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Tracing masses of ground-state light-quark mesons
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We describe a symmetry-preserving calculation of the light-quark meson spectrum, which combines a
description of pion properties with reasonable estimates of the masses of heavier mesons, including axial-vector
states. The kernels used in formulating the problem are essentially nonperturbative, incorporating effects of
dynamical chiral symmetry breaking (DCSB) that were not previously possible to express. Our analysis clarifies
a causal connection between DCSB and the splitting between vector and axial-vector mesons and exposes a key
role played by the anomalous chromomagnetic moment of dressed quarks in forming the spectrum.
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Prologue. Spectroscopy is basic to exposing the character of
nature’s fundamental forces, e.g., the hydrogen atom spectrum
is intimately connected with the development of quantum
mechanics and quantum electrodynamics. Cataloguing the
surfeit of hadrons—the pion- and proton-like particles, initially
supposed to be elementary—led to the notion of quarks, with
their fractional electric charge, and ultimately to quantum
chromodynamics (QCD), the strongly interacting piece of the
standard model.

QCD is peculiar owing to the empirical fact of confinement;
namely, while it is formulated in terms of quarks and gluons,
which carry the color quantum number, these degrees of
freedom have never been directly observed. Determination
of the spectrum of color-singlet hadrons is therefore one of
the few ways by which to elucidate the long-range behavior of
the interaction between quarks and gluons and thereby grasp
the essence of nature’s sole confining force. It might thus
be surprising that, more than 30 years after the discovery of
the first light-quark meson with mass greater than 1 GeV,
there is no reliable, symmetry-preserving computation of
the ground-state spectrum of light-quark mesons. This is
particularly disturbing given the importance of spectroscopy
at next-generation hadron physics facilities [1].

Confinement is much misapprehended. We therefore re-
mark that the static potential measured in lattice-QCD simu-
lations is not related in any known way to the puzzle of light-
quark confinement. Light-quark creation and annihilation
effects are fundamentally nonperturbative. It is thus impossible
in principle to compute a potential between light quarks.
Alternatively, arguments relating confinement to the analytic
properties of QCD’s Schwinger functions have been presented
[2,3], from which perspective the question of light-quark
confinement may be translated into the challenge of charting
the infrared behavior of QCD’s universal β function. Solving
this problem is a basic goal of modern physics, which can be
addressed in any framework that enables the nonperturbative
evaluation of renormalization constants.

The light-hadron spectrum has challenged lattice-QCD
since its formulation almost 40 years ago [4]. The approach
involves a range of systematic errors, among which explicit
chiral symmetry breaking is particularly damaging to studies

of light-quark systems. It has only recently become possible
to tame these errors and reproduce the mass and width of
the ρ meson [5]. However, in connection with more massive
light-quark mesons, available results are much affected by
lattice artifacts [6,7].

We prefer a continuum nonperturbative approach and,
exploiting a novel form of the Bethe-Salpeter equation (BSE)
[8], formulate a tractable, symmetry-preserving expression
of the meson bound-state problem. This treatment connects
the β function to observables, so that comparison between
computations and the spectrum may be used to constrain the
β function’s long-range behavior, as illustrated in Ref. [9].

Bound-state equations. Our approach begins with the gap
equation

Sf (p)−1 = Z2
(
iγ · p + mbm

f

) + Z1

∫ �

dq

g2Dμν(p − q)

×λa

2
γμSf (q)

λa

2
�f

ν (q, p), (1)

where f labels quark flavor; Dμν is the gluon propagator;
�

f
ν is the quark-gluon vertex;

∫ �

dq
is a Poincaré invariant

regularization of the integral, with � being the regularization
scale; mbm(�) is the current-quark bare mass; and Z1,2(ζ,�),
respectively, are the vertex and quark wave-function renormal-
ization constants, with ζ being the renormalization point—
dependence upon which we do not usually make explicit. The
solution is the quark propagator,

Sf (p)−1 = iγ · pAf (p2) + Bf (p2) . (2)

It is obtained from Eq. (1) augmented by a renormalization
condition.

The mass of all mesons with the same quantum num-
bers may be obtained from a single inhomogeneous BSE.
The dressed-quark propagator is crucial in constructing its
kernel. The gap equation involves the dressed-quark gluon
vertex, �μ. Following Ref. [8], one can now construct a
symmetry-preserving kernel for the Bethe-Salpeter equation
given any form for �μ. Hence, in solving bound-state problems
one is no longer reliant upon step-by-step improvements in
the computation of �μ [10–12]; instead, one may use all
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available, reliable information to construct the best possible
Ansatz. This enables one to incorporate crucial nonperturbative
effects, which any finite sum of contributions is incapable of
capturing. In this way the nonperturbative phenomenon of
dynamical chiral symmetry breaking (DCSB) was shown to
generate material, momentum-dependent anomalous chromo-
and electromagnetic moments for dressed light quarks [13].

DCSB is a keystone of the standard model. This remarkable
mass-generating mechanism can be explained via S(p). In
the chiral limit, the mass function, M(p2) = B(p2)/A(p2),
is identically zero at any finite order in perturbation theory.
However, DCSB generates mass from nothing. Thus, in chiral
QCD, despite the absence of an explicit mass source, M(p2)
is nonzero and strongly momentum dependent, with M(0) ≈
0.5 GeV [14,15]. DCSB is responsible for constituent-quark
masses and intimately connected with confinement but it is
not known whether the connection is accidental or causal.
Nevertheless, DCSB is the most important mass-generating
mechanism for visible matter in the universe. It generates
roughly 98% of a proton’s mass and amplifies the Higgs
mechanism for explicit symmetry breaking [16].

Herein we calculate masses of ground-state spin-0 and spin-
1 light-quark mesons, in order to illuminate the impact of
DCSB on the spectrum. Given its central role, we explicate
the problem in the pseudoscalar, J PC = 0−+, and axial-vector,
1++, channels and simply indicate the changes required to
study 0++, 1−−, and 1+−.

Pseudoscalar and axial-vector mesons appear as poles in
the inhomogeneous Bethe-Salpeter amplitude associated with
the axial-vector vertex, �

fg

5μ . An exact form of the associated
BSE is (q± = q ± P/2, etc.)

�
fg

5μ(k; P ) = Z2γ5γμ − Z1

∫
dq

g2Dαβ(k − q)
λa

2
γαSf (q+)

×�
fg

5μ(q; P )Sg(q−)
λa

2
�

g

β(q−, k−)

+Z1

∫
dq

g2Dαβ(k − q)
λa

2
γαSf (q+)

× λa

2
�

fg

5μβ(k, q; P ), (3)

where �
fg

5μβ is a four-point function, completely defined [8]
via the quark self-energy and hence the quark-gluon vertex,
�μ. Crucially, �fg

5μβ satisfies a Ward-Takahashi identity, whose
solution provides a symmetry-preserving Ansatz consistent
with �μ. Bound-state masses in the 0++, 1−−, and 1+−
channels are, respectively, obtained by replacing Z2γ5γμ by the
structures ID, γμ, and γ5kμ, each multiplied by an appropriate
renormalization constant.

A prediction for the spectrum therefore follows once the gap
equation’s kernel is specified and the Ward identity solved for
�

fg

5μβ . The kernel may be rendered tractable by writing [17,18]

Z1g
2Dρσ (t)�σ (q, q + t) = G̃(t2)Dfree

ρσ (t)Z2�̃σ (q, q + t) ,

(4)

wherein Dfree
ρσ is the Landau-gauge free-gauge-boson propa-

gator, G̃ is an interaction model, and �̃σ is an Ansatz for the

quark-gluon vertex. For the interaction, we employ

G̃(s)

s
= 8π2

ω4
D e−s/ω2 + 8π2γm F(s)

ln[τ + (1 + s/�2
QCD)2]

, (5)

where γm = 12/25, �QCD = 0.234 GeV; τ = e2 − 1; and
F(s) = {1 − exp(−s/[4m2

t ])}/s, mt = 0.5 GeV. This form
preserves the one-loop renormalization-group behavior of
QCD in the gap and Bethe-Salpeter equations and is consonant
with modern Dyson-Schwinger equation and lattice-QCD re-
sults. Detailed explanations of its development and capability
as a tool in hadron physics are presented in Refs. [9,19]. We
employ the renormalization procedures of Ref. [17] and the
same renormalization point, ζ = 19 GeV. N.B. This study
is the first to employ the fully renormalized forms of the
vertex-dressed gap equation and the symmetry-preserving
Bethe-Salpeter equations that are derived from it.

We adapt the vertex explained in Refs. [13,20,21], viz.,

�̃μ(p1, p2) = �BC
μ (p1, p2) + �ACM

μ (p1, p2); (6)

i�BC
μ (p1, p2)

= i�A

(
p2

1, p
2
2

)
γμ + 2�μ

[
iγ · ��A

(
p2

1, p
2
2

)+�B

(
p2

1, p
2
2

)]
,

(7)

where �φ(p2
1, p

2
2) = [φ(p2

1) + φ(p2
2)]/2, �φ(p2

1, p
2
2) = [φ(p2

1)
− φ(p2

2)]/[p2
1 − p2

2], 2� = p1 + p2, and the anomalous chro-
momagnetic moment piece is

�ACM
μ (p1, p2) = �ACM4

μ (p1, p2) + �ACM5
μ (p1, p2) , (8)

with (k = p1 − p2, Tμν = δμν − kμkν/k2, aT
μ := Tμνaν)

�ACM4
μ = [

�T
μγ · k + iγ T

μ σνρ�νkρ

]
τ4(p1, p2), (9)

�ACM5
μ = σμνkντ5(p1, p2) , (10)

τ4 = 2τ5(p1, p2)

M
(
p2

1, p
2
2

) , (11)

τ5=η�B(p2
1, p

2
2), and M(x, y)=[x + M(x)2 + y + M(y)2]/

(2[M(x) + M(y)]).
Our Ansatz combines information and results from pertur-

bative QCD, Dyson-Schwinger equation (DSE), and lattice-
QCD studies. The structure and importance of the Ball-Chiu
component has long been recognized [22]: its presence and
momentum dependence are confirmed in comparisons be-
tween DSE and lattice-QCD studies [23–25]. The anomalous
chromomagnetic moment (ACM) piece is novel, although
its presence should long ago have been appreciated, given
the importance of the DCSB-induced �B term in the BC
component and the ACM term’s identical origin.

Our introduction of the ACM term comes at a critical
juncture, since the developments in Ref. [8] only now enable
an exploration of its consequences for hadron observables. In-
deed, notwithstanding the large current-quark mass employed
(115 MeV), a comparison between lattice-QCD estimates of
τ5(p1, p2) [23,25] and our expression confirms the character
of our Ansatz. For example, there is a 2-orders-of-magnitude
enhancement over the perturbative result, emphasizing the
connection with DCSB, and semiquantitative agreement

052201-2



RAPID COMMUNICATIONS

TRACING MASSES OF GROUND-STATE LIGHT-QUARK MESONS PHYSICAL REVIEW C 85, 052201(R) (2012)

between the momentum dependence of the lattice result and
our form. It is notable that in perturbation theory, while the on-
shell anomalous chromomagnetic moment is always negative
for a dressed-quark, the sign of the τ5(p1, p2) contribution is
positive in Landau gauge but negative in Feynman gauge [26].
To complete the picture, a further consideration of perturbation
theory shows the vertex must also contain the τ4 term because
only then can the full vertex ansatz reproduce the one-loop
result [13,26]. Moreover, Eq. (11) is precisely the result
one obtains on-shell in one-loop Landau-gauge perturbation
theory.

In the 0− and 1+ channels the Ward-Takahashi identity for
the Bethe-Salpeter kernel is solved by

2�5β(μ) = [�̃β(q+, k+) + γ5�̃β(q−, k−)γ5]

× 1

S−1(k+) + S−1(−k−)
�5(μ)(k; P )

+�5(μ)(q; P )
1

S−1(−q+) + S−1(q−)

× [γ5�̃β(q+, k+)γ5 + �̃β(q−, k−)]. (12)

Given the vertex in Eq. (6), we have now completely specified
equations in the 0− and 1+ channels from which one may
obtain bound-state masses and amplitudes. N.B. This solution
of the Ward-Takahashi identity for the Bethe-Salpeter kernel
is far more general than that presented in Ref. [8]. Kernels
of equal simplicity and power for other channels are readily
constructed by analogy.

Chromo- and electromagnetic moments. Before reporting
results for the spectrum it is valuable to illustrate the novel
DCSB content of Eq. (6). This may readily be accomplished
via a single curve that depicts the dressed-quark anomalous
magnetic moment distribution, which is identically zero in the
chiral limit [13]. One characterizes dressed quarks through
a magnetic moment distribution because a confined quark
does not possess a mass shell [3,22] and hence one cannot
unambiguously assign a single value to its anomalous magnetic
moment.

The magnetic moment distribution is computed as follows.
At each value of p2, we define spinors to satisfy a Dirac
equation with the constant mass replaced by the running mass,
m → M(p2) =: ς , and use the associated Gordon identity to
write

ū(pf ; ς ) �μ(pf , pi ; k) u(pi ; ς )

= ū(pf )

[
F1(k2)γμ + 1

2ς
σμνkνF2(k2)

]
u(pi). (13)

Now, from Eqs. (6)–(11), one finds an anomalous chromomag-
netic moment distribution

κACM(ς ) = 2ς
[
δ

ς

B(3η − 1) + ςδ
ς

A

]
σ

ς

A − 2ς2δ
ς

A + 2ςδ
ς

B

, (14)

where σ
ς

A = �A(ς, ς ), δς

A = �A(ς, ς ), etc. In Fig. 1 we depict
the result obtain using the interaction in Eq. (5).

One computes the dressed-quark anomalous electromag-
netic moment distribution from the solution of the inhomo-
geneous Bethe-Salpeter equation in the color-singlet vector
vertex. Details may be found in Ref. [13], which also explains
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FIG. 1. (Color online) Dashed curve: Dressed-quark anomalous
chromomagnetic moment distribution computed using η = 0.65.
Solid curve: Electromagnetic moment distribution computed from
the inhomogeneous Bethe-Salpeter equation for the dressed-quark-
photon vertex. In the chiral limit and the absence of DCSB,
both curves are zero. Moreover, absent DCSB-induced terms in
the dressed-quark-gluon vertex, Eq. (6), both curves would be an
order-of-magnitude smaller [13]. (The Euclidean constituent-quark
mass ME := {p |p > 0, p2 = M2(p2)} = 0.35 GeV.)

the impact of DCSB in the dressed-quark-gluon vertex. The
result is depicted in Fig. 1. The marked similarity between this
computed result and that produced by the Ansatz in Ref. [21]
is noteworthy.

Meson spectrum. We compute masses using the method
detailed in Ref. [27], which ensures one need only solve the
gap and Bethe-Salpeter equations at spacelike momenta: a
significant numerical simplification. To explain, the inhomoge-
neous BSE is solved for the complete amplitude in a particular
channel on a domain of spacelike total momenta, P 2 > 0. Any
bound-state in that channel appears as a pole in the solution
at P 2 = −m2

meson. Denoting the leading Chebyshev moment
of the amplitude’s dominant Dirac structure by �(k; P ), then
1/�(k = 0; P 2) exhibits a zero at (−m2

meson). The location of
that zero is determined via extrapolation of a Padé approximant
to the spacelike behavior of 1/�(k = 0; P 2). This is illustrated
for the ρ- and a1 channels in Fig. 2.

Our results are listed in Table I, wherein the level of
agreement between columns 3 and 4 illustrates the efficacy
of the method we’re using to compute masses: no difference is
greater than 1%. Next consider mσ and compare columns 1–3.
It is an algebraic result that in the rainbow-ladder truncation
of QCD’s DSEs mσ ≈ 2M , where M is a constituent-like
quark mass [28]. However, incorporating the quark-mass
function into the Bethe-Salpeter kernel via �BC

μ generates
a strong spin-orbit interaction, which significantly boosts
mσ [8]. This feature is evidently unaffected by the inclusion
of �ACM

μ ; i.e., those terms associated with a dressed-quark
anomalous chromomagnetic moment. Because we deliberately
omit terms associated with pion final-state interactions in our
nonperturbative kernel, it is noteworthy that mσ in column
1 matches estimates for the mass of the dressed-quark-core
component of the σ meson obtained using unitarized chiral
perturbation theory [29,30].
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FIG. 2. (Color online) Illustration of the procedure used to
determine meson masses. Solid curve: a1 meson, nonperturbative
kernel. Dot-dash-dash curve: a1, kernel derived from Eq. (7) only
(Ball-Chiu, BC). Dashed curve: a1, kernel derived from just the first
term in Eq. (7) (1BC, a minimal renormalization improvement [18]
of the leading order—RL, rainbow-ladder—kernel [10]). Dot-dashed
curve: ρ meson, nonperturbative kernel. Dot-dash-dot curve: ρ, BC
kernel. Dotted curve: ρ, 1BC kernel. Points: Values of 1/�(k =
0; P 2) in the given channel computed with the kernel described. Padé
approximants are constructed in each case, and the location of the
zero is identified with (−m2

meson).

Now compare the entries in rows 2 and 4–6. The ρ and
a1 mesons have been known for more than 30 years and
are typically judged to be parity partners; i.e., they would be
degenerate if chiral symmetry were manifest in QCD. Plainly,
they are not, being split by roughly 450 MeV (i.e., >mρ/2). It
is suspected that this large splitting is due to DCSB: hitherto,
however, no symmetry-preserving bound-state treatment could

TABLE I. Column 1: Spectrum obtained with the full nonpertur-
bative Bethe-Salpeter kernels described herein, which express effects
of DCSB: ω = 0.5 GeV; Dω = (0.52 GeV)3; and we assume isospin
symmetry, with mζ

u = m
ζ

d = m = 3.7 MeV, ζ = 19 GeV. The method
of Ref. [27] was used: the error reveals the sensitivity to varying the
order of the Padé approximant. We compute fπ = 0.091 GeV using
Eq. (15) in Ref. [8]. Column 2: Experimental values, computed,
except mσ , from isospin mass-squared averages [33]. Column 3:
Masses determined from the inhomogeneous BSE at leading order
in the DSE truncation scheme of Ref. [10] using the interaction in
Ref. [8] (with this simple kernel, the Padé error is negligible). Column
4: Results in Ref. [34], obtained directly from the homogeneous BSE
at the same order of truncation. In the last two cases, m = 5 MeV,
ω = 0.5 GeV, and Dω = (0.794 GeV)3.

This work Expt. RL Padé RL direct

mπ 0.138 0.138 0.138 0.137
mρ 0.84 ± 0.03 0.777 0.754 0.758
mσ 1.13 ± 0.01 0.4–1.2 0.645 0.645
ma1 1.28 ± 0.01 1.24 ± 0.04 0.938 0.927
mb1 1.24 ± 0.10 1.21 ± 0.02 0.904 0.912
ma1 − mρ 0.44 ± 0.04 0.46 ± 0.04 0.18 0.17
mb1 − mρ 0.40 ± 0.14 0.43 ± 0.02 0.15 0.15

explain it. This is illustrated by columns 3 and 4, which show
that, whilst a good estimate of mρ is readily obtained at leading
order in the systematic DSE truncation scheme of Ref. [10],
the axial-vector masses are much underestimated. The flaw
persists at next-to-leading order [11,12].

Our analysis points to a remedy for this longstanding
failure. Using the Poincaré covariant, symmetry-preserving
formulation of the meson bound-state problem enabled by
Ref. [8], with nonperturbative kernels for the gap and Bethe-
Salpeter equations, which incorporate and express effects of
DCSB that are impossible to capture in any step-by-step
procedure for improving upon the rainbow-ladder truncation,
we provide realistic estimates of axial-vector meson masses.
In obtaining these results we found that the vertex Ansatz
used most widely in studies of DCSB, �BC

μ , is inadequate
as a tool in hadron physics. Used alone, it increases both
mρ and ma1 , but yields ma1 − mρ = 0.22 GeV, qualitatively
unchanged from the rainbow-ladder-like result (see Fig. 1).
A good description of axial-vector mesons is achieved by
including interactions derived from �ACM

μ ; i.e., connected with
the dressed-quark anomalous chromomagnetic moment [13].
Moreover, used alone, neither term in �ACM

μ can produce a
satisfactory result. The full vertex Ansatz and the associated
gap and Bethe-Salpeter kernels described herein are the
minimum required.

In preparing row 5 we obtained additional information.
The leading-covariant in the b1-meson channel is γ5kμ. The
appearance of kμ suggests that dressed-quark orbital angular
momentum will play a significant role in this meson’s structure,
even more so than in the a1 channel for which the dominant
covariant is γ5γμ. (N.B. In a simple quark-model, constituent
spins are parallel within the a1 but antiparallel within the
b1. Constituents of the b1 can therefore become closer, so
that spin-orbit repulsion can exert a greater influence.) This
expectation is realized in the result that mb1 is far more sensitive
to the interaction’s range parameter, ω, than any other state,
increasing rapidly with decreasing ω. Such behavior is readily
understood. The kernel’s nonperturbatively induced spin-orbit
interaction acts over a length-scale characterized by rc := 1/ω.
As rc is reduced with D fixed, the effective range of spin-orbit
repulsion is also reduced, and the mass therefore drops.

Epilogue. Our results rest on an Ansatz for the quark-gluon
vertex. The best available information was used in its construc-
tion. Improvement is nonetheless possible, which will involve
elucidating the role of Dirac covariants not yet considered
and of resonant contributions, viz., meson loop effects that
give widths to some of the states we’ve considered. In cases
for which empirical width-to-mass ratios are �25%, we judge
that such contributions can reliably be obtained via bound-state
perturbation theory [31]. Contemporary studies indicate that
these effects reduce bound-state masses but the reduction
can uniformly be compensated by a modest inflation of the
interaction’s mass scale [28,32], so that the masses in Table I
are semiquantitatively unchanged. The case of the σ meson is
more complicated. However, we predict a large mass for this
meson’s dressed-quark core, which leaves sufficient room for
a strong reduction by resonant contributions [29,30]. Balance
requires we note that one cannot yet completely exclude
the possibility of strong couplings between other channels,
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consequences of which for understanding the spectrum are
illustrated in Ref. [35].

We furnished a continuum framework for computing and
explaining the meson spectrum. It combines a veracious
description of pion properties with estimates for masses of
light-quark mesons heavier than mρ . Our method therefore
offers the promise of a first reliable Poincaré-invariant,
symmetry-preserving computation of the spectrum of light-
quark hybrids and exotics; i.e., those putative states which are

impossible to construct in a quantum mechanics based upon
constituent-quark degrees-of-freedom. So long as the promise
is promptly fulfilled, the approach will provide predictions to
guide the forthcoming generation of facilities.

We acknowledge valuable communications with Y.-X.
Liu. This work was supported by the US Department of
Energy, Office of Nuclear Physics, Contract No. DE-AC02-
06CH11357.
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