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Nuclear symmetry energy and the r-mode instability of neutron stars
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We analyze the role of the symmetry energy slope parameter L on the r-mode instability of neutron stars. Our
study is performed using both microscopic and phenomenological approaches of the nuclear equation of state.
The microscopic ones include the Brueckner-Hartree-Fock approximation, the well known variational equation
of state of Akmal, Pandharipande, and Ravenhall, and a parametrization of recent auxiliary field diffusion
Monte Carlo calculations. For the phenomenological approaches, we use several Skyrme forces and relativistic
mean-field models. Our results show that the r-mode instability region is smaller for those models which give
larger values of L. The reason is that both bulk (ξ ) and shear (η) viscosities increase with L and, therefore, the
damping of the mode is more efficient for the models with larger L. We show also that the dependence of both
viscosities on L can be described at each density by simple power-laws of the type ξ = AξL

Bξ and η = AηL
Bη .

Using the measured spin frequency and the estimated core temperature of the pulsar in the low-mass x-ray binary
4U 1608-52, we conclude that observational data seem to favor values of L larger than ∼50 MeV if this object is
assumed to be outside the instability region, its radius is in the range 11.5–12 (11.5–13) km, and its mass 1.4M�
(2M�). Outside this range it is not possible to draw any conclusion on L from this pulsar.
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I. INTRODUCTION

It is well known that the absolute upper limit on the
rotational frequency of a neutron star is set by its Kepler
frequency �Kepler, above which matter is ejected from the
star’s equator [1,2]. However, a neutron star may be unstable
against some perturbations which prevent it from reaching
rotational frequencies as high as �Kepler, setting, therefore,
a more stringent limit on its rotation [3]. Many different
instabilities can operate in a neutron star. Among them, the
so-called r-mode instability, a toroidal mode of oscillation
whose restoring force is the Coriolis force, is particularly
interesting and, since its discovery by Andersson, Friedman,
and Morsink a few years ago [4,5], its study has received
a lot of attention [6–19]. This oscillation mode leads to the
emission of gravitational waves in hot and rapidly rotating
neutron stars through the Chandrasekhar-Friedman-Schutz
(CFS) mechanism [20,21], and it is generally unstable at all
rotational frequencies [4]. Gravitational radiation makes an
r-mode grow, whereas viscosity stabilizes it. Therefore, an
r-mode is unstable if the gravitational radiation driving time is
shorter than the damping time scale due to viscous processes.
In this case, a rapidly rotating neutron star could transfer
a significant fraction of its rotational energy and angular
momentum to the emitted gravitational waves. These waves,
potentially detectable, could provide invaluable information
on the internal structure of the star and constraints on the
nuclear equation of state (EoS) [22]. In particular, r-modes
can help to restrict the density dependence of the symmetry
energy, Esym(ρ), a crucial ingredient of the nuclear EoS
needed to understand many important properties of isospin-
rich nuclei and neutron stars [23–25]. The value of the
symmetry energy at saturation density ρ0 is more or less
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well established [Esym(ρ0) ∼ 30 MeV], and its behavior below
ρ0 is now much better known [26]. However, above ρ0,
Esym(ρ) is not well constrained yet, and the predictions
from different approaches strongly diverge. The r-modes can
provide information on Esym(ρ) complementary to the one
obtained from: (i) the analysis of data of giant [27] and pygmy
[28] resonances, (ii) isobaric analog states [29], (iii) isospin
diffusion measurements [30], (iv) isoscaling [31], (v) meson
production in heavy ion collisions [32,33], (vi) measurements
of the neutron skin thickness in heavy nuclei [34–38],
(vii) the characterization of the core-crust transition in neutron
stars [39–42], (viii) the analysis of power-law correlations,
such as the relation between the radius of a neutron star and
the EoS [43], or (ix) the novel constraints recently reported by
Steiner and Gandolfi [44] on the basis of neutron star mass and
radius measurements, driven partially by the strong correlation
between the symmetry energy and its derivative obtained in
quantum Monte Carlo calculations of neutron matter.

In this work we want to study the role of the symme-
try energy slope parameter L = 3ρ0[∂Esym(ρ)/∂ρ]ρ0 on the
r-mode instability. A similar study has been recently done by
Wen, Newton, and Li in Ref. [45] using a simple model for
the EoS that consistently describes the crust-core transition
density. Assuming that the main dissipation mechanism of the
r-modes is due to electron-electron scattering at the crust-core
boundary and using the estimated core temperature of several
low-mass x-ray binaries (LMXBs), these authors conclude
that neutron stars are stabilized against r-mode oscillations
if L is smaller than ∼65 MeV. In our work, we employ
the microscopic Brueckner-Hartree-Fock (BHF) approach
and several phenomenological Skyrme forces and relativistic
mean-field models to describe the neutron star matter EoS. In
addition, we also use two other microscopically based EoS:
the well-known variational Akmal-Pandharipande-Ravenhall
(APR) EoS [46], and the parametrization of the recent auxiliary
field diffusion Monte Carlo (AFDMC) calculation of Gandolfi
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et al. given in Ref. [47]. We consider both the bulk (ξ ) and shear
(η) as the main dissipative mechanisms of r-modes, including
in the calculation of ξ the contribution of the modified and
direct electron and muon Urca processes and, in that of η, the
contribution of neutron and electron scattering.

The paper is organized in the following way: In Sec. II we
briefly review the BHF approach of nuclear matter and provide
some details on the Skyrme forces and the relativistic models
considered. Few words about the APR and AFDMC EoS are
also said. Section III is devoted to the calculation of bulk and
shear viscosities. The dissipative time scales of the r-modes
are presented in Sec. IV, whereas the r-mode instability region
is determined in Sec. V. Finally, a summary of our results is
given in Sec. VI.

II. NUCLEAR EQUATION OF STATE MODELS

The BHF approach is the lowest order of the Brueckner-
Bethe-Goldston (BBG) many-body theory [48]. In this theory,
the ground-state energy of nuclear matter is evaluated in terms
of the so-called hole-line expansion, where the perturbative
diagrams are grouped according to the number of independent
hole lines. The expansion is derived by means of the in-medium
two-body scattering G matrix. The G matrix, which takes
into account the effect of the Pauli principle on the scattered
particles and the in-medium potential felt by each nucleon,
has a regular behavior even for short-range repulsions, and it
describes the effective interaction between two nucleons in the
presence of a surrounding medium. In the BHF approach, the
energy is given by the sum of only two-hole-line diagrams
including the effect of two-body correlations through the
G matrix. It has been shown by Song et al. [49] that the
contribution to the energy from three-hole-line diagrams
(which account for the effect of three-body correlations) is
minimized when the so-called continuous prescription [50]
is adopted for the in-medium potential, which is a strong
indication of the convergence of the hole-line expansion.
We adopt this prescription in our BHF calculation which is
done using the Argonne V18 nucleon-nucleon potential [51]
supplemented with a three-body force of Urbana type [52],
which for the use in the BHF calculation was reduced to
a two-body density-dependent force by averaging over the
spatial, spin, and isospin coordinates of the third nucleon in the
medium [53]. This three-body force contains two parameters
that are fixed by requiring that the BHF calculation reproduces
the energy and saturation density of symmetric nuclear matter
(see Refs. [54–56] for a recent analysis of the use of three-body
forces in nuclear and neutron matter). The interested reader
is referred to Ref. [48] for an extensive review of the BBG
many-body theory, and to Ref. [57] for the specific details
of our BHF calculation of isospin asymmetric nuclear matter.
Regarding the other two microscopic approaches used in this
work, we note here that the APR and the AFDMC EoS have
been implemented using, respectively, the parametrizations
given by Heiselberg and Hjorth-Jensen in Ref. [58] and by
Gandolfi et al. in Ref. [47].

Phenomenological approaches, either relativistic or nonrel-
ativistic, are based on effective interactions that are frequently

built to reproduce the properties of nuclei. Skyrme interactions
[59] and relativistic mean-field models [60] are among the
most commonly used ones. Many such interactions are built
to describe systems close to the isospin symmetric case,
therefore, predictions at higher isospin asymmetries should
be taken with care. Most of the Skyrme forces are, by
construction, well behaved close to the saturation density
and moderate isospin asymmetries. Nevertheless, only certain
combinations of the parameters of these forces are well
determined empirically. Consequently, there is a proliferation
of different Skrme interactions that produce a similar equation
of state for symmetric nuclear matter but predict a very
different one for pure neutron matter. A few years ago, Stone
et al. [61] tested extensively and systematically the capabilities
of almost 90 existing Skyrme parametrizations to provide good
neutron star candidates. They found that only 27 of these
parametrizations passed the restrictive tests they imposed, the
key property being the density dependence of the symmetry
energy. These forces are SLy0-SLy10 [62] and SLy230a [63] of
the Lyon group, SkI1-SkI5 [64] and SkI6 [65] of the SkI family,
Rs and Gs [66], SGI [67], SkMP [68], SkO and SkO’ [69],
SkT4 and SkT5 [70], and the early SV [71]. The results
for the Skyrme forces shown in this work are restricted to
these 27 parametrizations. We should mention, however, that
more stringent constraints to the Skyrme forces have been
very recently presented by Dutra et al. in Ref. [72]. These
authors have examined the suitability of 240 Skyrme interac-
tions with respect to eleven macroscopic constraints derived
mainly from experimental data and the empirical properties
of symmetric nuclear matter at and close to saturation. They
have found that only 5 of the 240 forces analyzed satisfy
all the constraints imposed. We note that none of the 27
parametrizations used in this work corresponds to any of these
5 forces.

Relativistic mean-field models are based on effective
Lagrangian densities where the nucleon-nucleon interac-
tion is described in terms of meson exchanges. In this
work we consider two types: models with constant meson-
nucleon couplings described by the Lagrangian density
of the nonlinear Walecka models (NLWM), and models
with density-dependent couplings [hereafter called density-
dependent hadronic models (DDHM)]. In particular, within the
first type, we consider the models GM1 and GM3 [73], TM1
[74], NL3 and NL3-II [75], and NL-SH [76]. For the DDHM
models, we consider the models DDME1 and DDME2 [77],
TW99 [78], and the models PK1, PK1R, and PKDD of the
Peking group [79].

We finish this section by mentioning a few limitations
of the models considered. First, hyperons or other exotic
degrees of freedom have not been considered in this work,
although they are expected to appear in the inner core of
neutron stars at a few times the saturation density. The reader
should also note that causality is not always guaranteed for the
BHF and AFDMC approaches and the Skyrme forces. That
is not surprising, since these models are nonrelativistic. This
is not the case, however, of the Heiselberg and Hjorth-Jensen
parametrization [58] of the APR EoS where the EoS is softened
at higher densities to obey causality. Finally, the nuclear
EoS has been obtained at zero temperature for each model.
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Temperature enters our calculation only through the bulk and
shear viscosities presented in the following section.

III. BULK AND SHEAR VISCOSITIES

Bulk and shear viscosities are usually considered the main
dissipation mechanisms of r and other pulsation modes in
neutron stars. Bulk viscosity is the dominant one at high
temperatures (T > 109 K) and, therefore, it is important for
hot young neutron stars. It is produced when the pulsation
modes induce variations in pressure and density that drive the
star away from β equilibrium. As a result, energy is dissipated
as the weak interaction tries to reestablish the equilibrium. In
the absence of hyperons or other exotic components, the bulk
viscosity of neutron star matter is mainly determined by the
reactions of modified Urca (MURCA)

N + n → N + p + l + ν̄l , N + p + l → N + n + νl

(N = n, p; l = e−, μ−) (1)

and direct Urca (DURCA) processes

n → p + l + ν̄l , p + l → n + νl ; (2)

the second one allowed only when the proton fraction xp

exceeds a critical value xDURCA ∼ 11% to 15% [80]. Mod-
ified and direct Urca contributions to the bulk viscosity of
nonsuperfluid and superfluid β-stable npe and npeμ matter
have been studied by several authors [81–85]. In this work we
assume that the neutron star interior is made only of neutrons,
protons, electrons, and muons in a normal fluid state, and
follow the work of Haensel et al. [84,85] to evaluate the bulk
viscosity. According to these authors, since the Urca reaction
rates are much smaller than the typical values of the frequency
of the r-modes (in the range ω ∼ 103 to 104 s−1), the total bulk
viscosity can be simply written as a sum of the partial bulk
viscosities associated with each (modified and direct) Urca
process,

ξ = ξMURCA + ξDURCA

=
∑
Nl

|λNl|
ω2

∣∣∣∣ ∂P

∂Xl

∣∣∣∣ ∂ηl

∂nb

+
∑

l

|λl|
ω2

∣∣∣∣ ∂P

∂Xl

∣∣∣∣ ∂ηl

∂nb

. (3)

In the above expression ω is the frequency of the pulsation
mode, P is the pressure, nb = nn + np is the total baryon
number density, Xl = nl/nb is the electron or muon fraction,
ηl = μn − μp − μl , with μi being the chemical potential of
the species i, and λNl and λl determine the difference of
the rates of the direct and inverse reactions of a given Urca
process: �Nl − �̄Nl = −λNlηl for the MURCA processes, and
�l − �̄l = −λlηl for the DURCA processes. Note that, when
the system is in chemical equilibrium, ηl = 0. Note also that
the quantities ∂P/∂Xl and ∂ηl/∂nb depend on the particular
choice for the equation of state. The interested reader is
referred to the original work of Haensel et al. [84,85] for
details on the derivation of the specific expressions for the
bulk viscosity employed here [see in particular Eq. (35) of
Ref. [84] and Eqs. (18)–(21) of Ref. [85]].

Shear viscosity η is the main viscous dissipation at low
temperatures (T < 109 K), and it becomes the dominant

mechanism for the damping of r-modes of cooler stars. It
results from the momentum transport caused by the particle-
particle scattering. In general several scattering processes
can contribute to the total shear viscosity which can be
approximately written as a sum of the partial shear viscosities
of each individual process. It has been widely thought that, in
a normal-fluid star, shear viscosity is completely dominated
by neutron scattering. Therefore, in the analysis of the r-mode
instability in nonsuperfluid stars, it has been usual to take
η = ηn, using for ηn that calculated by Flowers and Itoth
[86,87], and fit by Cutler and Lindblom [88] in the simple
form

ηn = 2 × 1018(ρ15)9/4T −2
9 g cm−1 s−1, (4)

where ρ15 and T9 mean that the density and temperature
are given in units of 1015 g cm−3 and 109 K, respectively.
Nevertheless, recently, Shternin and Yakovlev [89] have
shown that the main contribution to the shear viscosity at
the temperatures relevant for the spin-down evolution of
neutron stars comes from electron scattering when Landau
damping is taken into account in the collision of charged
particles mediated by the exchange of transverse plasmons.
This electron contribution can be written as [18,89]

ηe = 4 × 10−26(xp nb)14/9T −5/3 g cm−1 s−1, (5)

with xp being the proton fraction, nb the baryon number density
in units of cm−3, and the temperature given in kelvins. Note
that the temperature dependence of this contribution differs
from the standard Fermi-liquid dependence ηe ∝ T −2. In this
work we take into account both contributions ηn and ηe.

Figure 1 shows the bulk [Fig. 1(a)] and shear [Fig. 1(b)]
viscosities for the BHF calculation of nonsuperfluid β-stable
npeμ matter as a function of density for T = 109 K and
a frequency of the mode ω = 104 s−1. The contributions
to the bulk viscosity from MURCA and DURCA processes
involving electrons and muons, as well as the contributions
to the shear viscosity from neutron and electron scattering,
are included. At low densities the only contribution to the
bulk viscosity is due to the electron MURCA processes. The
appearance of muons at ∼0.14 fm−3 switches on the muon
MURCA processes with the consequent increase in the bulk
viscosity. Electron and muon DURCA processes open in a
jump-like manner at higher densities (∼0.5 and ∼0.59 fm−3,
respectively, for this model) when xp � xDURCA. The main
contribution to the shear viscosity, as was said, comes from
the electron scattering, which is only exceed by ηn at densities
nb < 0.17 to 0.18 fm−3. We note that, although ηe dominates
in general over ηn, the contribution of neutron scattering can
be larger than that of electron scattering for temperatures T �
107 K and, as seen in the figure, for subsaturation densities [89].
The results for APR, AFDMC, the Skyrme forces, and the
RMF models are qualitatively similar to those obtained within
the BHF approach and, therefore, we do not show them here
for simplicity.

In Fig. 2, we show the dependence of the bulk [Fig. 2(a)]
and shear [Fig. 2(b)] viscosities on the symmetry energy slope
parameter L for densities 0.08, 0.16, and 0.32 fm−3, and the
different models considered. As in Fig. 1 the frequency of the
mode and temperature are taken to be 104 s−1 and 109 K,
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FIG. 1. (Color online) Bulk (a) and shear (b) viscosities for the BHF calculation of nonsuperfluid β-stable npeμ matter as a function of
the density for T = 109 K and ω = 104 s−1. Contributions to the bulk viscosity from MURCA and DURCA processes involving electrons and
muons are considered, as well as the contributions to the shear viscosity from neutron and electron scattering.

respectively. The figure shows that both viscosities increase
with L for all densities, except for the lowest one for which
the shear viscosity decreases. This is just a consequence of
the dependence of both viscosities on the lepton fraction
[see Eq. (5), Eq. (35) of Ref. [84], and Eqs. (18)–(21) of
Ref. [85]] which increases with L above saturation density
and decreases below it, as can be seen in the inset of the figure.
The dependence of ξ and η with L can be described by simple
power laws of the type ξ = AξL

Bξ and η = AηL
Bη at each

density, shown by solid lines in the figure. For completeness,
we plot in Fig. 3 the density dependence of the coefficients Aξ

and Aη [Fig. 3(a)] and the exponents Bξ and Bη [Fig. 3(b)].
The contributions to ξ from MURCA and DURCA processes
are shown separately. Note that AξDURCA and BξDURCA are only
defined for densities larger than the DURCA threshold. It

is observed that AξDURCA increases until it reaches a plateau
at ∼1 fm−3, while BξDURCA always decreases. On the other
hand, AξMURCA (BξMURCA ) decreases (increases) initially, then
reaches a minimum (maximum) around ∼0.45 fm−3, and
finally increases (decreases). A similar behavior is observed for
Aη and Bη. However, note that Bη is negative below saturation
density, contrary to BξMURCA and BξDURCA which are always
positive.

IV. DISSIPATIVE TIME SCALES OF r-MODES

The dissipative time scale of an r-mode is given by [6]

1

τi

= − 1

2E

(
dE

dt

)
i

, (6)
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FIG. 2. (Color online) Bulk (a) and shear (b) viscosities as a function of symmetry energy slope parameter L for several densities and
different models. Solid lines show the power laws ξ = AξL

Bξ and η = AηL
Bη (see text). The frequency of the mode and the temperature are

taken as 104 s−1 and 109 K, respectively. In the inset is shown the lepton fraction as a function of L for the same densities and models.

045808-4



NUCLEAR SYMMETRY ENERGY AND THE r-MODE . . . PHYSICAL REVIEW C 85, 045808 (2012)

0 0.2 0.4 0.6 0.8 1 1.2

Baryon number density n
b
 [fm

-3
]

10
6

10
9

10
12

10
15

10
18

10
21

10
24

A
ξ, A

η [
g 

 c
m

-1
s-1

 M
eV

-B
ξ,

η ]

0.2 0.4 0.6 0.8 1 1.2

Baryon number density n
b
 [fm

-3
]

-1

0

1

2

3

4

5

6

B
ξ, B

η

ξ
MURCA

ξ
DURCA

η

T=10
9

K
ω=10

4
s

-1

(a) (b)

FIG. 3. (Color online) Density dependence of coefficients Aξ and Aη (a) and the exponents Bξ and Bη (b). The circles and squares show,
respectively, the results of the modified (ξMURCA) and direct (ξDURCA) Urca contributions to ξ , whereas the triangles display those of η. As in
the previous figures the frequency of the mode and the temperature are taken to be ω = 104 s−1 and T = 109 K.

where the index i refers to the various dissipation mechanisms,
in our case bulk viscosity, shear viscosity, and gravitational
wave emission, E is the energy of the mode, and (dE/dt)i
is the rate of dissipation associated with each mechanism.
The energy E can be expressed as an integral of the fluid
perturbations [6,7]

E = 1

2

∫ [
ρδ�v · δ�v ∗ +

(
δp

ρ
− δ�

)
δρ∗

]
d3r, (7)

with ρ being the mass density profile of the star, and δ�v, δp,
δ�, and δρ being the perturbations of the velocity, pressure,
gravitational potential, and density due to the oscillation of the
mode. For the case of r-modes in the small angular velocity
limit E can be reduced to a simple one-dimensional integral
[6],

E = 1

2
α2�2R−2l+2

∫ R

0
ρr2l+2dr, (8)

where α is the dimensionless amplitude of the mode, and R

and � are the radius and the angular velocity of the star,
respectively. Here we focus only on r-modes with angular
quantum number l = 2 and azimuthal projection m = 2 since,
as shown, for example, in Refs. [6,14], r-modes with l = m =
2 are the dominant ones. Higher multipoles lead to weaker
instabilities and are not considered in this work.

The dissipation rate due to the bulk viscosity is given by [6](
dE

dt

)
ξ

= −
∫

ξ |∇ · δ�v|2 d3r. (9)

In general, the quantity |∇ · δ�v|2 is a complicated function of
the radial and angular coordinates. However, for slow-rotating
stars, the bulk viscosity ξ depends to lowest order only on the
radial coordinate. Therefore, it is usual (see Refs. [6,7,9,12])
to define the angle average 〈| �∇ · δ�v|2〉 which also allows one

to reduce (dE/dt)ξ to a one-dimensional integral,(
dE

dt

)
ξ

= −4π

∫ R

0
ξ 〈| �∇ · δ�v|2〉r2dr. (10)

The quantity 〈| �∇ · δ�v|2〉 can be determined numerically [7]. In
this work, however, we will use the analytic expression given
by Lindblom and Owen in Refs. [9,12],

〈| �∇ · δ�v|2〉 = α2�2

690

(
r

R

)6
[

1 + 0.86

(
r

R

)2
](

�2

πGρ̄

)2

.

(11)

In this expression, ρ̄ ≡ M/(4πR3/3) is the average density
of the nonrotating star, and G is the gravitational constant.
Finally, using Eqs. (8), (10), and (11) we get

1

τξ

= 4π

690

(
�2

πGρ̄

)2

R2l−2

[∫ R

0
ρr2l+2dr

]−1

×
∫ R

0
ξ

(
r

R

)6
[

1 + 0.86

(
r

R

)2
]

r2dr. (12)

The dissipation rate due to the shear viscosity is given
by [6,13,14] (

dE

dt

)
η

= −2
∫

ηδσ abδσ ∗
abd

3r, (13)

where the δσab is the shear defined as [90]

δσab = 1
2

(∇aδvb + ∇bδva − 2
3δab∇cδv

c
)
. (14)

Working out the angular integrals (see Refs. [6,13,14]) and
using Eq. (8) yields

1

τη

= (l − 1)(2l + 1)

[∫ R

0
ρr2l+2dr

]−1 ∫ R

0
ηr2ldr. (15)
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FIG. 4. (Color online) Dissipative time scales as a function of the temperature for a 1.4M� (a) and 2M� (b) neutron star rotating at 10%
of its Kepler frequency. Results are shown for three Skyrme forces. Damping time scale due to bulk (shear) viscosity is shown by the solid
(dashed) lines. The time scale associated with the growth of the mode due to the emission of gravitational waves τGW is shown by the horizontal
dotted lines. The frequency of the mode is taken as ω = 104 s−1. In parentheses is given the value of the slope parameter L of each model.

Finally, the time scale of the growth of an r-mode due to
the emission of gravitational waves is given by [6]

1

τGW
= 32πG�2l+2

c2l+3

(l − 1)2l

[(2l + 1)!!]2

(
l + 2

l + 1

)2l+1 ∫ R

0
ρr2l+2dr.

(16)

We plot in Fig. 4 the time scales τξ , τη, and τGW as a
function of the temperature for a 1.4M� [Fig. 4(a)] and 2M�
[Fig. 4(b)] neutron star rotating at 10% of its Kepler frequency
(�Kepler ≈ 7800

√
(M/M�)(10 km/R)3 s−1 [91–93]). As an

example, we show results for the Skyrme forces SLy10,
SkMP, and SkT4 which give values of L = 39.2, 69.7, and
93.4 MeV, respectively. Other Skyrme forces, RMF models,
and the BHF, APR, and AFDMC calculations give similar
qualitatively results, and are not shown here for simplicity. As
in the previous figures the frequency of the r-mode is taken
104 s−1. Note first that τGW is larger for the models which
give a larger value of L. This is because a larger value of L

implies a stiffer EoS and, therefore, a less compact neutron star
(i.e., a more extended and less dense object). Consequently,
[see Eq. (16)], 1/τGW is smaller and τGW is larger. According
to Eqs. (12) and (15), τξ and τη decrease with increasing ξ

and η, respectively. However, we have just seen that ξ and η

increase with L so, contrary to τGW, the models with larger
L predict smaller values of τξ and τη. Finally, we note that
the three time scales decrease when increasing the mass of the
object. In fact, for a given EoS, the more massive the star, the
denser it is. Then, it is clear from Eq. (16) that τGW decreases.
Moreover, ξ and η increase also with the mass of the star
because of their increase with density (see Fig. 1). Assuming
constant profiles for the density, ξ and η, one can see from
Eqs. (12) and (15) that τξ and τη behave as τξ ∼ (ρ/ξ )R2 and
τη ∼ (ρ/η)R2. Since the increase of ξ and η with the mass of

the star is much faster than that of ρ, this explains the decrease
of τξ and τη.

V. r-MODE INSTABILITY REGION

The time dependence of an r-mode oscillation is given
by eiωt−t/τ , where ω is the frequency of the mode, and τ is
an overall time scale of the mode which describes both its
exponential growth, driven by the CFS mechanism [20,21],
and its decay due to viscous damping [6,9]. It can be written
as

1

τ (�, T )
= − 1

τGW(�)
+ 1

τξ (�, T )
+ 1

τη(T )
. (17)

If τGW is shorter than both τξ and τη the mode will
exponentially grow, whereas in the opposite case it will be
quickly damped away. Therefore, it is clear that the r-mode
will be stable only when 1/τ is positive. For each star at a given
temperature T we can define a critical angular velocity �c as
the smallest root of the equation 1/τ (�c, T ) = 0. This equa-
tion defines the boundary of the so-called r-mode instability
region. A star will be stable against the r-mode instability if
its angular velocity is smaller than its corresponding �c. On
the contrary, a star with � > �c will develop an instability
that will cause a rapid loss of angular momentum through
gravitational radiation until its angular velocity falls below the
critical value.

In Fig. 5 we present the r-mode instability region for a
1.4M� [Fig. 5(a)] and 2M� [Fig. 5(b)] neutron star obtained
for some Skyrme forces (solid lines), RMF models (dashed
lines), and the BHF (dotted line), APR (dotted-dashed line),
and AFDMC (double-dotted-dashed line) calculations. We
note that the BHF and APR results are not shown for the
2M� neutron star because the maximum mass predicted by
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FIG. 5. (Color online) r-mode instability region for a 1.4M� (a) and 2M� (b) neutron star obtained for some Skyrme forces (solid lines),
RMF models (dashed lines), and the BHF (dotted line), APR (dotted-dashed line), and AFDMC (double-dotted-dashed line) calculations. The
frequency of the mode is taken as ω = 104 s−1. In parentheses is given the value of the slope parameter L of each model.

these models is ∼1.8M� and ∼1.92M�, respectively. We note
also that the value 1.92M� is slightly lower than the 2.2M�
of the original APR calculation [46], the reason being, as
already mentioned, that in the Heiselberg and Hjorth-Jensen
parametrization [58] the EoS is softened at higher densities in
order to obey causality. The angular velocity is given in units of
�Kepler, and the value of the slope parameter L of each model
it is shown in parenthesis. The r-mode instability region is
larger for the more massive star. This can be understood from
our previous discussion of Fig. 4. Note there that, with � fixed,
the crossing point between τGW and τξ (τη) moves to higher
(lower) temperatures when going from a 1.4M� to a 2M� star,
therefore making the instability region wider. Dissipation due

to shear viscosity kills the mode at low temperatures, while
the bulk viscosity does it at high temperatures. In fact, shear
viscosity suppresses completely the r-mode instability for
temperatures below 105 K. Similarly, bulk viscosity prevents
the mode from growing in a star that is hotter than a few times
1010 K. For temperatures between these two the growth time
due to gravitational radiation is short enough to overcome the
viscous damping, and drive the r-mode unstable. Note that the
instability region is smaller for the models which give larger
values of L. The reason is simply the fact that both bulk and
shear viscosities, as we already discussed, increase with L and,
therefore, the damping of the mode is more efficient for the
models with larger values of L.
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FIG. 6. (Color online) Critical angular velocity as a function of the symmetry energy slope parameter L for a 1.4M� (a) and 2M�
(b) neutron star at the estimated core temperature of 4U 1608-52, T ∼ 4.55 × 108 K [94], and different models. The frequency of the mode is
taken as ω = 104 s−1. Solid lines show the result of a quadratic fit. The horizontal dashed-lines show the observational spin frequency of 4U
1608-52 in units of �Kepler assuming that the radius of this object is (i) 10, (ii) 11.5, (iii) 12, or (iv) 13 km.
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Finally, we plot in Fig. 6 the dependence on L of the
critical angular velocity for a fixed temperature, taken to be
equal to the estimated core temperature of the pulsar in the
LMXB 4U 1608-52 (hereafter called simply 4U 1608-52),
T ∼ 4.55 × 108 K [94]. Results of the different models are
shown for two possible values of the mass of this object, 1.4M�
[Fig. 6(a)] and 2M� [Fig. 6(b)]. The horizontal lines show the
observational spin frequency of 4U 1608-52 (620 Hz [95]) in
units of �Kepler, assuming that its radius is (i) 10, (ii) 11.5,
(iii) 12, or (iv) 13 km. Most of the rapidly rotating neutron
stars in LMXB are observed to rotate at spin rates well below
�Kepler. Although some of them can reach spin frequencies
larger than �c, it is expected that they spend a very short time
inside the instability region since they would rapidly spin down
due to the emission of gravitational waves [17]. Therefore,
most of these objects should likely be outside the instability
region [96,97]. It is clear from the picture, then, that if the
radius of 4U 1608-52 is smaller than ∼11.5 km, this object is
always out of the instability region for any model (�c is larger
than its spin frequency), and we cannot conclude anything
about the value of L. On the other side, if its radius is larger
than ∼12 (13) km and its mass 1.4M� (2M�), 4U 1608-52 is
always inside the instability region (�c is smaller than its spin
frequency), and we cannot draw any conclusion on L from
this pulsar. Only if its radius is in the range 11.5–12 (11.5–13)
km and its mass 1.4M� (2M�) can we say that observational
data seem to favor values of L larger than ∼50 MeV, if 4U
1608-52 is assumed to be outside the instability region. This is
in contrast with the recent work of Wen, Newton, and Li [45]
where they show, as we said, that smaller values of L seem
to be more compatible with observation. We should mention,
however, that these authors assume that the main dissipation
mechanism of the r-mode is due to the viscous boundary layer
at the crust-core interface where densities are smaller than
ρ0. Therefore, their calculation of the shear viscosity is done
in a region of densities for which, as we saw, η decreases
with L. Consequently, they obtain that the r-mode instability
region is smaller for smaller values of L. Nevertheless, in
our work, we need to calculate the bulk and shear viscosities
in a range of densities covering the whole density profile of
the star to determine their corresponding damping time scales
[see Eqs. (12) and (15)]. Both viscosities increase with L in
this range of densities and, therefore, we reach a conclusion
opposite to that of the authors of Ref. [45].

VI. SUMMARY

In this work, we have studied the role of the symmetry
energy slope parameter L on the r-mode instability of neutron
stars. To this end, we have used different models for the nuclear
EoS that include the microscopic Brueckner-Hartree-Fock ap-
proach, the variational Akmal-Pandharipande-Ravenhall EoS,
a parametrization of recent auxiliary field diffusion Monte
Carlo calculations, and several phenomenological Skyrme
forces and relativistic mean-field models. We have found that
the r-mode instability region is smaller for those models
which give larger values of L. We have shown that this is
due to the fact that both bulk and shear viscosities increase
with L and, therefore, make the damping of the mode more
efficient for the models with larger L. We have also shown
that the dependence of both viscosities on L can be described
at each density by simple power laws of the type ξ = AξL

Bξ

and η = AηL
Bη . Finally, we have tried to constrain the value

of L using the measured spin frequency and the estimated
core temperature of the pulsar in the low-mass x-ray binary
4U 1608-52. We have concluded that observational data
seem to favor values of L larger than ∼50 MeV if this
object is assumed to be outside the instability region, its
radius is in the range 11.5–12 (11.5–13) km, and its mass
1.4M� (2M�). Outside this range it is not possible to draw
any conclusion on L from this pulsar. These results are in
contrast with the recent work of Wen, Newton, and Li [45],
where these authors show that observation seems to be more
compatible with smaller values of L. Finally, we note that the
inclusion of other sources of dissipation, such as, for example,
hyperon [9,98–105] or quark [106–116] bulk viscosities, is
not expected to change the qualitative conclusions of this
work.
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Y. Nogami, D. W. L. Sprung, and C. K. Ross, Phys. Lett. B 60,
237 (1976); M. Baldo and L. S. Ferreira, Phys. Rev. C 59, 682
(1999).

[54] X. R. Zhou, G. F. Burgio, U. Lombardo, H.-J. Schulze, and
W. Zuo, Phys. Rev. C 69, 018801 (2004).

[55] Z. H. Li, U. Lombardo, H.-J. Schulze, and W. Zuo, Phys. Rev.
C 77, 034316 (2008).

[56] Z. H. Li and H.-J. Schulze, Phys. Rev. C 78, 028801 (2008).
[57] I. Vidaña, C. Providência, A. Polls, and A. Rios, Phys. Rev. C

80, 045806 (2009).
[58] H. Heiselberg and M. Hjorth-Jensen, Astrophys. J. 525, L45

(1999); Phys. Rep. 328, 237 (2000).
[59] D. Vautherin and D. M. Brink, Phys. Rev. C 3, 626 (1972);

P. Quentin and H. Flocard, Annu. Rev. Nucl. Part. Sci. 28, 523
(1978).

[60] B. D. Serot and J. D. Walecka, Adv. Nucl. Phys. 16, 1 (1986);
Int. J. Mod. Phys. E 6, 515 (1997).

[61] J. R. Stone, J. C. Miller, R. Koncewicz, P. D. Stevenson, and
M. R. Strayer, Phys. Rev. C 68, 034324 (2003).

[62] E. Chabanat, Ph.D. thesis, Université Claude Bernard Lyon-1,
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