary in order to produce an outgoing

s-wave pion. In addition, at LO there is a rescattering operator
with the Weinberg-Tomozawa (WT) ππNN vertex which,
however, contributes only to the charged pion channel due
to its isovector nature. In order to clarify the counting in
MCS, we will concentrate on the first of the two “direct”
diagrams in Fig. 1. In this diagram each vertex attached
to the pion propagator involves a momentum p. The pion
propagator itself involves a momentum p (i.e., it is counted
as p−2), whereas the nucleon propagator only carries an
energy ∝mπ . The m−1

π of the nucleon propagator cancels
the factor mπ of the s-wave pion-production vertex, which
counts as ∼mπp/mN . Thus, counting the “momentum flow”
in the vertices and propagators of the diagram gives an
order of magnitude estimate of the direct diagrams (as well
as the rescattering diagram) as p/mN . These diagrams are
counted as LO in MCS. Traditionally the LO direct diagrams
have been evaluated numerically by including the pion
propagator in the distorted NN wave functions (i.e., only
the one-nucleon-pion production vertex gives the transition
operator). Numerically, in the traditional distorted-wave Born
approximation approach, the “direct” term appears to be

significantly smaller than the estimate based on our naive
MCS’s dimensional analysis. This suppression comes from
two sources: First, there is the momentum mismatch between
the initial and final distorted-nucleon wave functions [2] (see
also Ref. [35] for a more detailed discussion). Second, there are
accidental cancellations from the final-state interaction present
in both channels, pp → ppπ0 and pp → dπ+, that are not
accounted for in the power counting. Specifically, the NN

phase shift in the 1S0 partial wave relevant for pp → ppπ0

crosses zero at an energy close to the pion-production threshold
[36]. All realistic NN scattering potentials that reproduce this
feature show in the half-off-shell amplitude at low energies a
zero at off-shell momenta of a similar magnitude. The exact
position of the zero varies between different models, such that
the direct production amplitude turns out to be quite model
dependent. The suppression mechanism of the direct term
for the reaction pp → dπ+ comes from a strong cancellation
between the deuteron S-wave and D-wave components. Thus,
it is not surprising that numerically the “direct” terms in both
channels are about an order of magnitude smaller than the
LO amplitude from the rescattering diagram, which turns out
to be consistent with the dimensional analysis. Since this LO
contribution is forbidden by selection rules for pp → ppπ0

while allowed for pp → dπ+, one understands directly why a
theoretical understanding is a lot more difficult to achieve for
the former reaction.

At NLO, which corresponds to the order p2/m2
N , loop

diagrams illustrated in Fig. 1 start to contribute to the s-wave

(E, p) (E + l0 − mπ p+ l)

(l0, l) (mπ , 0)

VππNN =

FIG. 2. The πN → πN transition vertex: definition of kinematic
variables as used in Eq. (9).
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Type IIIb

gA:

Football Type Ia Type Ib Mini-Football

g3
A:

Type II Type III a Type IV Boxa Box b

FIG. 3. (Color online) One-loop diagrams contributing to s-wave pion production at NLO and N2LO. Notation is as in Fig. 1.

pion-production amplitude. For the channel pp → ppπ0 the
sum of NLO diagrams type II, III, and IV in Fig. 1 is
zero due to a cancellation between individual diagrams [21].
However, the same sum of diagrams II–IV gives a finite
answer for the channel pp → dπ+ [21]. As a result, the
net contribution of these diagrams depends linearly on the
NN relative momentum which results in a large sensitivity
to the short-distance NN wave functions [37]. This puzzle
was solved in Ref. [28], where it was demonstrated that, for
the deuteron channel, there is an additional contribution at
NLO; namely, the box diagrams in Fig. 1, stemming from the
time-dependence of the Weinberg-Tomozawa pion-nucleon
vertex. To demonstrate this, we write the expression for the
WT πN → πN vertex in the notation of Fig. 2 as

VππNN = l0+mπ−
�l · (2 �p + �l)

2mN

= 2mπ +
(

l0−mπ+E− (�l + �p)2

2mN

+ i0

)

−
(

E− �p 2

2mN

+ i0

)
, (9)

where we kept the leading WT vertex and its nucleon
recoil correction, which are of the same order in the MCS,
as explained below. For simplicity we omit the isospin
dependence of the vertex. The first term in the second line
is the WT vertex for kinematics with the on-shell incoming
and outgoing nucleons, the second term is the inverse of
the outgoing nucleon propagator, and the third term is the
inverse of the incoming nucleon propagator. Note that, for
on-shell incoming and outgoing nucleons, the expressions in
brackets in Eq. (9) vanish, and the πN → πN transition vertex
takes its on-shell value 2mπ (even if the incoming pion is
off shell). This is in contrast to standard phenomenological
treatments [5], where l0 in the first line of (9) is identified
with mπ/2, the energy transfer in the on-shell kinematics
for NN → NNπ , but the recoil terms in Eq. (9) are not
considered. However, �p 2/mN ≈ mπ so that the recoil terms
are to be kept in the vertices and in the nucleon propagator.3

3How to deal with the nucleon propagator in the MCS was shown
in Ref. [29].

The MCS is explicitly designed to properly keep track of
these recoil terms. A second consequence of Eq. (9) is that
only the first term leads to a reducible diagram when the
rescattering diagram with the πN → πN vertex is convoluted
with NN wave functions. The second and third terms in
Eq. (9), however, lead to irreducible contributions, since one of
the nucleon propagators is cancelled. This is illustrated by red
squares on the nucleon propagators in the two box diagrams of
Fig. 3. It was shown explicitly in Ref. [28] that those induced
irreducible contributions cancel exactly the finite remainder
of the NLO loops (II–IV) in the pp → dπ+ channel. As a
consequence, there are no contributions at NLO for both π0

and π+ productions (see also our results in the two first rows
of Tables I and II).

In this paper we extend the analysis of the previous studies
and evaluate the contribution from pion loops at N2LO. Once
the complete calculation at N2LO is performed, the calculated
theoretical uncertainty based on our power counting is going
to be reduced to ∼(mπ/mN )3/2 < 10% for the amplitudes. At
N2LO, one gets contributions from two sets of loop diagrams
which differ in the power of gA. The diagrams proportional to
g3

A are the subleading contributions to the NLO diagrams of
Fig. 1 that we already discussed. In addition, there is a set of
pion loop diagrams proportional to gA (see Fig. 3). A naive
MCS estimate indicates that the diagrams proportional to gA

could play a role already at NLO. However, a more careful
analysis reveals that the contributions of each of these gA

diagrams at NLO is zero (see Appendix B1 for a detailed
discussion). In subsequent sections it will be shown that
partial cancellations take place among gA and g3

A diagrams
at N2LO. Unlike the cancellation among the g3

A diagrams at
NLO, the cancellations at N2LO are not complete so that
there is a nonzero transition amplitude from the gA and g3

A

diagrams.
We already discussed pion loop diagrams with the πN →

πN vertex stemming from the leading Weinberg-Tomozawa
term, L(1)

πN , and its recoil correction L(2)
πN . In addition, there

are two kinds of loop diagrams in Fig. 3 which involve
the ci vertices from L(2)

πN : those where the ci terms appear
at the vertex where the outgoing on-shell pion is emitted, and
those where they provide an intermediate interaction. The for-
mer kind appears to be suppressed for s-wave pion production
due to the pion kinematics near threshold. The Lagrangian
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TABLE I. Interference pattern of NLO and N2LO s-wave contributions from the individual g3
A diagrams. The table shows the contributions

to the vertex τ c
2 τ b

2 Aabc

g3
A

defined in Eq. (10) and Fig. 5. These contributions are given separately for the different spin-momentum structures of

the vertex Aabc

g3
A

, shown in the leftmost column. The notation for the isospin structures is defined in Eq. (12).

Type II Type IIIa Type IIIb Type IV Box a Box b Sum Order

S1 · l −4τ+ − 4τ− + 2τ× 0 −2τ+ − τ× 6τ+ + 6τ− −2τ− − τ× 0 0 NLO, N2LO
S1 · l̃ 4τ+ + 4τ− + 2τ× 2τ+ − τ× 0 −6τ+ − 6τ− 0 2τ− − τ× 0 NLO, N2LO
S1 · l v·l̃

2mN
−2τ+ + 2τ− 2τ+ − τ× 0 0 0 −2τ− + τ× 0 N2LO

S1 · l̃ v·l
2mN

2τ+ − 2τ− 0 −2τ+ − τ× 0 2τ− + τ× 0 0 N2LO

S1 · (p1+p ′
1) v·l

2mN
4τ+ + 4τ− − 2τ× 0 2τ+ + τ× −6τ+ − 6τ− 2τ− + τ× 0 0 N2LO

S1 · (p1+p ′
1) v·l̃

2mN
−4τ+ − 4τ− − 2τ× −2τ+ + τ× 0 6τ+ + 6τ− 0 −2τ− + τ× 0 N2LO

S1 · l
2v·q

−v·l+i0 0 0 −2τ+ − τ× 0 0 0 −2τ+ − τ× N2LO

S1 · l̃
2v·q

−v·l+i0 0 −2τ+ + τ× 0 0 0 0 −2τ+ + τ× N2LO

S1 · k1
q·(l+l̃)

k2
1−m2

π +i0
0 0 0 −8τ× 0 0 −8τ× N2LO

term containing c4 cannot contribute at an outgoing s-wave
pion vertex since it is proportional to the gradient of the pion
fields [cf. Eq. (6)]. The contribution of the c3 Lagrangian term
via this type of vertex is only nonzero if the term proportional
to the time derivative of the pion field is considered in the
Lagrangian [cf. Eq. (6)]. This c3 term, however, results in a
loop amplitude which is suppressed by mπ/mN compared to
the leading loop at NLO, and thus it is of higher order (N3LO).
In addition, the contributions proportional to LECs c1 and
c2 are quadratic with mπ and therefore strongly suppressed.4

However, the contributions of the vertices proportional to c2,
c3, and c4 are potentially important at N2LO once embedded in
the off-shell intermediate πN vertices (on the lower nucleon
line of the gA-type diagrams in Fig. 3). In what follows
we will discuss the individual contributions of loops in
detail.

As a final remark, we give in Fig. 4 some examples of
additional loop topologies which start to contribute at a higher
order than what is considered in the present study. The common
feature of these diagrams is the presence of only one pion
propagator inside the loops. As a consequence, by using
appropriate integration variables, one can eliminate the large
initial three-momentum �p from the loop integrals, meaning
the loop momentum will scale with mπ . Indeed, by choosing
the pion loop momentum to be l, the four-momentum p can
only enter the loop through the nucleon propagators which,
however, scale as v · p ∼ mπ . This explains why these loop
diagrams in Fig. 4 only start to contribute at order N3LO or
higher. This is opposed to two-pion exchange contributions of
Fig. 3 in which no transformation of the integration variables
can eliminate the large momentum �p.

4Naively, the term proportional c2 scales as mπ (l0 + recoils).
However, a similar mechanism as the one explained below Eq. (9)
forces the vertex to become proportional to m2

π .

III. CALCULATION OF DIAGRAMS
PROPORTIONAL TO g3

A

The diagrams of the g3
A group in Fig. 3 have the common

structure illustrated in Fig. 5.
The loop diagram in Fig. 5 is integrated over the momentum

l = (l0, �l ). We also use the short-hand notation

l̃ = l + k1 − q,

with k1 = p1 − p′
1. The pion isospin indices a, b, and c

are defined as shown in Fig. 5. The circle containing the
vertex operator Aabc produces an outgoing pion of isospin
index a off nucleon 1. This operator is different for each
diagram and its explicit form is derived in Appendix A,
where also the detailed structure of each g3

A diagram is
given.

The invariant amplitude for each relevant diagram propor-
tional to g3

A can be written as

iMg3
A

=
∫

d4l

(2π )4
B2(l, l̃)τ c

2 τ b
2 Aabc

g3
A

, (10)

where B2(l, l̃) is the common operator structure associated
with nucleon 2 in Fig. 5. The operator B2(l, l̃) involves two pion
propagators, two πNN vertices, and the nucleon propagator.
The explicit form of B2(l, l̃) can be read off from the diagram
in Fig. 5:

B2(l, l̃) = i

l2−m2
π+i0

i

l̃2−m2
π + i0

i

p20 − l0 − ( �p2−�l )2

2mN
+ i0

× gA

fπ

(
− S2 · l̃ + S2 · (p2 + p ′

2 − l)v · l̃

2mN

)

× gA

fπ

(
S2 · l − S2 · (2p2 − l)v · l

2mN

)
, (11)
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TABLE II. Interference pattern of s-wave contributions from individual gA diagrams. The table shows the contributions to the vertex
εbcdτ d

2 Aabc
gA

defined in Fig. 6 and Eq. (17). The contributions are given separately for different spin-momentum structures of the vertex Aabc
gA

,
shown in the leftmost column. The notation for the isospin structures is defined in Eq. (12).

Football Type Ia Type Ib MiniFB Sum Order

S1 · l −2τ× −τ+ + τ− + τ× τ+ − τ− + τ× 0 0 NLO,a N2LO
S1 · l̃ −2τ× −τ+ + τ− + τ× τ+ − τ− + τ× 0 0 NLO,a N2LO
S1 · l v·l̃

2mN
2τ+ − 2τ− −τ+ + τ− + τ× −τ+ + τ− − τ× 0 0 N2LO

S1 · l̃ v·l
2mN

−2τ+ + 2τ− τ+ − τ− − τ× τ+ − τ− + τ× 0 0 N2LO
S1 · (p1+p ′

1) v·l
2mN

2τ× τ+ − τ− − τ× −τ+ + τ− − τ× 0 0 N2LO

S1 · (p1+p ′
1) v·l̃

2mN
2τ× τ+ − τ− − τ× −τ+ + τ− − τ× 0 0 N2LO

S1 · l
2v·q

−v·l+i0 0 0 2τ+ − 2τ− + 2τ× 0 2τ+ − 2τ− + 2τ× N2LO
S1 · l̃

2v·q
−v·l+i0 0 2τ+ − 2τ− − 2τ× 0 0 2τ+ − 2τ− − 2τ× N2LO

S1 · k1
q·(l+l̃)

k2
1−m2

π +i0
0 0 0 8τ× 8τ× N2LO

aNotice that, in addition to the cancellation shown in the table, in the case of NLO even the individual contributions to the corresponding
spin-momentum structures turn out to vanish (see Appendix B1 for details).

where vμ = (1, �0 ) is the nucleon four-velocity and Sμ =
(0, �σ/2) is its spin vector. Note that B2(l, l̃) contains no isospin
indices as all isospin operators are included in Eq. (10). Since
the structure of B2(l, l̃) is the same for all considered g3

A

diagrams, we concentrate our discussion on the structure of
operator Aabc

g3
A

in Eq. (10) (see Appendix A for details). Note

that the amplitude [Eq. (10)] is not yet properly symmetrized
with respect to the two nucleons. Below we will first discuss
how the partial cancellation amongst the various pion loop
diagrams emerges on the basis of the decomposition illustrated
in Fig. 5. In Sec. V the nonvanishing remainder will be given
in a symmetrized form.

A. Pion s-wave contributions ∝g3
A

In Appendix A we derive the expressions for each of the
six g3

A diagrams which contribute to near-threshold s-wave
pion production from two nucleons. The results of these
calculations are summarized in Table I where, for convenience,
we have introduced the following short-hand notation for the
isospin structures:

τ+ = (τ 1 + τ 2)a, τ− = (τ 1 − τ 2)a, τ× = i(τ 1 × τ 2)a.

(12)

The left column in Table I shows the spin structures that
emerge in these diagrams, the next six columns represent
the contributions from the individual diagrams to the given
spin structure, whereas the last two columns summarize the
net effect of all diagrams and the MCS order, respectively.
When we add the resulting expressions for the six diagrams

FIG. 4. (Color online) Exemplary irreducible diagrams that con-
tribute at higher-than N2LO. Notation is as in Fig. 1.

we confirm the finding of Ref. [28] that the sum of the NLO
contributions from all diagrams vanishes (see the first two
rows of operators in Table I). Moreover, since the sum of the
operators in the first two rows of Table I is an exact zero, the
corresponding spin-momentum structures S1 · l and S1 · l̃ will
not contribute also at N2LO and all higher orders. In addition,
all nucleon recoil corrections ∝1/(2mN ) to the individual
diagrams at N2LO also cancel in the sum. The reason for
that cancellation is completely analogous to the cancellation
that happens at NLO [see discussion below Eq. (9)]. In fact,
only those parts of the g3

A diagrams that cannot be reduced
to the topology of the diagram II in Fig. 3 give a nonzero
contribution to the transition amplitude. Thus, only very few
N2LO contributions to the pion-production amplitude remain,
as seen in Table I. The nonvanishing terms appear from the
two cross-box diagrams and diagram IV.

Since the sum of the Aabc

g3
A

operators from the different

diagrams starts to contribute at N2LO, we keep only the
leading part of the operator B2(l, l̃). Adding up the contri-
butions from all six g3

A diagrams we arrive at the following
result:

Aabc

a

b c

p1

p2 p′2

p′1

q

l l̃

p2 − l

FIG. 5. General structure of g3
A diagrams.
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iMN2LO
g3

A

= i
g3

A

4f 5
π

∫
d4l

(2π )4

S2 · l̃

l2 − m2
π + i0

S2 · l

l̃2 − m2
π + i0

1

−v · l + i0

×
{

(−2τ+ + τ×)
2v · q

−v · l + i0
(S1 · l̃) + (−2τ+ − τ×)

2v · q

−v · l + i0
(S1 · l) − 8τ×(S1 · k1)

(l + l̃) · q

k2
1 − m2

π + i0

}
, (13)

where for the nucleon propagator in Eq. (11) we dropped p20 and all recoil terms of O(mπ ) compared to the lower-order
l0 ≡ v · l ∼ |�l| ∼ p term. Rearranging the isospin structure we arrive at three independent integrals to be evaluated for s-wave
pion production:

iMN2LO
g3

A

= −i
g3

A

4f 5
π

{
4(v · q)τ+S

μ

2 Sν
2 Sλ

1

∫
d4l

(2π )4

l̃μlν(l + l̃)λ(
l2 − m2

π + i0
)(

l̃2 − m2
π + i0

)
(−v · l + i0)2

−2 (v · q)τ×S
μ

2 Sν
2 (S1 · k1)

∫
d4l

(2π )4

l̃μlν(
l2 − m2

π + i0
)(

l̃2 − m2
π + i0

)
(−v · l + i0)2

+ 8qλτ×
S

μ

2 Sν
2 (S1 · k1)

k2
1 − m2

π + i0

∫
d4l

(2π )4

l̃μlν(l + l̃)λ(
l2 − m2

π + i0
)(

l̃2 − m2
π + i0

)
(−v · l + i0)

}
. (14)

Employing dimensional regularization and an integration method outlined in Appendix C, Eq. (14) can be brought into the
more transparent form

iMN2LO
g3

A

= g3
A(v · q)

f 5
π

{
τ+iεμναβk1μS1νvαS2β

[ − J
(
k2

1

)] + τ×(S1 · k1)

[
− 19

24
J
(
k2

1

) + 5

9

1

(4π )2

]}
, (15)

where we have only kept the lowest-order parts of the integrals which give contributions to the amplitude at N2LO. The pion
loop diagrams generate ultraviolet divergent terms, which are contained in the following integral:

J
(
k2

1

) = −i

∫
d4l

(2π )4

1

l2 − m2
π + i0

1

(l + k1)2 − m2
π + i0

. (16)

The divergences are to be absorbed by the LECs accompanying the five-point (4Nπ ) vertices as we will discuss in Sec. VI.

IV. CALCULATION OF DIAGRAMS PROPORTIONAL
TO gA

We evaluate the gA diagrams following a strategy similar
to what we used when we evaluated the g3

A diagrams. The
invariant amplitude for each diagram proportional to gA can
be written as

iMgA
=

∫
d4l

(2π )4
D2(l, l̃)εbcdτ d

2 Aabc
gA

, (17)

where D2(l, l̃) is a common operator structure which is
associated with nucleon 2 in Fig. 6.

This structure involves the WT vertex at the second nucleon
and the two-pion propagators:

D2(l, l̃) = i

l2 − m2
π + i0

i

l̃2 − m2
π + i0

v · (l + l̃)

4f 2
π

. (18)

Note that we have only written the leading WT-vertex
contribution in D2(l, l̃), Eq. (18), since the sum of the
Aabc

gA
operators starts to contribute at N2LO only, as can be

seen in Table II. This is in full analogy to the sum of the
Aabc

g3
A

operators, which also only start to contribute at N2LO,

where, as discussed just before Eq. (13), the recoil (1/mN )

corrections in B2(l, l̃) [Eq. (11)], only contribute at higher
order. In other words, the corrections to D2(l, l̃); that is, the
recoil correction to the leading WT interaction term and the
correction stemming from the c4 vertex, contribute at a higher
order than what is considered in this work. Notice further that
the c2 and c3 vertices in Eq. (6) are isoscalars and, therefore,
do not contribute to the function D2(l, l̃). The contributions of
these LECs will be discussed in the next section.

Aabc

a

b c

p1

p2 p
′
2

p
′
1

q

l l̃

FIG. 6. General structure of gA diagrams.
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A. Pion s-wave contributions ∝gA

The operator expressions for each individual diagram of the
gA type contributing to s-wave pion production can be found
in Appendix B. In a complete analogy with the g3

A diagrams,
we summarize in Table II the contributions of the individual
diagrams and their net effect for different spin structures. In
distinction to the g3

A graphs, the diagrams of this topology
do not appear, contrary to naive MCS expectations, at NLO

(see Appendix B1 for a more detailed discussion). Similarly
to g3

A-type contributions, only a few of the N2LO terms do not
cancel in the sum. Again, only those parts of the diagrams Ia,
Ib, and mini-football that cannot be reduced to the topology of
the football diagram in Fig. 3 give a nonzero contribution to the
transition amplitude. The results are shown in Table II, and the
sum of these gA contributions gives the following transition
amplitude:

iMN2LO
gA

= i
gA

8f 3
π

∫
d4l

(2π )4
D2(l, l̃)

{
(2τ+ − 2τ− − 2τ×)

2v · q

−v · l + i0
S1 · l̃

+ (2τ+ − 2τ− + 2τ×)
2v · q

−v · l + i0
S1 · l + 8τ× S1 · k1

q · (l + l̃)

k2
1 − m2

π + i0

}
. (19)

We now turn to the contribution emerging from the diagrams of Fig. 3 with the c2 and c3 vertices in the off-shell pion kinematics
at nucleon 2. We obtain the following expression for the amplitude:

iMN2LO
gA,ci

= −i
gA

2f 5
π

(τ+ + τ−)(S · k1)
∫

d4l

(2π )4

c3(l · l̃) + (
c2 − g2

A/8mN

)
(v · l)(v · l̃)(

l2 − m2
π + i0

)(
l̃2 − m2

π + i0
)

{
2 + 1

2
+ 1

2
− 3

}
= 0, (20)

where the numbers in the curly bracket correspond to the individual contributions of the gA diagrams, as they appear in Fig. 3, in
order. Again, while the individual diagrams do contribute at N2LO, their sum turns out to yield a vanishing result. We, therefore,
conclude that there are no loop amplitudes ∝ci to the order we are working.

Upon performing some simplifications, the total result for the gA contribution to the transition amplitude in Eq. (19) can be
brought into the form

iMN2LO
gA

= −i
gA

8f 5
π

{
(τ+ − τ−)(v · q)

∫
d4l

(2π )4

v · (l + l̃)S1 · (l + l̃)(
l2 − m2

π + i0
)(

l̃2 − m2
π + i0

)
(−v · l + i0)

− τ×(v · q)(S1 · k1)
∫

d4l

(2π )4

v · (l + l̃)(
l2 − m2

π + i0
)(

l̃2 − m2
π + i0

)
(−v · l + i0)

+ 2τ×(S1 · k1)
1

k2
1 − m2

π + i0

∫
d4l

(2π )4

v · (l + l̃)q · (l + l̃)(
l2 − m2

π + i0
)(

l̃2 − m2
π + i0

)
}
. (21)

The first term in Eq. (21) does not contribute at N2LO, since at
this order the term v · (l + l̃) ≈ 2v · l in the numerator cancels
with the nucleon propagator −v · l + i0. The resulting integral
vanishes due to the symmetry of the integrand. Specifically,
the integral is to be invariant under the shift of variables
(l → −l̃, l̃ → −l). Indeed, the denominator of this integrand
is invariant under this transformation whereas the numerator
changes its sign. Therefore, the first term in Eq. (21) is
equal to zero. Finally, keeping only the lowest-order terms
as appropriate at N2LO and using the expressions for the loop
integrals outlined in Appendix C, we arrive at the final result

iMN2LO
gA

= gA

f 5
π

τ×(v · q)(S1 · k1)

[
1

6
J
(
k2

1

) − 1

18

1

(4π )2

]
,

(22)

where the UV-divergent integral J (k2
1) is defined in Eq. (16).

V. SUMMARY OF TWO-PION EXCHANGE DIAGRAMS

Until now we have evaluated the expressions for the
production operator assuming that the pion is produced from

nucleon 1. We now add the contribution emerging from
interchanging the nucleon labels. We use the fact that in the
center-of-mass system �p1 = − �p2 = �p and k1 = −k2 + q and
employ the approximate relation k2

1 � k2
2 with higher-order

terms being ignored. Throughout, we also ignore operators
leading to pion p-wave production. We then obtain from
Eqs. (22) and (15) the following complete (i.e., symmetrized
with respect to the nucleon labels) expressions:

iMN2LO
gA

= gA (v · q)

f 5
π

τ×(S1 + S2) · k1

[
1

6
J
(
k2

1

) − 1

18

1

(4π )2

]
,

(23)

iMN2LO
g3

A

= g3
A (v · q)

f 5
π

{
τ+iεαμνβvαk1μS1νS2β

[ − 2J
(
k2

1

)]

+ τ×(S1 + S2) · k1

[
− 19

24
J
(
k2

1

) + 5

9

1

(4π )2

]}
.

(24)

Employing dimensional regularization, d = 4 − ε, the integral
J (k1) entering the above expressions can be written in the
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form

J
(
k2

1

)

= με

i

∫
d (4−ε)l

(2π )(4−ε)

1[
l2 − m2

π + i0
][

(l + k1)2 − m2
π + i0

]

= −2L − 1

(4π )2

[
log

(
m2

π

μ2

)
− 1 + 2F1

(
k2

1

m2
π

)]
, (25)

where the function F1(x) is defined via

F1(x) =
√

4 − x − i0√
x

arctan

( √
x√

4 − x − i0

)
, (26)

and the UV divergency appears as a simple pole in the
function L:

L = 1

(4π )2

[
− 1

ε
+ 1

2
[(γE − 1 − log(4π )]

]
. (27)

Note that both MN2LO
gA

and MN2LO
g3

A

are proportional to the out-

going pion energy v · q � mπ (i.e., both operator amplitudes
vanish at threshold in the chiral limit).

VI. REGULARIZATION PROCEDURE

In MCS the loop diagrams which contribute to the renor-
malization of, for example, the nucleon mass mN and the
axial coupling constant gA do not involve large-momentum
components. Consequently, these diagrams contribute in the
MCS at order N4LO which is beyond the scope of the present
work. For example, consider a LO rescattering diagram which
in our naive counting is of order

√
mπ/mN . Including a pion

loop in any of these diagram will require a renormalization
any of the vertices in these LO diagrams (cf. e.g., the last
three diagrams in Fig. 4). This pion loop will increase the
MCS order by a factor (mπ/mN )2 as shown in, for example,
Ref. [2], Table 11. At N2LO, we only have to consider the
loop diagrams which are evaluated in this paper. The UV
divergences appearing in the corresponding integrals are to
be absorbed into LECs accompanying the 4Nπ amplitudes
ACT and BCT introduced in Sec. II A. The contributions of the
loops to the amplitudes A and B [see Eq. (3)], can be separated
into singular and finite parts

A = mπ

(4πfπ )2f 3
π

(Ãsingular + Ãfinite),

(28)
B = mπ

(4πfπ )2f 3
π

(B̃singular + B̃finite),

where

Ãsingular = g3
A(4π )2L,

(29)

B̃singular = −gA

6

(
19

4
g2

A − 1

)
(4π )2L.

Here we have used that, at threshold, �k1 = �p and v · q =
mπ . Notice that the above decomposition into singular and
finite pieces is, clearly, scheme dependent. Analogously, the
amplitudes given by the 4Nπ Lagrangian contact terms (7),

which are given in, for example, Ref. [14], are written as

ACT = mπ

(4πfπ )2f 3
π

[Ãr
CT(μ) + (4π )2βAL],

(30)
BCT = mπ

(4πfπ )2f 3
π

[B̃r
CT(μ) + (4π )2βBL].

The singular parts of the amplitudes in Eq. (30) cancel the
singularities of the amplitudes in Eq. (28) emerging from
the loops. The resulting finite expressions for the scattering
amplitudes are given in terms of the renormalized LECs of
Ref. [14]:

Ar
CT = mπ

(4πfπ )2f 3
π

Ãr
CT = −(d ′

1 + 2e1 − 2e2)
mπ

4mNfπ

,

(31)
Br

CT = mπ

(4πfπ )2f 3
π

B̃r
CT = −(d ′

1 + 2e1)
mπ

4mNfπ

.

The magnitudes of the amplitudes Ar
CT and Br

CT can be
estimated using the values of the LECs determined in
Refs. [14,17,38] where the short-ranged production mecha-
nisms were assumed to originate from Z-diagrams with σ and
ω exchanges (see explicit expressions for these exchanges in
Refs. [14,30]). Given the estimates in Ref. [38], we find d ′

1 +
2e1 − 2e2 � −7.5/(f 2

π mN ) and d ′
1 + 2e1 � −3.5/(f 2

π mN ),
and using mN � 4πfπ , we obtain Ar

CT � 2mπ/(m2
Nf 3

π ) and
Br

CT � 1mπ/(m2
Nf 3

π ), which results in Ãr
CT � 2 and B̃r

CT � 1.
We take these numbers to set the scale for typical N2LO

contributions. Therefore, these estimates allow us to infer
the importance of the pion-nucleon loop contributions to the
NN → NNπ reactions at threshold. In particular, we can
compare this estimate with the finite parts of the loops given
by Eqs. (23) and (24) (where v · p ∼ mπ 
 | �p|):

Ãfinite = −g3
A

2

[
1 − log

(
m2

π

μ2

)
− 2F1

(− �p 2

m2
π

)]
,

B̃finite = −gA

6

{
− 1

2

(
19

4
g2

A − 1

)[
1 − log

(
m2

π

μ2

)

− 2F1

(− �p 2

m2
π

)]
+ 5

3
g2

A − 1

6

}
. (32)

Choosing μ = 4πfπ with fπ = 92.4 MeV and gA = 1.32, we
find Ãfinite = −2.9 and B̃finite = 1.4. Therefore, we conclude
that contributions of the finite parts of the loops are comparable
in size with Ãr

CT and B̃r
CT. This confirms our power counting

and shows that pion loop contributions, not considered in
previous analyses, are indeed significant. One should, however,
keep in mind that this result was obtained for the particular
regularization scheme as explained above. In general, the
finite parts of the loops Ãfinite and B̃finite can be further
decomposed into the short- and long-range parts. The former is
just a (renormalization-scheme-dependent) constant to which
all terms in Eq. (32) except F1 contribute. On the other hand,
the long-range part of the loops is scheme independent. By
expanding the function F1(− �p 2

/m2
π ), Eq. (26), which is the

only long-range piece in Eq. (32), in the kinematical regime
relevant for pion production [i.e., ( �p 2

/m2
π ) � 1] up to the
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terms at N2LO, one obtains

Ãlong
finite = −g3

A

2
log

(
m2

π

�p 2

)
+ O

(
m2

π

�p 2

)
,

(33)

B̃long
finite = gA

12

(
19

4
g2

A − 1

)
log

(
m2

π

�p 2

)
+ O

(
m2

π

�p 2

)
.

Numerical evaluation of these terms gives Ãlong
finite = 2.2 and

B̃long
finite = −1.5. The scheme-independent long-range part of

N2LO pion loops appears to be as large as the resulting
short-range amplitudes, Ãr

CT and B̃r
CT, which are given by

the meson-exchange mechanism, proposed in Refs. [6–9]
to resolve the discrepancy between phenomenological cal-
culations and experimental data. Hence, the importance of
the N2LO pion loop effects, not included in the previous
studies, raises serious doubts on the physics interpreta-
tion behind the phenomenologically successful models of
Refs. [6–9].

In a subsequent work we will present results for N2LO
loops including the � resonance as well as the convolution
with proper nuclear wave functions. At that point a fit to the
pion-production data is possible and we can extract the strength
of the counter terms from data.

VII. SUMMARY AND DISCUSSION

Chiral perturbation theory has been successfully applied in
the past decades to describe low-energy dynamics of pions
and nucleons. Application of this theoretical framework to
pion production in nucleon-nucleon collisions is considerably
more challenging due to the large three-momentum transfer
involved in this reaction. The slower convergence of the chiral
expansion for this reaction [i.e., the expansion in the parameter
χ ∼ √

mπ/mN defined in Eq. (8)] provides a strong motivation
for extending the calculations to higher orders. In this work
we used the power counting scheme which properly accounts
for the additional scale associated with the large momentum
transfer; namely, the momentum counting scheme (MCS), to
classify various contributions to the NN → NNπ transition
amplitudes according to their importance. We also evaluated
all loop diagrams with pions and nucleons as the only explicit
degrees of freedom up to and including N2LO. The considered
loop diagrams can be divided into two groups according
to the power of the nucleon axial-vector coupling constant:
the ones linear in gA and the ones proportional to g3

A (see
Fig. 3). We confirm the earlier findings that there are no NLO
loop contributions to the threshold NN → NNπ reaction
amplitudes. Our results, which are partially summarized in
Tables I and II and in Secs. V and VI, demonstrate that the
MCS combined with the requirements of the chiral symmetry
(breaking) pattern of QCD lead to a high degree of cancellation
among various N2LO contributions. In particular, all 1/mN

corrections of the various diagrams cancel at N2LO. We also
show that the LECs ci , i = 1, . . . , 4, of L(2)

πN do not contribute
to the pion loops at this order.

From Table I we see that only the cross-box diagram (dia-
gram III) and the four-pion interaction diagram (diagram IV)

contribute to the pion s-wave transition amplitude MN2LO
g3

A

given in Eq. (24). The two cross-box diagrams contribute to
both amplitudes, the isoscalar one A and the isovector one B,
whereas diagram IV only contributes to B. Analogously, from
Table II one can deduce that the nonvanishing contributions to
the amplitude MN2LO

gA
[Eq. (23)] originate from the double πN

scattering diagrams of type Ia and Ib and from the mini-football
diagram. These diagrams, however, contribute only to the
isovector amplitude B, as seen in Eq. (23). Thus the only
contribution from pion loops to the isoscalar amplitude A
originates from the cross-box diagrams.

The pattern of cancellations discussed above has impor-
tant phenomenological implications. In fact, none of the
previous phenomenological investigations take into account
either the cross-box diagrams (type III) or the double scat-
tering contributions (type I), which, as we find, contribute
significantly to the production amplitude. In particular, the
regularization-scheme-independent long-range contribution of
the pion loops to A turns out to be comparable in size with
the short-range amplitudes emerging in the phenomenolog-
ical models of Refs. [6–9] from heavy-meson Z diagrams
which, in these studies, are advocated as the necessary
mechanism to describe experimental data. Thus, our find-
ings raise doubts on the role of the short-range physics
in pion production as suggested in these phenomenological
studies. We, however, refrain from making a more definite
conclusion until the complete N2LO operator convoluted with
the nucleon wave functions is confronted with experimental
data [26].

Meanwhile, within various meson-exchange approaches
[11,12,39], the pion production is largely driven by tree-level
pion rescattering off a nucleon with the πN → πN amplitude
being far off shell (see Fig. 7). The physics associated with
πN scattering near threshold is normally parametrized in
phenomenological calculations in terms of the σ - and ρ-
meson-exchange contributions. The scalar-isoscalar (σ -type)
πN interaction is relevant for the isoscalar production ampli-
tudeAwhile the isovector (ρ-type) πN interaction contributes
to the strength of B. The isoscalar πN scattering amplitude
essentially vanishes on shell (see Refs. [10] for the most recent
evaluation of the isoscalar πN scattering length). Therefore,
the mechanism of Refs. [11,12,39] relies on the significance
of the off-shell properties of the πN scattering amplitude. Our
EFT consideration puts this mechanism into question. Pion
rescattering via the phenomenological pion-nucleon transition
amplitude can in chiral EFT be mapped onto pion rescattering
(at tree level) via the low-energy constants ci plus some
contributions from pion loops. The tree-level piece ∝ci is, even
in the off-shell (pion-production) kinematics by far too small
to explain the data for the neutral pion production [14,15]. As
far as the loop contributions are concerned, only diagrams IV
and mini-football may be regarded as an analog of the
corresponding phenomenological mechanism, as illustrated in
Fig. 7. However, after the cancellations, the only contribution
that survives from diagram IV has an isovector structure as
shown in Table I. Furthermore, the mini-football diagram
gives an isovector contribution (see Table II). Therefore,
none of the pion loops can be mapped into the particular
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σ, ρ
,

FIG. 7. (Color online) Diagram on left-hand-side represents phe-
nomenological rescattering mechanism via off-shell πN amplitude.
Diagrams on the right-hand side are the only loop graphs at N2LO that
can be interpreted as an analog of this phenomenological mechanism.
For notation see Fig. 1.

phenomenological mechanism in the isoscalar case. Thus,
another lesson we learn from our work about the phe-
nomenology of the neutral pion production near threshold
is that the rescattering contribution with the isoscalar πN

amplitude modeled phenomenologically by a σ exchange
should be very small. On the other hand, the rescat-
tering mechanism with the isovector πN amplitude, the
Weinberg-Tomozawa term related to the ρ-meson exchange
via the Kawarabayashi-Suzuki-Riazuddin-Fayyazuddin rela-
tion [40,41] is potentially capable of resolving the dis-
crepancy with the experimental data for charged-pion
production [28].

Given the relatively large expansion parameter χ in the
MCS, one may wonder whether the pion-production operator
converges sufficiently well to consider the theory as predictive.
The results of Refs. [27,28] provide strong indications for a
good convergence of the s- and p-wave pion-production opera-
tors in the charged channels where the operators are natural and
no suppression at LO takes place. On the other hand, s-wave
pion production in pp → ppπ0 looks exceptional since the
experimental cross section in this channel is suppressed by
more than an order of magnitude as compared to the charged
channels near threshold. The experimental evidence for the
smallness of the s-wave operator in the neutral channel is fully
in line with chiral suppression of the Weinberg-Tomozawa
operator and almost complete cancellation of the direct pion
emission at LO. Therefore, it should not come as a surprise that
the role of N2LO chiral loops in this channel is significantly
enhanced compared to the charged case. However, as shown

in this paper, the nucleonic loops seem to be of a similar size
in the neutral and charged channels. Given this, we believe
that the loops at N2LO behave as they should according
to the MCS. Moreover, we think that the experimentally
measured pp → ppπ0 reaction is unique in that it directly
probes the higher-order MCS contributions which in the other
reaction channels are masked by the dominant lower-order
Weinberg-Tomozawa term. More definite conclusions about
the convergence of the expansion scheme will be made in
the subsequent publication [26], where the complete N2LO
operator convoluted with the wave functions will be compared
with the experimental data.
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APPENDIX A: EVALUATION OF INDIVIDUAL g3
A

DIAGRAMS

In this Appendix we derive the NLO and N2LO expressions
for individual two-pion exchange diagrams shown in Fig. 3
under restriction that the outgoing pion is produced in s-wave.
The kinematics is defined in Fig. 5.

1. Diagram II

Diagram II shown in Fig. 3 is straightforward to evaluate.
The operator Aabc

g3
A

of Eq. (10) in this case arises from a three-
pion one-nucleon vertex whose explicit form can be found in
Eqs. (5) and (6). The diagram II yields the contribution

iMII =
∫

d4l

(2π )4
B2(l, l̃) τ c

2 τ b
2

gA

2f 3
π

{[
τ a

1 δbcS1 · (−l + l̃) + τ b
1 δacS1 · (q + l̃) + τ c

1 δabS1 · (q − l)
]

− 1

2mN

iεabc[v · qS1 · (−l − l̃) − v · lS1 · (l̃ − q) + v · l̃S1 · (q + l)]

− 1

2mN

S1 · (p1 + p ′
1)

[
τ a

1 δbcv · (−l + l̃) + τ b
1 δacv · (q + l̃) + τ c

1 δabv · (q − l)
]}

,

where B2(l, l̃) is defined in Eq. (11). Contracting isospin indices and ignoring all p-wave terms (∝S1 · q) and higher-order s-wave
terms ∝v · q/mN � mπ/mN , we find

iMII = gA

4f 3
π

∫
d4l

(2π )4
B2(l, l̃)

{
− (S1 · l)[4τ+ + 4τ− − 2τ×] + (S1 · l̃)[4τ+ + 4τ− + 2τ×]

+
[

− S1 · l

2mN

v · l̃ + S1 · l̃

2mN

v · l

]
(2τ+ − 2τ−) + S1 · (p1 + p ′

1)

2mN

[v · l(4τ+ + 4τ− − 2τ×) − v · l̃(4τ+ + 4τ− + 2τ×)]

}
,
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where the integrand in the first line starts to contribute at NLO while that in the second line gives the N2LO contribution.

2. Diagram IIIa

The crossed-box diagram, Type IIIa, shown in Fig. 3 has a more complicated structure. In this diagram the operator Aabc

g3
A

consists of a πN → πN scattering vertex, a nucleon propagator, and a πNN vertex. Again we only need to include the
contributions from the leading and subleading chiral Lagrangian in the vertices. We also include the nucleon recoil correction in
the nucleon propagator. This diagram gives the following expression:

iMIIIa =
∫

d4l

(2π )4
B2(l, l̃) τ c

2 τ b
2

1

4f 2
π

εbadτ d
1

(
v · (l + q) − ( �p1 + �p ′

1 − �̃l ) · (�l + �q)

2mN

)

× i

p10 − l̃0 − ( �p1−�̃l )2

2mN
+ i0

gA

fπ

τ c
1

(
S1 · l̃ − S1 · (2p1 − l̃)v · l̃

2mN

)
. (A1)

We have ignored here the subleading ci contributions to the πN → πN rescattering vertex since they are suppressed in the
momentum counting scheme due to the negligible kinetic energy of the outgoing pion with q � (mπ, �0 ). We will rewrite the
πN → πN vertex expression in the integrand above in a way similar to the rearrangement in Eq. (9):

v · (l + q) − ( �p1 + �p ′
1 − �̃l ) · (�l + �q)

2mN

= −
(

p10 − l̃0 − ( �p1 − �̃l )2

2mN

)
+ 2q0 − 2�q · ( �p1 + �p ′

1 − �̃l )

2mN

, (A2)

where we used that v · p′
1 = p ′

10 � �p ′
1

2/(2mN ). The first term on the right-hand side of Eq. (A2) is identical to the nucleon
propagator in Eq. (A1) and will give a factor of −1 when inserted into Eq. (A1). This factor of −1 together with the lowest-order
contribution of the πNN vertex, S1 · l̃, give the NLO contribution of diagram IIIa. The last term in the right-hand side of
Eq. (A2) contributes to an outgoing p-wave pion and is ignored in this paper. The 2q0 term in Eq. (A2) will contribute to the
N2LO amplitude. We next use the relation l̃ = l + p1 − p ′

1 − q in the πNN vertex and in the nucleon propagator. We ignore
p′

10 ∼ q0 ∼ mπ contributions and the recoil correction in the propagator which are of a higher order. Carrying out the isospin
algebra we get

iMIIIa = gA

4f 3
π

∫
d4l

(2π )4
B2(l, l̃)

{
(S1 · l̃) + S1 · l

2mN

(v · l̃) − S1 · (p1 + p ′
1)

2mN

(v · l̃) −
(

2v · q

−v · l + i0

)
(S1 · l̃)

}
[2τ+ − τ×].

The first term in the curly bracket starts to contribute at NLO. The remaining three terms contribute to N2LO.

3. Diagram IIIb

Diagram IIIb (Fig. 3) has a structure similar to diagram IIIa. We proceed along the same lines as for the two previous diagrams
and obtain the following contribution:

iMIIIb =
∫

d4l

(2π )4
B2(l, l̃) τ c

2 τ b
2 (−1)

gA

fπ

τb
1

(
S1 · l − S1 · (2p ′

1 − l)v · l

2mN

)

× i

p ′
10 − l0 − ( �p ′

1−�l )2

2mN
+ i0

1

4f 2
π

εcadτ d
1

[
v · (−l̃ + q) − ( �p1 + �p ′

1 − �l) · (−�̃l + �q)

2mN

]
.

Using the on-shell condition for the incoming nucleon with p10 = �p1
2/(2mN ), we rewrite the πN → πN vertex in a way similar

to what was done for diagram IIIa:

v · (−l̃ + q) − ( �p1 + �p ′
1 − �l ) · (−�̃l + �q)

2mN

=
(

p ′
10 − l0 − ( �p ′

1 − �l )2

2mN

)
+ 2q0 − 2�q · ( �p1 + �p ′

1 − �l )

2mN

. (A3)

Using the relation 2q0 = 2v · q and keeping only terms appropriate at the order we are working we obtain

iMIIIb = gA

4f 3
π

∫
d4l

(2π )4
B2(l, l̃)

{
(S1 · l) + S1 · l̃

2mN

(v · l) − S1 · (p1 + p ′
1)

2mN

(v · l) +
(

2v · q

−v · l + i0

)
(S1 · l)

}
[−2τ+ − τ×].

The first term in the curly bracket starts to contribute at NLO. The remaining three terms contribute to N2LO.
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4. Diagram IV

Diagram IV (Fig. 3) has an operator Aabc

g3
A

containing a four-pion vertex, a pion propagator, and one πNN vertex. We keep the
leading and next-to-leading order in the πNN vertex and obtain

iMIV =
∫

d4l

(2π )4
B2(l, l̃) τ c

2 τ b
2

(
gA

fπ

)
τ d

1

(
S1 · k1 − S1 · (p1 + p ′

1)v · k1

2mN

)
i

k2
1 − m2

π + i0

× i

f 2
π

{
δabδcd

[
(l − q)2 − m2

π

] + δacδbd
[
(l̃ + q)2 − m2

π

] + δadδbc
[
(k1 − q)2 − m2

π

]}
.

The four-pion vertex is rewritten as a sum of six terms:

i

f 2
π

{
δabδcd

[
(l − q)2 − m2

π

] + δacδbd
[
(l̃ + q)2 − m2

π

] + δadδbc
[
(k1 − q)2 − m2

π

]}

= i

f 2
π

{
δabδcd

[
l2 − m2

π

] + δacδbd
[
l̃2 − m2

π

] + δadδbc
[
k2

1 − m2
π

]

+ δabδcd [−2l · q + q2] + δacδbd [2l̃ · q + q2] + δadδbc[−2k1 · q + q2]
}
. (A4)

The contributions from the first two terms on the right-hand side of Eq. (A4) are of a higher order. The reason is that each
term cancels a corresponding pion propagator in the operator B2(l, l̃). When one pion propagator in B2(l, l̃) is eliminated, the
large momentum, like �k1 or �p1, of this reaction is no longer part of the loop integral which, consequently, only contributes at a
higher order than what is considered in this paper. Keep in mind that v · k1, v · p1, and v · p2 are all of the order mπ , whereas,
|�k1| ∼ p = √

mπmN . The third term cancels the pion propagator k2
1 − m2

π + i0 and will contribute at NLO and higher order in
our counting. The last three terms in Eq. (A4) start contributing from N2LO.

Using k1 = l̃ − l + q, dropping terms contributing to outgoing p-wave pions, and carrying out the spin and isospin algebra,
we find

iMIV = gA

4f 3
π

∫
d4l

(2π )4
B2(l, l̃)

{[
(S1 · l) − (S1 · l̃) + S1 · (p1 + p ′

1)

2mN

(−v · l + v · l̃)

]
6(τ+ + τ−)

+ (S1 · k1)

[
(l + l̃) · q

k2
1 − m2

π + i0

]
(−8τ×)

}
.

The first two terms in the first square bracket are NLO contributions. The remaining two terms are N2LO terms.

5. Box diagram a

In the expression for the Box-a diagram (Fig. 3) we again rewrite the pion-nucleon rescattering vertex as a sum of two terms
similar to what we did for the type-III diagrams. One of the new terms will cancel nucleon propagator yielding an irreducible
NLO contribution. In contrast to the derivation of the amplitude for the type-III graphs, we here do not consider the contribution
from the term with the (remaining) nucleon propagator since it is reducible and thus included in the initial NN state interaction.
Using again that the sum of the two lowest orders contribute to the vertices, we obtain from the box-a diagram

iMBoxa =
∫

d4l

(2π )4
B2(l, l̃) τ c

2 τ b
2

(
1

4f 2
π

)
εcadτ d

1

(
v · (−l̃ + q) − ( �p1 + �p ′

1 + �l ) · (−�̃l + �q)

2mN

)

× i

l0 + p10 − ( �p1+�l )2

2mN

(−1)
gA

fπ

τb
1

(
S1 · l − S1 · (2p1 + l)v · l

2mN

)
. (A5)

To rewrite the expression in the pion-nucleon rescattering vertex we again use that p ′
1 is on shell [i.e., p ′

10 = �p ′
1

2/(2mN )]. The
πN → πN vertex is rewritten as

v · (−l̃ + q) − ( �p1 + �p ′
1 + �l ) · (−�̃l + �q)

2mN

= −
(

l0 + p10 − ( �p1 + �l )2

2mN

)
+ 2q0 − 2�q · ( �p1 + �p ′

1 + �l )

2mN

.

The first term on the right-hand side of the above expression is identical to the nucleon propagator and will give a factor of −1
when inserted into Eq. (A5). The last term is a p-wave pion contribution and is ignored. Also the 2q0 term does not need to be
taken into account as it corresponds to a reducible contribution. Using 2p1 + l = l̃ + (p1 + p ′

1) + q, ignoring the p-wave pion
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terms, and evaluating the spin and isospin structures, we find

iM irred.
Boxa = gA

4f 3
π

∫
d4l

(2π )4
B2(l, l̃)

{
− (S1 · l) + S1 · l̃

2mN

(v · l) + S1 · (p1 + p ′
1)

2mN

(v · l)

}
[2τ− + τ×].

6. Box diagram b

The Box-b diagram given in Fig. 3 is very similar to the Box-a diagram and the evaluation procedure is similar. We consider
again only the irreducible contribution. The diagram gives

iMBoxb =
∫

d4l

(2π )4
B2(l, l̃) τ c

2 τ b
2

(
gA

fπ

)
τ c

1

(
S1 · l̃ − S1 · (2p ′

1 + l̃)v · l̃
2mN

)

× i

p ′
10 + l̃0 − ( �p ′

1+�̃l )2

2mN

1

4f 2
π

εbadτ d
1

(
v · (l + q) − ( �p1 + �p ′

1 + �̃l ) · (�l + �q)

2mN

)
. (A6)

Again, rewriting the pion-nucleon rescattering vertex using that p1 is on shell, p10 = �p1
2/(2mN ) leads to

v · (l + q) − ( �p1 + �p ′
1 + �̃l ) · (�l + �q)

2mN

=
(

p ′
10 + l̃0 − ( �p ′

1 + �̃l )2

2mN

)
+ 2q0 − 2�q · ( �p1 + �p ′

1 + �̃l )

2mN

. (A7)

The first factor on the right-hand side of Eq. (A7), when coupled with the nucleon propagator in Eq. (A6), yields a factor of 1
while the 2q0 term in Eq. (A7) produces a reducible contribution included in the final NN -state interaction. Using the relation
2p ′

1 + l̃ = l + (p1 + p ′
1) − q, ignoring terms leading to outgoing p-wave pions, and carrying out the spin and isospin algebra

leads to
iM irred.

Boxb = gA

4f 3
π

∫
d4l

(2π )4
B2(l, l̃)

{
(S1 · l̃) − S1 · l

2mN

(v · l̃) − S1 · (p1 + p ′
1)

2mN

(v · l̃)

}
[2τ− − τ×].

Like the final expression for the Box-a diagram, the first term starts at NLO and the next two terms are the N2LO contributions
to the amplitude.

APPENDIX B: EVALUATION OF INDIVIDUAL gA DIAGRAMS

In this Appendix we derive the expression for two-pion exchange diagram linear in gA for s-wave pions produced. The final
expressions for the diagrams contain N2LO contributions. The kinematics is defined in Fig. 6.

1. Football diagram

The two-pion propagators are tied together in pion-nucleon scattering vertices at both nucleons. Since this loop diagram involve
just pion propagators, we have an extra symmetry factor 1/2 associated with the boson loop. The football diagram shown in
Fig. 3 gives the following expression:

iMF = 1

2

∫
d4l

(2π )4
D2(l, l̃) εcbyτ

y

2

(
gA

2f 3
π

){[
τ a

1 δbcS1 · (−l + l̃) + τ b
1 δacS1 · (q + l̃) + τ c

1 δabS1 · (q − l)
]

− 1

2mN

iεabc
[
v · qS1 · (−l − l̃) − v · lS1 · (l̃ − q) + v · l̃S1 · (q + l)

]

− 1

2mN

S1 · (p1 + p ′
1)

[
τ a

1 δbcv · (−l + l̃) + τ b
1 δacv · (q + l̃) + τ c

1 δabv · (q − l)
]}

.

After performing some spin and isospin algebra and dropping terms corresponding to the outgoing p-wave pion and/or higher-
order corrections we obtain

iMF = i
gA

8f 3
π

∫
d4l

(2π )4
D2(l, l̃)

{
[(S1 · l) + (S1 · l̃)](−2τ×)

+
[
S1 · l

2mN

(v · l̃) − S1 · l̃

2mN

(v · l)

]
(2τ+ − 2τ−) + S1 · (p1 + p ′

1)

2mN

[v · l + v · l̃](2τ×)

}
. (B1)
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The obtained result requires some clarification. Looking naively at the first line in Eq. (B1) one may conjecture that this diagram
starts to contribute already at NLO. Indeed, assuming l0 ∼ |�l| ∼ p, the dimensional analysis gives

p

f 3
π

· 1

f 2
π p3

· p4

(4π )2
∼ 1

f 3
π

p2

m2
N

,

where the three terms on the left-hand side stand for the 3πNN vertex, the estimate of D(l, l̃) as follows from Eq. (18), and the
integral measure, in order. Above we also used that (4πfπ )2 � m2

N . On the other hand, a more careful analysis shows that the
first line of the integral in Eq. (B1), which appears at NLO, is

iMF = τ×
gA

16f 5
π

∫
d4l

(2π )4

2l0(
l2
0 − �l2 + i0

)(
l2
0 − �̃l2 + i0

) [(S1 · l) + (S1 · l̃)],

where we have used that l0 ∼ |�l| ∼ p � mπ to drop all subleading contributions including the 1/mN terms in the curly bracket
of the integrand. This last integral, however, vanishes when integrating over l0 because the numerator of the integrand is an odd
function of l0 whereas the denominator is an even one. The next-higher-order contributions in Eq. (B1) do not vanish. They scale
as mπ/p and p/mN compared to NLO and thus emerge at N2LO. Following the same lines, one can also show that the other
diagrams of gA topology start to contribute at N2LO.

2. Diagram Ia

The double-scattering diagram Ia shown in Fig. 3 gives the following expression:

iMIa =
∫

d4l

(2π )4
D2(l, l̃)εcbyτ

y

2

(
1

4f 2
π

)
εbadτ d

1

(
v · (l + q) − ( �p1 + �p ′

1 − �̃l ) · (�l + �q)

2mN

)

× i

p10 − l̃0 − ( �p1−�̃l )2

2mN
+ i0

(
gA

fπ

)
τ c

1

(
S1 · l̃ − S1 · (2p1 − l̃)v · l̃

2mN

)
.

In the πN → πN rescattering vertex (off nucleon 1) we included the leading WT vertex contribution together with its recoil
correction. However, we dropped the subleading ci terms in this vertex since they are of higher order (see the discussion in the
end of Sec. II B). The πN → πN vertex expression is rewritten the same way as for diagram IIIa, shown in Eq. (A2).

Using that p ′
10 = �p ′

1
2/(2mN ), collecting the spin structures and performing the isospin algebra we get

iMIa = i
gA

8f 3
π

∫
d4l

(2π )4
D2(l, l̃)

{
−(S1 · l) − (S1 · l̃) − S1 · l

2mN

(v · l̃) + S1 · l̃

2mN

(v · l)

+ S1 · (p1 + p ′
1)

2mN

[v · l + v · l̃] + 4v · q

−v · l + i0
(S1 · l̃)

}
(τ+ − τ− − τ×).

This amplitude starts to contribute at N2LO (see discussion in Appendix A 1 for more details).

3. Diagram Ib

The double-scattering diagram Ib in Fig. 3 gives an initial expression

iMIb =
∫

d4l

(2π )4
D2(l, l̃)εcbyτ

y

2 (−1)
gA

fπ

τb
1

(
S1 · l − S1 · (2p ′

1 − l)v · l

2mN

)

× i

p ′
10 − l0 − ( �p ′

1−�l )2

2mN
+ i0

1

4f 2
π

εcadτ d
1

(
v · (−l̃ + q) − ( �p1 + �p ′

1 − �l ) · (−�̃l + �q)

2mN

)
.

Again, the πN → πN vertex is rewritten as sum of two terms as for diagram IIIb [see Eq. (A3)]. We follow the simplifications
discussed for diagram IIIb, and use that p10 = �p1

2

2mN
. Using again l → −l̃, etc. to simplify the integrals containing the function
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D2(l, l̃), collecting spin structures, and performing the isospin algebra we get

iMIb = i
gA

8f 3
π

∫
d4l

(2π )4
D2(l, l̃)

{
(S1 · l) + (S1 · l̃) − S1 · l

2mN

(v · l̃) + S1 · l̃

2mN

(v · l)

− S1 · (p1 + p ′
1)

2mN

[v · l + v · l̃] + 4v · q

−v · l + i0
(S1 · l)

}
[τ+ − τ− + τ×].

This amplitude also starts to contribute at N2LO (see comment in Appendix B1 for more details).

4. Mini-football diagram

The contribution of the mini-football diagram in Fig. 3 can be written as

iMmF = 1

2

∫
d4l

(2π )4
D2(l, l̃) εcbyτ

y

2

(
gA

fπ

)
τ d

1

(
S1 · k1 − S1 · (p1 + p ′

1)v · k1

2mN

)
i

k2
1 − m2

π + i0

× i

f 2
π

{
δabδcd

[
(l − q)2 − m2

π

] + δacδbd
[
(l̃ + q)2 − m2

π

] + δadδbc
[
(k1 − q)2 − m2

π

]}
.

The four-pion vertex can be rewritten as a sum of six terms:

i

f 2
π

{
δabδcd

[
(l − q)2 − m2

π

] + δacδbd
[
(l̃ + q)2 − m2

π

] + δadδbc
[
(k1 − q)2 − m2

π

]}

= i

f 2
π

{
δabδcd

[
l2 − m2

π

] + δacδbd
[
l̃2 − m2

π

] + δadδbc
[
k2

1 − m2
π

]

+ δabδcd [−2l · q + q2] + δacδbd [2l̃ · q + q2] + δadδbc[−2k1 · q + q2]
}
.

Following the arguments outlined in the derivation of the contribution from diagram IV [see the discussion below Eq. (A4)],
most terms either contribute to outgoing p-wave pions or higher orders in the chiral expansion. The final result reads

iMmF = i
gA

8f 3
π

∫
d4l

(2π )4
D2(l, l̃)(S1 · k1)

{
q · (l + l̃)

k2
1 − m2

π + i0

}
(8τ×).

This amplitude starts to contribute at N2LO.

APPENDIX C: EXPRESSIONS FOR LOOP INTEGRALS

In this Appendix we provide expressions for loop integrals required to calculate the transition amplitude at N2LO. Using
dimensional regularization and integration procedure described in Appendix E of Ref. [42], we obtained the following results:

1

i

∫
d4l

(2π )4

v · (l + l̃)S1 · (l + l̃)(
l2 − m2

π + i0
)(

l̃2 − m2
π + i0

)
(−v · l + i0)

� 0, (C1)

1

i

∫
d4l

(2π )4

v · (l + l̃)(
l2 − m2

π + i0
)(

l̃2 − m2
π + i0

)
(−v · l + i0)

� −2J
(
k2

1

)
, (C2)

1

i

∫
d4l

(2π )4

v · (l + l̃)q · (l + l̃)(
l2 − m2

π + i0
)(

l̃2 − m2
π + i0

) � 2k2
1(v · q)

[
− 1

6
J
(
k2

1

) − 1

9

1

(4π )2

]
, (C3)

1

i

∫
d4l

(2π )4

(S2 · l̃)(S2 · l)S1 · (l + l̃)(
l2 − m2

π + i0
)(

l̃2 − m2
π + i0

)
(−v · l + i0)2

� −iεμναβk1μS1νvαS2βJ
(
k2

1

)
, (C4)

1

i

∫
d4l

(2π )4

(S2 · l̃)(S2 · l)(
l2 − m2

π + i0
)(

l̃2 − m2
π + i0

)
(−v · l + i0)2

� 3

4
J
(
k2

1

) − 1

(4π )2
, (C5)

1

i

∫
d4l

(2π )4

(S2 · l̃)(S2 · l)q · (l + l̃)(
l2 − m2

π + i0
)(

l̃2 − m2
π + i0

)
(−v · l + i0)

� v · q
k2

1

2

[
− 5

12
J
(
k2

1

) + 1

18

1

(4π )2

]
, (C6)

where integral J (k2
1) is given by Eq. (16), and only the leading loop contributions for the s-wave pion in MCS are kept.
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