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Examination of the H dibaryon within a chiral constituent quark model
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We perform a coupled-channel calculation of the H dibaryon within a chiral constituent quark model. The
problem is solved within a quark model constrained by the experimental data of strangeness −1 and −2
two-baryon systems. We examine in detail the role played by the different contributions of the interacting
potential as well as the number of coupled channels considered. Special attention has been paid to the parameter
dependence, flavor symmetry breaking, and spatial configurations. The value extracted for the binding energy
of the H dibaryon, being compatible with the restrictions imposed by the Nagara event, falls within a plausible
extrapolation of recent lattice QCD results.
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I. INTRODUCTION

Very recently the H dibaryon was put back on the agenda by
lattice QCD calculations of different collaborations, NPLQCD
[1] and HAL QCD [2], providing evidence for a bound state at
pion masses larger than the physical ones. It was first proposed
thirty years ago [3] as a spin and flavor singlet composed of six
quarks (uuddss). Such a proposal emerged on the context of
the Massachusetts Institute of Technology (MIT) bag model
[4]. When applied to all six-quark systems it predicted the
existence of only one stable dihyperon with JP = 0+ and
a mass of 2150 MeV, 81 MeV below the �� threshold;
therefore, strongly bound. Moreover, being the lightest particle
of a two-baryon system with strangeness (Ŝ) −2, it would be
stable against the strong interaction and would necessarily
decay weakly. It was assumed to be a single hadron made of
six quarks squeezed in a small region and not a two-baryon
state bound in an S wave like the deuteron. If this were the case
it would open the door to the exotic states (i.e., hadrons that do
not fit in the standard q̄q or qqq configurations). Otherwise,
the fact that the H dibaryon is the most promising candidate to
be the second dibaryonic state after the deuteron has generated
a lot of expectation.

On the experimental side, there are very few data in the
Ŝ = −2 sector coming from the inelastic �−p → �� cross
section at a laboratory momentum of around 500 MeV/c,
and from the elastic �−p → �−p and inelastic �−p → �0n

cross sections for laboratory momenta in the range of 500 to
600 MeV/c [5–7]. Thus, the relevant information we have is
indirect and comes from double-� hypernuclei. Their binding
energies B�� provide upper limits for that of the H dibaryon
(i.e., BH < B��). The first hypernuclear events are quite old
and admit several interpretations [8–10]. In 2001 the so-called
Nagara event [11] was reported, interpreted uniquely as the
sequential decay of 6

��He emitted from a �−-hyperon nuclear
capture at rest. The mass and the values of B�� and of
the �� interaction energy �B�� were determined without
ambiguities. The small value of �B�� suggested an attraction
weaker than the one previously estimated. It also gave the
most stringent constraint to the mass of the H dibaryon to
date (i.e., MH � 2223.7 MeV at a 90% confidence level). It
took almost one decade, but four more double-� hypernuclear
events were reported, experiments E176 and E373 at Japan’s

National Laboratory for High Energy Physics (KEK) [12],
still with preliminary results. All the details are summarized
in Table I. The future E07 experiment from the Japan Proton
Accelerator Research Complex (J-PARC) [12] is expected to
improve our knowledge on the Ŝ = −2 sector, giving ten times
more events.

From a theoretical point of view, many approaches have
been performed, their predictions for the binding of the H
spreading over a wide range of energies [13]. Recent lattice
results produced by the NPLQCD [1] and HAL QCD [2]
collaborations found a bound H dibaryon for nonphysical
values of the pion mass (mπ = 837 MeV and mπ = 670 →
1010 MeV, respectively). When performing quadratic and
linear extrapolations to the physical point [14], a bound
dibaryon (around 7 MeV) and a H at threshold, respectively, are
predicted. Also presented in Ref. [14] are preliminary results
for mπ = 230 MeV, much closer to the physical pion mass,
pointing to a H dibaryon at threshold, as also experimentally
suggested by the enhancement of the �� production near
threshold found in Ref. [15].

In this work we present an approach to the H dibaryon
within a constituent quark model constrained by the experi-
mental data of the Ŝ = −1 and −2 cross sections [16,17]. To
make our results more robust and significative, we scrutinize
all channels in the Ŝ = −2 sector, paying due attention to the
H dibaryon (T , S) = (0, 0). The paper is organized as follows:
In Sec. II we provide a brief description of the constituent
quark model and the formalism to study the coupled-channel
problem. In Sec. III we present and analyze our results. Finally,
we summarize our conclusions in Sec. IV.

II. CHIRAL CONSTITUENT QUARK MODEL

The baryon-baryon interactions needed for the study of
the H dibaryon are computed from a chiral constituent quark
model (CCQM) [18]. Baryons are described as clusters of
three effective constituent quarks, their mass coming from the
spontaneous chiral symmetry breaking. The CCQM was first
applied to the study of the nonstrange SU(2) × SU(2) sector,
describing the baryon spectroscopy and the nucleon-nucleon
(NN) interaction in a consistent manner [18]. Such a success
was due to the choice of the adequate mechanisms in the
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TABLE I. Reported double-hypernuclear events.

Event Nuclide B�� (MeV) �B�� (MeV)

1963 10
��Be 17.7 ± 0.4 4.3 ± 0.4

1966 6
��He 10.9 ± 0.5 4.7 ± 1.0

1991 13
��B 27.5 ± 0.7 4.8 ± 0.7

NAGARA 6
��He 7.13 ± 0.87 1.0 ± 0.2

MIKAGE 6
��He 10.06 ± 1.72 3.82 ± 1.72

DEMACHIYANAGI 10
��Be 11.90 ± 0.13 −1.52 ± 0.15

HIDA 11
��Be 20.49 ± 1.15 2.27 ± 1.23
12
��Be 22.23 ± 1.15

E176 13
��Be 23.3 ± 0.7 0.6 ± 0.8

description of the quark-quark-meson interaction: quark anti-
symmetry plus a perturbative short-range force together with
a microscopic nonperturbative chiral interaction at medium
and long distances. They allow a unified treatment of the one-,
two-, and three-body systems, with a reduced and unique set of
parameters. Later on, a generalization to SU(3) × SU(3) was
done to perform a systematic and detailed analysis of the qq̄

spectrum [19]. The interaction between quarks was given by
(Model I from now on)

Vqq(�r) = VCON(�r) + VOGE(�r) + Vσ (�r) + VPSE(�r), (1)

where VCON is a confinement term that represents the non-
perturbative aspects of QCD, VOGE is the one-gluon ex-
change (OGE) potential, obtained through the nonrelativistic
reduction of the quark-quark-gluon interaction diagram in
QCD, Vσ is the one-sigma-exchange potential, and VPSE

stands for the chiral potential, associated with the exchange
of pseudoscalar Goldstone bosons. It comprises one-pion,
one-eta, and one-kaon exchanges. When studying the Ŝ = −1
�p cross section, it was noticed that a better approximation
to the scalar interaction was needed, considering the nonet of
scalar mesons that comprises a singlet (denoted by σ0) and
an octet that will be denoted by VSCE, giving thus rise to
Model II:

Vqq(�r) = VCON(�r) + VOGE(�r) + Vσ0 (�r) + VSCE(�r) + VPSE(�r),

(2)

where the relation between σ and σ0 is given by σ =
cos θsσ0 + sin θsσ8. The present model has been used in
Ref. [16] to study two- and three-baryon systems with
strangeness −1 giving a nice description of the hypertriton.
It has also been used to study the strangeness −2 two-
body-scattering cross sections [17]. A reasonable fit to the
experimental data of the elastic �−p and the inelastic �−p →
�0n and �−p → �� cross sections reported in Refs. [5–7]
was obtained.

In order to derive the local B1B2 → B3B4 potentials from
the basic qq interaction we use a Born-Oppenheimer approx-
imation. Explicitly, the potential is calculated as follows:

VB1B2(LST )→B3B4(L′S ′T )(R) = ξL′S ′T
LST (R) − ξL′S ′T

LST (∞), (3)

where

ξL′S ′T
LST (R)=

〈
	L′S ′T

B3B4
( �R)

∣∣∑6
i<j=1 Vqiqj

(�rij )
∣∣	LST

B1B2
( �R)

〉
√〈

	L′S ′T
B3B4

( �R)
∣∣	L′S ′T

B3B4
( �R)

〉√〈
	LST

B1B2
( �R)

∣∣	LST
B1B2

( �R)
〉 .

(4)

In the last expression the quark coordinates are integrated out
keeping R fixed; the resulting interaction being a function of
the Bi − Bj relative distance. The wave function 	LST

BiBj
( �R) for

the two-baryon system is discussed in detail in Ref. [18]. This
formalism allows us to isolate different contributions and/or
diagrams, making it easy to analyze the results.

Once we have the two-baryon interactions, we switch to
solve the two-body coupled-channel problem. Let us start from
a physical system made of two baryons, B1 and B2 (Bi =
�,N,�,
), with isospin, spin, and parity quantum numbers
(I )JP in a relative S state. They interact through a potential
V that contains a tensor force. Then, in general, there is a
coupling to the B1B2 D wave and to any other two-baryon
system (��, N�, 

) that can couple to the same quantum
numbers (I )JP . Thus, if we denote �� ≡ D1, N� ≡ D2, and


 ≡ D3, the Lippmann-Schwinger equation for the Ŝ = −2
B1B2 scattering becomes

t
�αsα,�β sβ

αβ;ji (pα, pβ ; E)

= V
�αsα,�β sβ

αβ;ji (pα, pβ)

+
∑

γ = Dk

(k = 1, 2, 3)

∑
�γ =0,2

∫ ∞

0
p2

γ dpγ V
�αsα,�γ sγ

αγ ;ji (pα, pγ )

×Gγ (E; pγ )t
�γ sγ ,�β sβ

γβ;ji (pγ , pβ ; E),

α, β = D1,D2,D3, (5)

where t is the two-body scattering amplitude, j , i, and E are
the angular momentum, isospin, and energy of the system,
respectively, �αsα , �γ sγ , and �βsβ are the initial, intermediate,
and final orbital angular momentum and spin, respectively, and
pγ is the relative momentum of the two-body system γ . The
propagators Gγ (E; pγ ) are given by

Gγ (E; pγ ) = 2μγ

k2
γ − p2

γ + iε
, (6)

with

E = k2
γ

2μγ

, (7)

where μγ is the reduced mass of the two-body system γ .
For bound-state problems E < 0 so that the singularity of the
propagator is never touched and we can forget the iε in the
denominator. If we make the change of variables

pγ = b
1 + xγ

1 − xγ

, (8)
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where b is a scale parameter, and the same for pα and pβ , we
can write Eq. (5) as

t
�αsα,�β sβ

αβ;ji (xα, xβ ; E)

= V
�αsα,�β sβ

αβ;ji (xα, xβ )

+
∑

γ = Dk

(k = 1, 2, 3)

∑
�γ =0,2

∫ 1

−1
b2

(
1 + xγ

1 − xγ

)2 2b

(1 − xγ )2
dxγ

×V
�αsα,�γ sγ

αγ ;ji (xα, xγ )Gγ (E; pγ )t
�γ sγ ,�β sβ

γβ;ji (xγ , xβ ; E).
(9)

We solve this equation by replacing the integral from −1 to
1 by a Gauss-Legendre quadrature which results in the set of
linear equations

∑
γ = Dk

(k = 1, 2, 3)

∑
�γ =0,2

N∑
m=1

M
n�αsα,m�γ sγ

αγ ;ji (E)t
�γ sγ ,�β sβ

γβ;ji (xm, xk; E)

= V
�αsα,�β sβ

αβ;ji (xn, xk), (10)

with

M
n�αsα,m�γ sγ

αγ ;ji (E)

= δnmδ�α�γ
δsαsγ

− wmb2

(
1 + xm

1 − xm

)2 2b

(1 − xm)2

×V
�αsα,�γ sγ

αγ ;ji (xn, xm)Gγ (E; pγ m
), (11)

and where wm and xm are the weights and abscissas of the
Gauss-Legendre quadrature, while pγ m

is obtained by putting
xγ = xm in Eq. (8). If a bound state exists at an energy EB ,

the determinant of the matrix M
n�αsα,m�γ sγ

αγ ;ji (EB) vanishes (i.e.,
‖Mαγ ;ji(EB)‖ = 0). We took the scale parameter b of Eq. (8)
as b = 3 fm−1 and used a Gauss-Legendre quadrature with
N = 20 points.

III. RESULTS

The flavor singlet (T , S) = (0, 0) state in the Ŝ = −2 sector
comprises three coupled two-baryon channels, presenting rich
coupling effects. If SU(3) were exact, one could write

|H 〉 =
√

1

8
|��〉 +

√
4

8
|N�〉 −

√
3

8
|

〉. (12)

The presence of three transition potentials; namely, �� −
N�, �� − 

, and N� − 

, makes it necessary, to
obtain the bound states of the system, to perform a coupled-
channel calculation where six different interactions contribute:
three diagonal potentials (��, N�, and 

) plus the three
transitions just mentioned.

Regarding the baryon-baryon interactions, let us only point
out here a couple of remarkable features of interest for the
H dibaryon study. First of all, the three diagonal potentials
are attractive. The smaller attraction corresponds to the ��

potential, whereas N� and 

 show broader and deeper
attractions, respectively. In order to know about the magnitude
of these diagonal interactions, the Fredholm determinant—that
tells the binding energy of a system—can help. The binding

TABLE II. Single-channel binding energy (in MeV).

B�� BN� B



Model I 1.9 32.7 24.2
Model II 0.1 0.1

energies of these three channels with respect to their own
thresholds (still without any coupling), computed in Models I
and II, are shown in Table II. The six potentials contributing to
the H dibaryon in Models I and II are displayed in Figs. 1(a)
and 1(b). From them we shall proceed to solve the coupled-
channel problem by enlarging the Hilbert space progressively,
from {��} to {��,N�} and finally to {��,N�,

}. The
thresholds of these three channels are respectively 2231, 2257,
and 2381 MeV. In this way we are able to separate and to
identify the modifications introduced by every baryon-baryon
channel. The results, computed in Models I and II, are shown
in Table III. When approximating the interaction by the ��

potential, one finds the H dibaryon slightly above threshold in
Model II. As expected, due to the attractive character of the
remaining channels, the coupling increases the binding energy
of the dihyperon by several MeV. The low sensitivity of this
binding when going from Model I to Model II contrasts with
the important modification of the �p cross section [16]. Hence
a detailed analysis of the different contributions to the binding
may be helpful. For that purpose we shall restrict ourselves to
Model II, as it is the one that properly describes the Ŝ = −1
and −2 experimental cross sections [17].

A. Pieces of the interaction

A more precise analysis can be done by studying the
different components of the interaction separately. Let us start
with the chromomagnetic interaction consequence of the OGE,
the basic mechanism originally proposed to bind the H [3].
In the work by Oka et al. [20], using a one-gluon exchange
plus a confining potential, a resonance 152 MeV above the
�� threshold was obtained. The large difference with respect
to the original work [3], which gave BH = 81 MeV, was a
consequence from the fact that Jaffe [3] used the limit of
flavor SU(3) symmetry and took for (uuddss) the short-range
correlation coefficients as for ordinary hadrons. Oka et al. [20]
showed that, in the dilute (uuddss) system, the strength of
chromomagnetic effects is reduced as compared to ordinary
hadrons.

Later on, several works employing one-gluon exchange po-
tentials have approached the study of the H dibaryon offering
again a wide range of results. Reference [21] took into account
two possibilities: six-quark and two-cluster configurations.
In the first one, even in the simplest case of OGE plus

TABLE III. Ŝ = −2, (T , S) = (0, 0) binding energy (in MeV) in
the one-, two-, and three-channel approximations.

B{��} B{��,N�} B{��,N�,

}

Model I 1.9 8.7 10.0
Model II 1.6 7.0
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FIG. 1. Interacting potentials contributing to the H dibaryon in (a) Model I and (b) Model II.

confinement, the H dibaryon was more than 300 MeV above
threshold. In the second one, although the H was not yet bound,
the energies of the resonance were much smaller. This was due
to the repulsive character of the chromomagnetic interaction
in the �� potential, not compensated by its attraction in the
remaining channels. The very same feature was found by
Nakamoto et al. [22] where, moreover, the repulsion in ��

was much stronger. On the other side, Stancu et al. [23], by
performing a study of the short-range part of the Goldstone
boson exchange interaction, lacking thus the OGE potential,
found a resonance more than 800 MeV above threshold.
Finally, in a chiral quark model study with six-quark (0s)6

as well as two-baryon configurations done by Shimizu et al.
[24], three different cases were considered: a pure one-gluon
exchange model supplemented by the long-range Yukawa part
of the pseudoscalar interaction, a hybrid model containing both
OGE and chiral pseudoscalar plus scalar interactions, and a

FIG. 2. OGE interaction in the diagonal channels contributing to
the H.

pure chiral model. Among them, the pure one-gluon exchange
model produced by far the largest binding energy.

In our case the situation is qualitatively similar to Refs. [22].
The OGE interaction in the three diagonal channels is plotted
in Fig. 2. The repulsive character of the gluon exchange in ��

exceeds by far the attraction present in 

, and even more in
N�. Therefore, if one looks at the binding energy with only
gluon interaction, one finds that the Fredholm determinant is
larger than 1, which is associated with a repulsive force. This
is a general conclusion valid for any value of αs , since it is a
multiplicative constant that appears in the three channels and
the ratio between the repulsion in �� and the attraction in 



is preserved. Indeed, such an approximated ratio (|V ��
OGE(R =

0)|/|V 


OGE(R = 0)| 
 5) is also found in [22], where an SU(6)

quark model is used, in spite of the huge difference in the
quark-gluon coupling constant, taken there to be αs = 1.52,
almost one order of magnitude larger. The global effect of the
chromomagnetic interaction is thus found to be repulsive and
therefore one has to keep looking for the thing responsible for
the binding.

In order to appreciate the overall features of any interaction,
the Ŝ = −2, (T , S) = (0, 0) two-baryon system has been
solved in the one-, two-, and three-channel approaches by
including only the interactions indicated in each line of
Table IV. This gives us information on the character of the
interaction involved, whether it is repulsive, weakly attractive,
or attractive enough to bind the system. The pseudoscalar
interaction generates repulsion, and it contributes only to the
�� channel, being negligible in the others. Therefore, in
a model containing only PSE, or OGE + PSE interactions,
there is not a bound state. The same situation occurs in
Refs. [25], where a resonance 26 MeV above threshold is
found in a OGE + PSE model. However, the addition of a
scalar exchange at the baryonic level provides large attraction
so that the binding becomes BH = 20 MeV. In Ref. [23] the
pseudoscalars also introduce repulsion at short distances, but
weaker than in the NN interaction, in such a way that a bound
H particle—provided there were medium range attraction as
the σ implies—is not discarded. A repulsive pseudoscalar
contribution is also found in [24], together with an attractive
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TABLE IV. Character of the strangeness −2 two-baryon inter-
action in the one-, two-, and three-channel approximations, for
different quark-quark interactions. R indicates repulsion, WA weak
attraction, A(N ) indicates attraction, with N being the binding energy
in MeV. PSE stands for the pseudoscalar exchange, OGE for gluon,
SCE for the scalar octet, and σ0 for the scalar singlet as indicated
in Eq. (2).

B{��} B{��,N�} B{��,N�,

}

OGE R R R
PSE R R R
σ0 A(5.4) A(5.4) A(8.3)
SCE WA WA R
OGE + PSE R R R
σ0 + PSE A(0.1) A(0.1) A(0.4)
OGE + σ0 A(0.1) A(0.1) A(0.6)
OGE + PSE + σ0 WA WA WA
OGE + PSE + σ0 + SCE WA A(1.6) A(7.0)

σ piece, for a (0s)6 configuration. When considering the
two-cluster configuration with a pure chiral content, the bound
state does not appear. The reason for this is not a repulsive
character of the chiral meson exchange but the lack of strength.
Because of that, an increment of the chiral coupling constant in
order to properly describe the 1S0NN phase shifts is successful
for binding the system.

In our model, the σ0 is very attractive and provides
by itself the largest values for BH, from 5.4 to 8.3 MeV.
Let us notice that in a pure σ0 model the two transition
potentials to N� would not be possible, since they are due
to the scalar meson exchanges. Then the �� would not be
coupled to N� and so the two-channel calculation would
give the same result as the pure ��, as can be checked
in Table IV. When adding the σ0 to the OGE + PSE terms,
an unbound but near threshold H dibaryon is obtained in all
cases. As in Ref. [21], quite close to our treatment, the σ0 is

the only attractive piece. The contribution coming from the
exchange of the scalar octet is weakly attractive or repulsive,
as can be seen in Table IV. However, when supplementing
the OGE + PSE + σ0 potential with the octet of scalars,
a bound state appears in the two-channel calculation with
B = 1.6 MeV and B = 7.0 MeV in the three-channel case. It
is exactly at this point where the important role of the scalars
in our model lies, or more precisely, that of the κ exchange.
This exchange piece manages to enlarge the binding energy
without being attractive itself because it is the main piece in
the ��-N� and N�-

 transitions. It redistributes part of
the flux to the much more attractive N� and 

 channels,
originating thus an appreciable increase in the binding. Similar
results have been found in the quark model framework of
Ref. [26].

B. Parameter dependence

As deduced from our discussion above, the binding energy
of the dibaryon depends mostly on the σ0 and κ exchange
potentials. Therefore, it is interesting to evaluate the depen-
dence of the binding on the parameters involved in these two
interactions, more precisely on their masses and coupling
constants. Varying the σ0 and particularly the κ coupling
constants along a reasonable range changes the binding energy
as seen in Fig. 3, these changes being larger in the first case. In
both cases BH grows with the coupling constant. Indeed it can
be checked that the change in gch, that affects the exchange of
every meson, produces quite the same results as the change in
g(σ0) exclusively.

The dependence on the masses is opposite (see Fig. 4 for
details). The binding decreases as the masses get larger, due
to the shorter range of the attraction. This behavior is more
pronounced in the case of mσ0 . BH ranges approximately from
4 to 12 MeV for mσ0 ∈ (3.2, 3.6) fm−1. Both dependence
features (masses and couplings) are general, and similar
qualitative results were also found in [24].

FIG. 3. Dependence of BH on the quark-meson exchange couplings. See text for details.
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FIG. 4. Dependence of BH on the masses of (a) the σ0 and (b) κ mesons.

C. Flavor symmetry breaking

The flavor symmetry breaking (FSB) is expected to be
an important effect in the H dibaryon due to the presence
of two strange quarks. The present study has been made
under the assumption that SU(3) is broken. Several sources
of symmetry breaking are taking part in our work. First of all,
the strange quark has been assigned a mass different to the light
quark masses (ms = 555 MeV �= mu,d = 313 MeV). It enters
in the expressions of the OGE and pseudoscalar potentials
through the factor 1/(mimj ). However, the differentiation
of the s quark in the wave function through the harmonic
oscillator parameter bs gives the larger source of FSB. Besides
giving different values for the orbital matrix elements, it
implies the suppression of a number of diagrams because
light and strange quarks, as distinguishable particles, cannot be
exchanged.

In order to roughly evaluate the effect of FSB on the
H dibaryon, the binding energy has been recomputed when
some sources of symmetry breaking have been eliminated
(i.e., for ms = mu,d = 313 MeV and bs = b). We have varied
in Fig. 5 the harmonic oscillator parameter as well as the
mass of the strange quark, between their values for exact
SU(3) and their true values in our model. One can see how
the binding energy increases as one approaches the exact
SU(3) limit. As a consequence, the binding is increased by
around 45%, giving BH = 10.2 MeV. Thus, we can conclude
that FSB lowers the attraction. A similar conclusion was
obtained in Ref. [20], through a resonating group method
(RGM) calculation with only OGE and confinement potentials.
There, the binding energy drastically changed from 38 MeV
for exact SU(3) to 26 MeV above threshold when the FSB
effect was incorporated. A similar qualitative result was found
by Ref. [24], where the authors concluded that the symmetry
breaking diminished the strong attraction coming from the
chromomagnetic interaction. From chiral effective field theory
[27], also the bound state found for exact SU(3) disappears
when using physical values for the baryon and meson
masses.

A closer inspection of every component of our potential in
all the six channels contributing to H allows us to conclude
that the effect of FSB is to diminish the strength of the
potential, be it repulsive or attractive. Therefore, depending
on the combination of the contributions in any channel, the
total potential will be larger or smaller than the one with
FSB, but no other general conclusion can be inferred. In our
particular case, it turns out that �� and 

 hardly change,
whereas N� gains attraction when approaching SU(3). As for
the transitions, the only appreciable change takes place in the


-N� interaction, which acquires twice as much attraction
for the exact SU(3) case. This result is in contrast with the
one found in [22], where the ��-N� interaction is strongly
dependent on a FSB parameter.

D. Spatial configuration

At first sight there are two types of possible configurations
for the H dibaryon: the six-quark cluster and the two-baryon
cluster. As we have already mentioned the first one was
employed in the original work [3], getting a bound H. However,
later calculations found that a dibaryon with only the (0s)6

configuration would not bind [21]. The spatial distribution was
also investigated in Ref. [24], where an extended resonating
group method was employed in order to account for the
possibility of a change in the baryon wave functions. Again,
the dibaryon did not bind in the (0s)6 configuration, being
thus necessary to consider less compact configurations, due to
the medium-range attraction. When enlarging the size of the
wave function, the dibaryon became more attractive, being
BH = 18.2 MeV for the stable solution. The probabilities,
however, did not drastically change from the more compact
[(0s)6] to the more spread (two-cluster) configuration. In the
latter case they were found to be P�� = 0.216, PN� = 0.543,
and P

 = 0.242. This result is slightly different from that in
the flavor singlet state, Eq. (12). The small difference justifies
the perturbative treatment employed, since the wave function
was first postulated to be the flavor singlet when performing
the RGM calculation.

045202-6



EXAMINATION OF THE H DIBARYON WITHIN A CHIRAL . . . PHYSICAL REVIEW C 85, 045202 (2012)

FIG. 5. Dependence of BH on the strange quark (a) harmonic oscillator parameter and (b) mass.

Usually, the flavor singlet wave function, Eq. (12), is
first postulated and a perturbative variational calculation is
afterward performed when making use of the RGM treatment.
This is not the case of our work, since the coefficients of
the baryon-baryon components of the flavor wave function are
obtained as an output of the calculation, without making further
assumptions. The probabilities we got are P�� = 0.177,
PN� = 0.446, and P

 = 0.377. They are quantitatively
similar to those of the flavor singlet, from what we can infer
that in our model the baryon-baryon wave function is at first
approximation SU(3) symmetric, being the difference between
both due to the flavor-symmetry-breaking effects.

E. Other states in Ŝ = −2

In order to properly understand the Ŝ = −2 sector, the
analysis performed on the H dibaryon and the results obtained

should be complemented studying the other spin-isospin
channels. From such a complete analysis, more general and
powerful conclusions may arise.

Unlike the 1S0(T = 0) H dibaryon channel, the 3S1(T = 0)
is found to be very weakly attractive. Only the N� interaction
is present. The �
 system does not couple to T = 0 and the
wave function of �� and 

 is antisymmetric, and therefore
vanishes, for L even. Since �� is forbidden, there are no
lighter states and therefore the N� state could decay weakly.
The 3S1(T = 0)N� potential, Fig. 6(b), exhibits a repulsive
core, due to the strong OGE interaction that compensates by
far the attraction coming from the σ0. At intermediate range
the attractive feature survives but is not enough to form a
bound state. The weak attraction in N� can be enhanced if
the tensor force is turned on; however, a bound state is still
not possible. This qualitative behavior coincides with that of
Refs. [22,28] and Nijmegen models D and F [29]. The big

FIG. 6. Interacting potentials contributing to T = 0 channels. (a) S = 0 and (b) S = 1.
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FIG. 7. Interacting potentials contributing to T = 1 channels. (a) S = 0 and (b) S = 1.

difference from the H channel is an example of the importance
of the flavor-dependent interaction that Model II incorporates.
A summary of the predictions for the scattering lengths of
the Ŝ = −2 two-baryon systems with modern versions of the
Nijmegen potential [30], the Jülich potential [31], and the work
by Fujiwara et al. [26] can be found in Table 2 of Ref. [17].

The potentials in the two T = 1 channels are all attractive.
Regarding the 1S0, both N� and �
 interactions are strongly
attractive, as can be seen in Fig. 7(a). Such a strong attraction
provides for the coupled system a binding energy of 4.8 MeV.
However, this is not the case in Ref. [22], where all the
potentials with T = 1 are repulsive. As for the 3S1 channel,
there are three coupled interactions: N�, �
, and 

. The
three of them are moderately attractive and look very similar,
as can be seen in Fig. 7(b). The Nijmegen models D and F [30]
also predict attractive interactions. However, no bound state
appears in our model.

IV. SUMMARY

We have performed a calculation of the H dibaryon in a
model constrained by the elastic and inelastic �N,
N , �N ,
and �� cross sections. Special interest has been devoted to an-
alyze the contribution of the different pieces of the interaction
and to the effect that the addition of channels to the �� system

produces on the binding. We obtained a bound H dibaryon,
with BH = 7 MeV, compatible with a plausible extrapolation of
recent lattice QCD results and with the Nagara event, the most
stringent restriction known so far. The scalar octet exchange,
although not giving an attractive contribution by itself, plays a
key role as it is the main ingredient of the transition potentials
that connect �� to the more attractive N� and 

 states. The
probabilities P�� = 0.177, PN� = 0.446, and P

 = 0.377
are quite similar to those of the flavor singlet so that our wave
function is at first approximation SU(3) symmetric. Finally, a
bound state has also been found in the Ŝ = −2, (T , S) = (1, 0)
channel, with a binding energy of 4.8 MeV, thus smaller than
BH. The abundance of events foreseen in a near future and/or
the improvement on the lattice calculations will help us to
advance in our knowledge of the mechanisms that play impor-
tant roles in the dynamics of the H dibaryon. For such a task,
a detailed theoretical study as the one presented here could be
relevant.
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