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Radiative corrections to antineutrino-proton scattering at low energies
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For the low-energy antineutrino reaction, ν̄e + p → e+ + n, which is of great current interest in connection
with on-going high-precision neutrino-oscillation experiments, we calculate the differential cross section in a
model-independent effective field theory (EFT), taking into account radiative corrections of order α. In EFT, the
short-distance radiative corrections are subsumed into well-defined low-energy constants, the values of which can
in principle be determined from the available neutron β-decay data. In our low-energy EFT, the order-α radiative
corrections are considered to be of the same order as the nucleon recoil corrections, which include the “weak
magnetism” contribution. These recoil corrections have been evaluated as well. We emphasize that EFT allows a
systematic evaluation of higher order corrections, providing estimates of theoretical uncertainties in our results.
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I. INTRODUCTION

Low-energy antineutrinos from nuclear reactors are well
suited to determining the neutrino mixing angle θ13, which is
important for the search of CP violation in the leptonic sector;
see, e.g., Refs. [1,2]. The Double-Chooz [3], Daya Bay [4],
and RENO Collaborations [5] are aiming to measure θ13 with
very high precision with the use of ν̄e’s produced in nuclear
reactors. The present upper bound to this quantity reported by
the Chooz [3] and MINOS [6] collaborations is θ13 < 11.4◦.

The Double-Chooz, Daya Bay, and RENO experiments
monitor the inverse β-decay reaction on a hydrogen target

ν̄e + p → e+ + n (1)

for a known antineutrino energy flux. The positron yield is
measured as a function of the positron energy. An accurate
extraction of the mixing angle θ13 from an analysis of the
measured positron yield requires a precise knowledge of the
radiative corrections (RCs). In earlier papers [7–9], the relevant
RCs were evaluated in the theoretical framework developed
by Sirlin and Marciano [10,11]. In this framework, to be
referred to as the S-M approach, the RCs of order α are
decomposed into so-called outer and inner corrections. The
outer correction is a universal function of the lepton energy
and is independent of the details of hadron physics, whereas
the inner correction is influenced by short-distance physics and
the hadron structure. The inner corrections coming from γ and
weak-boson loop diagrams are divided into high-momentum
and low-momentum parts. The former is evaluated in the
current-quark picture, while the latter is computed with the use
of the phenomenological electroweak-interaction form factors
of the nucleon. Although the estimates of inner corrections in
the S-M formalism are considered to be reliable to the level
of accuracy quoted in the literature, the possibility that these
estimates may involve some degree of model dependence is
not totally excluded.

We present here a calculation of the RCs to order α based
on effective field theory (EFT). We use heavy-baryon chiral
perturbation theory (HBχPT), which is an effective low-
energy theory of QCD, see, e.g., Ref. [12]. In HBχPT the short
distance hadronic and electroweak processes are subsumed

into a well-defined set of low-energy constants (LECs). In
other words, these LECs systematically parametrize the inner
corrections of the S-M approach. Therefore, insofar as there
are enough sources of information to determine the values
of these LECs, HBχPT leads to model-independent results
with systematic estimates of higher-order corrections. The
use of HBχPT to calculate electroweak transition amplitudes
for the nucleon and few-nucleon systems was pioneered
in Refs. [13–15], and subsequently there have been many
important developments. In Ref. [16], we presented the first
ever EFT-based calculation of RCs for the neutron β-decay
process, n → p + e− + ν̄e. Because in HBχPT the nucleons
are treated as point-like, it is expected on general grounds
that the order-α RCs are common between neutron β decay
and inverse β decay. Meanwhile, it should be mentioned that
in the counting scheme adopted here and in Ref. [16], the
order-α RCs are of the same order as the m−1

N nucleon-recoil
corrections including the “weak magnetism” contributions,1

and hence a consistent EFT calculation should include these
recoil corrections simultaneously. We present here such an
EFT calculation, taking advantage of the fact that the m−1

N
expansion is a natural part of our counting scheme and thus
dictates how to incorporate recoil corrections order by order
(see later in the text).

Since exactly the same LECs are involved in the EFT
calculations of inverse β decay and neutron β decay, we can in
principle use the existing neutron β-decay data to determine
those LECs and make a model-independent estimation of RCs
for the inverse β decay, provided that the m−1

N recoil corrections
are properly taken into account. In this connection, we note
that an attempt has been made in the literature [7,17] to directly
relate the neutron decay rate with the inverse β-decay cross
section, assuming that the order-α corrections (RCs and recoil
corrections combined) are common between these processes.
As mentioned, this assumption is justified as far as the genuine
RCs of order α are concerned. However, as described later in
the text, our calculation shows differences between the m−1

N

1The importance of the nucleon-recoil corrections was emphasized
by, e.g., Vogel and Beacom [17].
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corrections for inverse β decay, Eq. (1), and those for neutron
β decay. We therefore caution against writing the cross section
for the reaction in Eq. (1) in terms of the neutron mean life,
τn, as advocated in Refs. [7,17].

This paper is organized as follows. In Sec. II we explain
a theoretical framework to be used and present the results for
the order-α RCs. In Sec. III we consider the recoil corrections
and compare our results with an earlier work [17]. Section IV
gives a summary of our calculations and conclusions. The
Appendix describes some technical details concerning the
HBχPT treatment of the infrared singularity.

II. QED CORRECTIONS

We use here essentially the same theoretical framework as
in Ref. [16], in which we calculated RCs for neutron β decay.
We therefore give only a brief recapitulation of our formalism,
relegating details to Ref. [16].

Our calculation is based on the Q̄/	χ -expansion scheme,
where Q̄ ∼ Eν − 
N − me (
N = mn − mp) represents a

typical four-momentum transfer for incident low-energy reac-
tor antineutrinos (Eν � 10 MeV), and 	χ � 4πfπ ≈ 1 GeV
(fπ = 92.4 MeV is the pion-decay constant) is the chiral scale.
It is to be noted that the expansion parameter in our scheme
is very small and that, as explained in more detail below,
the lowest order recoil corrections ∼ Q̄/mN are of the same
order as the lowest order radiative corrections; viz., Q̄/mN ∼
α/(2π ) ∼ Q̄/	χ ∼ 10−3, where mN = (mp + mn)/2.

The leading-order (LO) transition matrix element for the
inverse β decay, Eq. (1), is evaluated ignoring nucleon recoil
and radiative corrections. The next-to-leading-order (NLO)
corrections in our counting scheme are the recoil corrections
(∼ Q/mN) and the radiative corrections [∼ α/(2π )]. The
recoil corrections, which include the “weak magnetism” term,
will be specified in Eq. (5) below. For the sake of the
transparency of presentation, we shall in this paper separate
these corrections from the m−1

N (kinematic) corrections to the
phase space.

The effective Lagrangian relevant to our calculation in-
cludes the relativistic leptonic weak interaction current and
the LO and NLO heavy-baryon Lagrangian

Leff = LQED + LNN + LNNψψ, (2)

where
LQED = −1

4
FμνFμν − 1

2ξA

(∂ · A)2 +
(

1 + α

4π
e1

)
ψ̄e(iγ · D)ψe + meψ̄eψe + ψ̄νiγ · ∂ψν, (3)

LNN = N̄
[
1 + α

8π
e2(1 + τ3)

]
(iv · D)N, (4)

LNNψψ = −
(

GF Vud√
2

)
[ψ̄eγμ(1 − γ5)ψν]

{
N̄τ+

[(
1 + α

4π
eV

)
vμ − 2gA

(
1 + α

4π
eA

)
Sμ

]
N

+ 1

2mN

N̄τ+[i(vμvν − gμν)(
←
∂ − →

∂ )ν − 2iμV[Sμ, S · (
←
∂ + →

∂ )] − 2igAvμS · (
←
∂ − →

∂ )]N

}
. (5)

LQED in Eq. (3) is the usual QED Lagrangian, where
Fμν = ∂μAν − ∂νAμ, and Dμ = ∂μ + ieAμ is the covariant
derivative; for the gauge parameter ξA, we use here ξA = 1
(Feynman gauge). LNN is the heavy-nucleon Lagrangian
including the photon-nucleon interaction, and LNNψψ is the
low-energy LO and NLO current-current weak interaction. We
give in Eq. (5) the explicit forms of NLO nucleon-recoil terms
dictated by HBχPT. In the above, gA = 1.267 is the axial
coupling constant, while vμ is the nucleon velocity vector,
and Sμ is the nucleon spin; they satisfy v · S = 0. We choose
here vμ = (1, 	0) and Sμ = (0, 	σ/2). In the NLO part of the
Lagrangian the nucleon isovector magnetic moment μV =
μp − μn = 4.706. The low-energy constants (LECs), e1, e2,
eV, and eA, are counterterms which regulate the ultraviolet
(UV) divergences of the virtual photon-loop diagrams. These
LECs incorporate the short-range radiative physics that is not
probed in a low-energy process. The LECs e1 and e2 are
related to the wave-function renormalization factors of the
positron and proton, respectively. The LECs eV and eA are
related to the Fermi and Gamow-Teller amplitudes. The Fermi
coupling constant GF = 1.166 × 10−5 GeV−2 is determined

from muon decay, and the CKM matrix element |Vud | =
0.97418 ± 0.00027 is given by the Particle Data Group [18].

For later convenience, we rearrange the LECs in Eq. (5)
by rewriting the hadronic part in the first line in Eq. (5) as

N̄τ+[vμ − 2g̃ASμ]N +
( α

4π

)
eVN̄τ+

× [vμ − 2g̃ASμ]N + O(α2),

where we have introduced the redefined axial coupling
constant g̃A = gA[1 + α

4π
(eA − eV)]. As in the neutron

β-decay case [16], to the order of our concern, gA can always
be replaced by g̃A. This also applies to the NLO recoil
contributions, since the m−1

N recoil corrections are of the same
order as order-α corrections in the adopted counting scheme.
The order-α radiative corrections to the nucleon magnetic
moments are for the same reason of higher order in our
scheme and hence neglected in this work.

In this paper we derive a model-independent expression
for the lowest order radiative and recoil corrections to
the reaction ν̄e(pν) + p(pp) → e+(pe) + n(pn), where the
four-momentum of each particle is indicated in the
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parentheses. We shall concentrate on an experimental setup
in which none of the particle spins are monitored by the
detector. There is one subtle aspect of the above reaction
which deserves some discussion. In experiments, the final-state
positron will always be accompanied by (often undetected)
soft bremsstrahlung photons. If the bremsstrahlung photon
energy Eγ is less than the detector resolution 
, the energy
recorded by the detector is the sum of the actual outgoing
positron energy Ee and the bremsstrahlung photon energy
Eγ ; i.e., E = Ee + Eγ is what is measured as the “detected
positron” energy, with the corresponding “detected positron”
momentum being | p| = √

E2 − m2
e . The two processes we

evaluate are ν̄e + p → e+ + n and ν̄e + p → e+ + γ + n.
Due to the finite detector resolution the second bremsstrahlung
process is not observed; it only contributes to the RCs of
the first process, i.e., the soft bremsstrahlung photons are an
integral part of the detected positron. Thus, the first process
has become, ν̄e(pν) + p(pp) → e+(p) + n(pn), where the
positron momentum pe has been replaced by p in order
to indicate that the soft bremsstrahlung process has been
incorporated into this “effective” reaction. The cross section
for this effective reaction is given in terms of the effective
invariant amplitude M:

dσ = 1

4mpEν

∫
d3 p

(2π )32E

d3 pn

(2π )32En

(2π )4δ(4)

× (pν + pp − p − pn)
1

2

∑
spins

|M|2

=
(

GF Vud√
2

)2

f (E)
[(

1 + 3g2
A

)
G1(β)

+ (
1 − g2

A

)
G2(β)β cos θe

]
d(cos θe) , (6)

where β = | p|/E = √
E2 − m2

e/E is the velocity of the
outgoing detected positron for a given incident (anti)neutrino

beam energy Eν and detector reading E; cos(θe) = p̂ν · p̂; and
f (E) is the phase-space factor to be discussed later in the text
[see, Eq. (17)]. The two velocity-dependent functions Gi(β)
(i = 1, 2) are written up to NLO as

Gi(β) = 1 + α

2π
Grad

i (β) + 1

mN
Grecoil

i (β), (7)

Here Grad
i (β) [see Eqs. (10) and (11)] represents the lowest-

order radiative corrections, and Grecoil
i (β) [see Eq. (18)], which

will be evaluated in the next section, represents the recoil
corrections arising from the Lagrangian in Eq. (5). The
calculation of the function Grad

i (β) is described next.
For the analysis of the radiative corrections, we ex-

plicitly distinguish between the outgoing positron and the
bremsstrahlung photon. There are two distinct categories of
radiative corrections: the bremsstrahlung and the virtual pho-
ton loop corrections. The corresponding Feynman diagrams
are shown in Fig. 1. Since O(α) and O(m−1

N ) are of the
same order in our counting scheme, the invariant matrix
element Mbr for bremsstrahlung is evaluated assuming En =
mn. The differential cross section for the radiative process,
ν̄e(pν) + p(pp) → e+(p̃e) + n(pn) + γ (k̃)2, is given by

dσbr(ν̄ep → e+nγ ) = 1

8mpmnEν

∫
d3 p̃e

(2π )32Ẽe

d3 k̃

(2π )32Ẽγ

×(2π )δ(Eν − 
N − Ẽγ − Ẽe)

× 1

2

∑
spins

|Mbr|2, (8)

where Ẽ = Ẽe + Ẽγ = Eν − 
N is the maximum energy of
the detected positron in the static nucleon approximation, i.e.,
me � E � Ẽ. The bremsstrahlung matrix element squared
with the static neutron is

1

2

∑
|Mbr|2 =

(
eGF Vud√

2

)2 (
32mnmpẼeEν

Ẽγ (p̃e · k̃)

) {
−

[(
1 + 3g2

A

)
(p̃e · k̃)

Ẽγ

] [
1 +

(
1 − g2

A

1 + 3g2
A

)
p̃e · pν

ẼeEν

]

+ (
1 + 3g2

A

) [
2Ẽ2

e + ẼeẼγ + p̃e · k̃ + Ẽ2
γ

Ẽe

− m2
eẼγ (Ẽe + Ẽγ )

Ẽe(p̃e · k̃)

]

+ (
1 − g2

A

) [
( p̃e · pν)

(
2Ẽe + Ẽγ

ẼeEν

− m2
eẼγ

ẼeEν(p̃e · k̃)

)]
+ (

1 − g2
A

) [
(k̃ · pν)

(
Ẽe + Ẽγ

ẼeEν

− m2
eẼγ

ẼeEν(p̃e · k̃)

)]}
.

(9)

We note that the above expression for
∑ |Mbr|2 is identical to

that for neutron β decay derived in Ref. [16]. We also remark
that Eq. (9) was derived earlier by Fukugita and Kubota [9],
who used the S-M approach [10,11] and a finite photon mass in
order to regulate the infrared (IR) singularity. In the integration
over the bremsstrahlung photon energy in Eq. (8) the maximum

2The four-momenta, p̃e and k̃ denote momenta in the static
nucleon approximation, i.e., pe = p̃e − O(m−1

N ), k = k̃ − O(m−1
N ),

and correspondingly, E = Ẽ − O(m−1
N ).

photon energy occurs when Ẽe = me, i.e., Ẽmax
γ = Ẽ − me.3

In this context, the same question again arises as to whether
or not the experiment can distinguish between the two final
states, n + e+ + γ and n + e+. If the detector resolution in the
experimental setup is such that one can detect photons with an

3The approximate integrals considered in Ref. [7] give the analytic
expression in Ref. [9] provided the lower limits of the integrals are
changed from 1 MeV to me.
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γ

γ

γ

γ

γ

ν̄e e+

(b)
p n

ν̄e e+

(c)
p n

ν̄e
e+

(f)
p n

ν̄e
e+

(e)
p n

ν̄e e+

(d)
p n

e+
ν̄e

(g)
p n

e+
ν̄e

(h)
p n

e+
ν̄e

(i)
p n

∝ e1

∝ e2

∝ eV , eA

e+
ν̄e

(a)
p n

FIG. 1. Feynman diagrams contributing to the cross section which includes O(α) QED corrections. (a): leading-order (LO) Born amplitude;
(b) and (c): bremsstrahlung amplitudes; (d)–(f): virtual photon-loop diagrams; (g) and (h): counterterm amplitudes involving the LECs e1 and
e2, respectively; (i): counterterm amplitudes involving both of the LECs eV and eA. The m−1

N correction is represented by diagram (a) but with
the use of the vertex that arises from the m−1

N (NLO) part of the Lagrangian in Eq. (5). To the order of our concern we do not consider diagrams
in which a photon couples to the nucleon magnetic moments since this is O(α/mN ) or NNLO.

energy Ẽγ in the interval 
 � Ẽγ � Ẽmax
γ , we should integrate

the bremsstrahlung photon energy Ẽγ = |k̃| from 0 to 
 in
Eq. (8). However, if the experiment is unable to distinguish
these two final states, we should integrate from 0 to Ẽmax

γ . In
order to compare with earlier works, we concentrate here on
the latter case. The integral over the radiative photon spectrum
invariably gives rise to an IR singularity. We use dimensional
regularization to deal with the IR singularity; some details
regarding the bremsstrahlung integral are presented in the
Appendix. As is well known, the IR singularity appearing in
Eq. (8) is canceled by the contributions from virtual photon-
loop diagrams in accordance with Bloch and Nordsieck [19],
see also Ref. [20]. The evaluation of the loop diagrams in
dimensional regularization can be found in the literature, see,
e.g., Ref. [16]. It is notable that apart from the so-called
Coulomb factor π2/β, which arises in, e.g., neutron β decay
from a photon-loop diagram, the matrix element given by
these virtual photon loops is identical to the one in neutron β

decay.
The UV divergencies originating from the photon loop

diagrams are regulated by the LECs in the Lagrangian. These
LECs are renormalized by the usual effective field theoretical
method based on dimensional regularization of the loop
integrals, see, e.g., Refs. [12,21]. The finite LECs renormalized

at the scale μ are

eR
V,A(μ2) = eV,A − 1

2
(e1 + e2)

+3

2

[
2

d − 4
− γE + ln(4π ) + 1

]
+ 3

2
ln

(
μ2

m2
N

)
.

The LEC eR
V(μ2), which was introduced by Ando et al. [16]

in the evaluation of the RC for neutron β decay, subsumes
short-distance physics not probed at low energies and depends
on the regularization scale μ.

Combining the bremsstrahlung and virtual photon-loop
contributions calculated to order α, and noting that β̃ =√

Ẽ2 − m2
e/Ẽ = β + O(m−1

N ), we obtain, neglecting O(m−1
N )

contributions, Grad
i (β̃) � Grad

i (β), i = 1, 2, appearing in
Eq. (7). Dropping terms of O(α m−1

N ), we choose to write
the results in the following form:

1 + α

2π
Grad

1 (β) =
[
1 + α

2π
ẽR
V (μ2)

] [
1 + α

2π
δout(β)

]
, (10)

1 + α

2π
Grad

2 (β) =
[
1 + α

2π
ẽR
V (μ2)

] [
1 + α

2π
δ̃out(β)

]
, (11)

where the “inner” corrections, which are independent of β, are
encoded in the LEC ẽR

V (μ2) and defined as ẽR
V (μ2) = eR

V(μ2) +
5
4 . The “outer” radiative corrections constitute the well-known,
model-independent, long-distance QED corrections that do not
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contain any hadronic effects and are given by

δout(β) = 3 ln

(
mN

me

)
+ 23

4
+ 8

β
L

(
2β

1 + β

)
− 8

4β
ln2

(
1 + β

1 − β

)
+ 4 ln

(
4β2

1 − β2

) [
1

2β
ln

(
1 + β

1 − β

)
− 1

]

+
(

3β

4
+ 7

4β

)
ln

(
1 + β

1 − β

)
, (12)

δ̃out(β) = 3 ln

(
mN

me

)
+ 3

4
+ 4

(
1 −

√
1 − β2

β2

)
+ 8

β
L

(
1 −

√
1 − β

1 + β

)
+

(
1

2β
− 3

8
− 1

8β2

)
ln2

(
1 + β

1 − β

)

+
[

1

2β
− 2

]
ln

(
1 + β

1 − β

)
− 4

[
1

2β
ln

(
1 + β

1 − β

)
− 1

]
ln

[(
1 + β

2β

) √
1 + β + √

1 − β√
1 + β − √

1 − β

]
. (13)

The above expressions for δout and δ̃out reproduce the results
obtained by Fukugita and Kubota [9]. We also note that
δout ≡ h(Ê, E0), where h(Ê, E0) is the function introduced
by Sirlin [22].

As mentioned, eR
V(μ2) also appears in the expression for

the RC for neutron β decay. Therefore, it is in principle
possible to determine eR

V(μ2) using relevant high-precision
low-energy data involving baryons. Due to the lack of useful
experimental data, Ando et al. [16] determined eR

V(μ2) at
μ = mN by comparing their results for neutron β decay with
those obtained in the S-M approach [10,11].

III. m−1
N RECOIL CORRECTIONS

As mentioned, these corrections have two different origins.
One comes from the Lagrangian itself, and the other arises
from the expansion of the kinematic factors in the phase-
space integral. Below we treat these two types of recoil
corrections separately and compare our results with those in
Ref. [17]. It is to be noted again that in evaluating the O(m−1

N )
corrections, we can neglect O(α) radiative effects, since
O(α m−1

N ) terms are of higher order in our counting scheme.
One can, therefore, assume that the outgoing positron energy
Ee ≈ E, and correspondingly, the positron velocity βe ≈ β.

A. Kinematic (phase-space) corrections

The phase-space factor f (E) appearing in Eq. (6) to
the lowest order (LO) in the m−1

N expansion is given by
f (Ẽ) = Ẽ2β̃/π with the neutron regarded as being static,
i.e., En = mn + O(m−1

N ). To NLO, the above expression for
f (E) needs to be corrected to incorporate the kinetic energy
of the recoil neutron from the relation En = mn + ( pν −
pe)2/(2mN) + O(m−2

N ). Corresponding to this change in En,
we have

E = Eν − 
N − ( pν − pe)2/(2mn) + · · · = Ẽ − ( pν

− pe)2/(2mn) + · · · = Ẽ

[
1 − 1

mN

(
Eν(1 − β̃ cos θe)

+
2
N − m2

e

2Ẽ

)
+ O(m−2

N )

]
, (14)

where, as earlier, Ẽ = Eν − 
N , and the positron velocity
becomes

β = β̃

[
1 − 1

mN

(
1 − β̃2

β̃2

)(
Eν(1 − β̃ cos θe) + 
2

N − m2
e

2Ẽ

)

+O
(
m−2

N

)]
, (15)

where β̃ =
√

Ẽ2 − m2
e/Ẽ. Note that the positron energy E

and the velocity β are equal to the recoil-corrected E(1)
e and

v(1)
e in Ref. [17], respectively. Reflecting these changes, the

phase-space integral in Eq. (6) needs to be corrected as follows:∫
(dF)

f (E)

4π

(
mn + En

En

)
δ(F)

(∣∣∣∣dFdE

∣∣∣∣
F=0

)−1

× [(
1 + 3g2

A

) + (
1 − g2

A

)
β cos θe

]
, (16)

where F = Eν − 
N − E − ( pν − pe)2/(2mN) + · · ·. The
factor (mn + En)/En � 2 in Eq. (16) has corrections of order
m−2

N , and the Jacobian factor produces the following NLO
phase-space factor in Eq. (6):

f (E) = E2β

π

[
1 − E

mN

(
1 − Eν

βE
cos θe

)
+ O

(
m−2

N

)]
, (17)

where the expressions for E and β are given in Eqs. (14)
and (15).

B. Corrections from the next-to-leading-order Lagrangian

The m−1
N corrections to the Lagrangian are explicitly written

in Eq. (5). As noted before, the radiative corrections to these
additional terms in the Lagrangian are of higher order than
NLO in our counting and hence need not be considered here.
Evaluating the NLO Lagrangian recoil correction contribu-
tions, illustrated in Fig. 1(a), we obtain the recoil terms in
Eq. (7)

Grecoil
1 (β) = β2E

(
1 − 2gAμV + g2

A

1 + 3g2
A

)

−Eν

(
1 + 2gAμV + g2

A

1 + 3g2
A

)
,
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Grecoil
2 (β) = E

(
1 + 2gAμV + g2

A

1 − g2
A

)

−Eν

(
1 − 2gAμV + g2

A

1 − g2
A

)
. (18)

Comparing these results with those obtained for neutron
β decay [16], we note that there are several relative sign
differences.4 Apart from the m−1

N phase-space corrections
in neutron β decay, the m−1

N corrections (arising from the
Lagrangian m−1

N interaction terms) relevant to the neutron
life-time are contained in the C0 factor in Eq. (14) of Ref. [16].
Noting that in neutron β decay Emax

e = Eν + Ee + O(m−1
N ),

we may rewrite the C0 factor as

C0(Ee) = 1 + 1

mN

{
β2Ee

(
1 + 2μV gA + g2

A

1 + 3g2
A

)

+Eν

(
1 − 2μV gA + g2

A

1 + 3g2
A

) }
.

Comparison of C0 with Grecoil
1 (β) in Eq. (18) clearly indicates

that the m−1
N recoil corrections are not identical for the

neutron β decay and the inverse β decay. Moreover, since
the weak-magnetism term is dominant, the difference between
C0 and Grecoil

1 (β) are of the same magnitude as the corrections
themselves.

Combining the m−1
N Jacobian factor in the square brackets in

Eq. (17), and the recoil correction arising from the Lagrangian,
Eq. (18), we confirm the recoil corrections given in Eqs. (12)
and (13) in Ref. [17]. We prefer to keep these two m−1

N
corrections separate since one is of a kinematical origin
(phase-space correction), whereas the other is of a dynamical
origin arising from the transition matrix element.

IV. DISCUSSION

In this paper we have derived a model-independent ex-
pression for the radiative and m−1

N corrections for the low-
energy antineutrino proton reaction to next-to-leading-order
in an effective field theory approach. We have shown that
short-distance physics not probed in this low-energy reaction
can be subsumed into a single low-energy constant eR

V(μ2).
In the Q̄/	χ -expansion scheme adopted here, the O(α) and
O(Q/mN ) corrections are considered to be of the same order
for the reactor antineutrino energy range. We have found that
the m−1

N corrections appearing in Eq. (18), which originate
from the Lagrangian in Eq. (5), are different from the m−1

N
corrections found in neutron β decay, see, e.g., Ref. [16].
Therefore, to the order under consideration, it is not advisable
to write the inverse β-decay cross section (or the positron
yield) in terms of the neutron mean life τn, as advocated in
Ref. [7].

4This is in contrast to the order-α RCs which are universal at NLO
in effective field theory.

The short-distance hadronic physics associated with the
LEC eR

V(μ2) was extensively discussed in Refs. [10,11]. The
processes involved in eR

V(μ2) were studied from an EFT
perspective in Ref. [16]. In principle, we should be able to
determine the LEC eR

V(μ2) from high-precision experimental
data. Relegating this determination to future study, we choose
here to estimate eR

V(μ2) at the scale μ = mN by comparing
the short-distance radiative corrections calculated in the S-M
approach [10,11] and the expressions obtained in EFT in
Ref. [16]. The result is

ẽR
V

(
m2

N

) = 4 ln

(
mZ

mp

)
+ ln

(
mp

mA

)
+ 2C + Ag

= 18.31 − 0.25 + 1.78 − 0.34 = 19.50, (19)

where, for the sake of definiteness, the value of the axial
matching mass mA = 1.2 GeV has been used, although
its value involves uncertainty [10,11]. With this value of
ẽR
V (m2

N), the correction term involving LEC in Eqs. (10)
and (11) is estimated to be (α/2π ) ẽR

V (m2
N) � 0.023. The

dominant first term in Eq. (19) arises from well-known
additional box diagrams with Z exchange, replacing the photon
exchange, in electroweak theory [10,11]. This electroweak
physics can be naturally included in our approach. However,
for an easy comparison with the neutron β-decay radiative
corrections evaluated in Ref. [16], we prefer to keep this
contribution in the above LEC. As for the last two terms in
Eq. (19), we remark that Ag involves genuine short-distance
hadron-structure physics, whereas the constant C arises from
photon-loop diagrams in which the photon couples to the
nucleon magnetic moments and also from the hadronic form
factors. The long-range parts of these corrections are naturally
included in EFT at higher orders than considered in this
paper.

As a final comment we note that in our work we have
used the value of the Fermi constant GF determined from
the muon lifetime measurement. The theoretical expression
for GF is evaluated in standard electroweak theory, and it
naturally includes log terms involving mZ . These log terms
appear in our expression for eR

V(μ2), Eq. (19), and were
also considered in Ref. [16], see, e.g., Refs. [10,11] for
details.

In summary the integrated cross section for reaction (1) is

σ = (GF Vud )2 Ẽ2β̃

π

(
1 + 3g2

A

) (
1 + α

2π
Grad

1 (β̃)
)

×
{

1 + 1

mN

[
Grecoil

1 (β̃) − Ẽ −
(

1 + β̃2

β̃2

)

×
(

Eν + 
2
N − m2

e

2Ẽ

)
+

(
1 − g2

A

1 + 3g2
A

)
Eν

3
(2 + β̃2)

]}
,

(20)

where as before, Ẽ = Eν − (mn − mp) and β̃ =
√

Ẽ − m2
e/Ẽ,

and where all m−1
N corrections in Eq. (20) except Grecoil

1 (β)
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of Eq. (18) originate from the phase-space factor f (E),
Eq. (17).
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APPENDIX

We use dimensional regularization to isolate the IR sin-
gularity. The three-dimensional integral over k̃ in Eq. (8) is
replaced with a d = 4 − 2ε dimensional integral where ε < 0
for the purpose of handling the IR singularity, i.e., Eq. (8) is
rewritten as

dσbr

dcosθe

= 1

32mnmpEν

μ4−d

(2π )d

∫ Ẽ−me

0
|k̃| |k̃|d−2 dd−2�k̃

×
( | p̃e|

|k̃|

)
1

2

∑
spin

|Mbr|2, (A1)

where p̃e = √
(Ẽ − |k̃|)2 − m2

e . We note that in dimen-
sional regularization, the angular integration

∫
dd−2�k̃

yields ( ˆ̃pe · ˆ̃k = cos θk)

μ4−d

(2π )d

∫
dd−2�k̃[1 − cos2θk]

[1 − β̃cos(θk)]2
= μ4−d

8π3

{{
1 + |ε|

× [γE − ln(4π )]

}[
− 4

β̃2
+ 2

β̃3
ln

(
1 + β̃

1 − β̃

)]

+4|ε|
β̃2

C(β̃) + O(ε2)

}
,

where β̃ =
√

Ẽ2 − m2
e/Ẽ and the function C(β̃) is given by

(see, e.g., Refs. [23])

C(β̃) = 1 + 1

2β̃
ln

(
1 + β̃

1 − β̃

) [
1 − 1

2
ln

(
1 + β̃

1 − β̃

)]

+ 2 ln2

[
1

2β̃
ln

(
1 + β̃

1 − β̃

)
− 1

]
+ 1

β̃
L

(
2β̃

1 + β̃

)
,

(A2)

and L(x) is the Spence function

L(x) = −Li2(x) =
∫ x

0
dt

ln(1 − t)

t
.

The integral over the photon momentum
∫

dk̃ k̃d−5 ∝ 1/|ε|
exhibits the IR singularity. When we combine our expression
for the integrated bremsstrahlung cross section with the
contributions from the virtual photon loops, we find that the
IR singularity is removed as it should be.
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