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Effect of an imaginary part of the Schwinger-Dyson equation at finite temperature and density
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We examined the effect of an imaginary part of the ladder approximation Schwinger-Dyson equation. We show
that the imaginary part enhances the effect of the first-order transition and affects a tricritical point. In particular,
a chemical potential at the tricritical point is displaced about 200 MeV. Thus, one should not ignore the imaginary
part. However, because the imaginary part is small away from the tricritical point, one should be able to ignore
the imaginary part. In addition, we also examined the contribution of the wave-function renormalization constant.
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I. INTRODUCTION

Chiral symmetry breaking is restored at high temperature
and density. Chiral symmetry breaking and restoration at zero
and finite temperature are extensively studied by lattice QCD
simulation. Quark-gluon plasma at high temperature has been
observed at the BNL Relativistic Heavy Ion Collider (RHIC)
[1]. On the other hand, there is an incomplete understanding
of phenomena at low temperature and high density. Although
it is expected that various phases exist in the region of low
temperature and high density [2], we do not have sufficient
information. For example, the lattice QCD at low temperature
and high density is still inadequate by the sign problem. (This
problem arises from the fermion determinant that is complex.
Several methods for the sign problem have been developed;
see, e.g., Refs. [3–5].) Furthermore, in addition to incomplete
lattice simulation, there is little information from experimental
data. Thus, it is very important to investigate this region.

The Schwinger-Dyson equation (SDE) is a useful tool
at nonzero temperature and chemical potential [6–10]. This
method can be used at low temperature and high density. For
example, the SDE with the hard dense loop approximation can
give the mass gap for color superconductivity [10]. For chiral
symmetry breaking and restoration, the SDE shows that the
phase transition is of second order at finite temperature and is of
first order at nonzero chemical potential [6,7,9]. This has been
shown in the context of models for spontaneous broken chiral
symmetry (other than QCD), i.e., the Nambu-Jona-Lasinio
model [11]. Moreover, several models show the existence of a
tricritical point [12].

The SDE at nonzero chemical potential has an imaginary
part. Because the imaginary part is generated by the presence
of a chemical potential, the imaginary part has the effect of a
chemical potential. This has been studied in Ref. [9], and it
was shown that the effect is strong.

Because the approximate form for the exact quark prop-
agator was used in Ref. [9], we verify the effect of the
imaginary part using the more general form for the exact quark
propagator at nonzero temperature and chemical potential.
(We do not consider the Debye screening and the two-flavor
superconductivity.) The more general quark propagator at
nonzero temperature and chemical potential is the SO(3)
invariant form and has the wave-function renormalization
constant. We also study this effect for a tricritical point.

The paper is organized as follows. In Secs. II and III, we
review the formulation at nonzero temperature and chemical
potential. We show numerical results by solving the SDE in
Sec. IV, and a summary is found in Sec. V.

II. FORMULATION AT NONZERO TEMPERATURE
AND CHEMICAL POTENTIAL

We use the imaginary time formalism to analyze a phase
transition at nonzero temperature and chemical potential [13,
14]. The ensemble average of an operator at temperature T =
1/β and chemical potential μ is defined as

〈Ô〉β = Z−1tr[e−β(Ĥ−μQ̂)Ô], Z = tr[e−β(Ĥ−μQ̂)], (1)

where Ĥ and Q̂ are a Hamiltonian and a number operator. The
partition function Z for bosons can be rewritten by

Z =
∫

DφDφ∗
∫

DπDπ∗ exp

[ ∫ β

0
dτ

∫
d3x

×
(

iπ
∂φ

∂τ
+ iπ∗ ∂φ∗

∂τ
−H(π, π∗, φ, φ∗) + μQ

) ]
, (2)

where τ is imaginary time τ = it, 0 � τ � β. The field
φ(τ, x) has the periodicity φ(0, x) = φ(β, x). When the
Lagrangian of the complex scalar field is used, the partition
function is

Z = N (β)
∫

DφDφ∗ exp

[∫ β

0
dτ

∫
d3xL

]
, (3)

with

L = −
(

∂φ

∂τ
− μφ

) (
∂φ∗

∂τ
+ μφ∗

)
− |∇φ|2 − m2|φ|2. (4)

This form is the same as the Euclidean functional integral
in the field theory. Thus, we can use the same approach as the
zero temperature field theory.

After performing the π integral, the partition function (3)
is

Z =
∫

DφDφ∗ exp

{ ∫ β

0
dτ

∫
d3xφ∗

×
[(

∂

∂τ
− μ

)2

+ ∇2 − m2

]
φ

}
. (5)
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Owing to the periodicity φ(0, x) = φ(β, x), therefore the
Fourier transformation is given by

φ(τ, x) = T

+∞∑
n=−∞

∫
d3p

(2π )3
e−i(ωnτ− p·x)φn( p), (6)

where ωn is the Matsubara frequency, ωn = 2nπT (n = 0,±1,

±2, . . .) for bosons. Using this Fourier transformation, from
analogy with zero temperature field theory, the free propagator
Dβ(iωn, p) is given by

Dβ(iωn, p) = −1

(iωn + μ)2 − | p|2 − m2
. (7)

To distinguish between an imaginary-time Green’s function
and a real-time Green’s function, we refer to Dβ(iωn, p) as to
the thermal Green’s function. The thermal Green’s function is
obtained from the ordinary propagator in the Minkowski space
by the replacement,

i

p2 − m2
⇒ −1

p2 − m2
, p0 = iωn + μ. (8)

Similarly, the partition function for fermions is given by

Z =
∫

DψDψ exp

{∫ β

0
dτ

∫
d3x

×
[
ψ

(
−γ0

∂

∂τ
+ iγ · ∇ − m + γ0μ

)
ψ

] }
. (9)

Because a fermion field has the antiperiodicity ψ(0, x) =
−ψ(β, x), the Fourier transformation for fermions is

ψ(τ, x) = T

+∞∑
n=−∞

∫
d3p

(2π )3
e−iωnτ+i p·xψn( p). (10)

The Matsubara frequency for fermions is ωn = 2πT (n + 1/2)
(n = 0,±1,±2, . . .). Thus, the free thermal Green’s function
is given by

Sβ(iωn, p) = −1

(iωn + μ)γ0 − γ · p − m
. (11)

We can use the similar replacement, Eq. (8), for fermions.

III. SCHWINGER-DYSON EQUATION AT NONZERO
TEMPERATURE AND CHEMICAL POTENTIAL

The partition function for QED is

Z =
∫

DAμDψDψ exp

[∫ β

0
dτ

∫
d3xL

]
, (12)

with

L = ψ

(
−γ0

∂

∂τ
+ γ0μ + iγ · ∇ − m − eA/

)
ψ

− 1

4
FμνF

μν − 1

2ξ
(∂μAμ)2, (13)

Here, we used the notation ∂μ = (i∂/∂τ,∇) and Aμ =
(A0,−A) in the Minkowski space. Because the argument for
QCD is essentially identical to that for QED, we consider

QED for simplicity. Adding sources, the generating functional
is given by

Z[Jμ, η, η] =
∫

DAμDψDψ exp

[ ∫ β

0
dτ

×
∫

d3x(L + JμAμ + ηψ + ψη)

]
. (14)

This form is the same as the Euclidean generating functional
apart from the integral range of τ . Thus, using the procedure
in the Euclidean (or Minkowski) space [15], the SDE for the
fermion thermal Green’s function is given by

G−1
β (p) = −S−1

β (p) − e2T
∑

l

∫
d3k

(2π )3
γμD

μν
β (k)

×Gβ (p − k)
ν(p, k), (15)

where Gβ is the exact fermion thermal Green’s function, D
μν
β

is the exact photon thermal Green’s function, and 
ν is the
vertex function. p0 = iωn + μ is the Matsubara frequency for
fermions and k0 = iωl is the Matsubara frequency for bosons.
The free photon thermal Green’s function is obtained by the
replacement, Eq. (8),

1

k2

(
gμν + (ξ − 1)

kμkν

k2

)
. (16)

Because the thermal Green’s function has imaginary time or
the discrete Matsubara frequency, the thermal Green’s function
does not correspond to a physical quantity directly. Because
of this, it is different from the zero temperature SDE, and the
SDE in the imaginary-time formalism should be incomplete
to study the chiral phase transition.

To study the chiral phase transition, we use the Cornwall-
Jackiw-Tomboulis (CJT) effective potential [16]. The CJT
effective potential for QED is given by

V [G] = −T
∑

n

tr
∫

d3p

(2π )3
log

[
G−1

β (p)Sβ(p)
]

− T
∑

n

tr
∫

d3p

(2π )3
S−1

β (p)Gβ(p) + V2[G], (17)

where

V2[G] = e2T 2

2
tr

[ ∑
n,m

∫
d3p

(2π )3

∫
d3q

(2π )3
γμGβ(p)

×D
μν
β (p − q)γνGβ(q)

]
. (18)

Here tr indicates a trace over spinor components. We elimi-
nated irrelevant terms.

The exact fermion thermal Green’s function can be written
as

Gβ(p) = −1

Cn( p)γ0p0 + An( p)γipi − Bn( p)
, (19)

where Cn( p), An( p), and Bn( p) are arbitrary scalar functions.
This is the SO(3) invariant form [7]. At zero temperature,
C(p) = A(p) is the wave-function renormalization constant,
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and B(p) is the mass function. Inserting Eq. (19) into Eq. (15),
the ladder approximation SDEs [6–8,15,17] can be written as

Cn(x) = 1 + e2T

8π2p0x

∑
m

∫ ∞

0
dyy

× −Cm(y)(I1 + I2) − Am(y)I3

C2
m(y)q2

0 − A2
m(y)y2 − B2

m(y)
, (20)

An(x) = 1 − e2T

8π2x3

∑
m

∫ ∞

0
dyy

× −Cm(y)H1 + Am(y)(H2 − H3)

C2
m(y)q2

0 − A2
m(y)y2 − B2

m(y)
, (21)

Bn(x) = −T
3e2

8π2x

∑
m

∫ ∞

0
dy

yBm(y)

C2
m(y)q2

0 − A2
m(y)y2 − B2

m(y)

× log
(p0 − q0)2 − (x + y)2

(p0 − q0)2 − (x − y)2
, (22)

where x = | p|, y = |q|, p0 and q0 are the Matsubara
frequency for fermions, and I and H are shown in Appendix A.
The fermion is massless, and we adopted the Landau gauge
ξ = 0. Because Cn(x), An(x), and Bn(x) are complex func-
tions, the SDE at nonzero chemical potential is constructed by
six simultaneous equations (see Appendix A).

Inserting Eq. (19) into Eqs. (17) and (18), the ladder
approximation CJT effective potential is

V =−2T
∑

n

∫
d3p

(2π )3

(
log

[−C2
n( p)p2

0+A2
n( p)| p|2+B2

n( p)
]

+ Cn( p)p2
0 − An( p)| p|2

C2
n( p)p2

0 − A2
n( p)| p|2 − B2

n( p)

)
. (23)

Because Eqs. (20)–(22) satisfy the relations Cn(x) =
C∗

−n−1(x), An(x) = A∗
−n−1(x), and Bn(x) = B∗

−n−1(x), using
these relations and ωn = −ω−n−1 for the fermion Matsubara
frequency, one finds that ImV vanishes. We can see the effect

of the imaginary part of the SDE for the chiral phase transition
by using the CJT effective potential.

We do not take into account the Debye screening effect in
the gluon thermal Green’s function, because this contribution
should be unrelated to the imaginary parts. (The Debye
screening effect calculated by the hard thermal/dense loop
approximation is real [14]).

IV. NUMERICAL CALCULATION

In QCD, the SDEs (20)–(22) replace e2 with C2g
2, where

C2 is the Casimir operator. Moreover, the coupling constant
g2 is replaced by a running coupling constant g2(−p2,−q2)
(the improved ladder approximation [18]). We adopt the form
of a running coupling constant [6,7]:

g2(−p2,−q2) = β0

⎧⎪⎨
⎪⎩

1
t
, tF < t,

1
tF

+ (tF −tC )2−(t−tC )2

2t2
F (tF −tC )

, tC < t < tF ,
1
tF

+ tF −tC
2t2

F

, t < tC,

t = log
[
(−p2 − q2)/�2

qcd

]
, (24)

β0 = 48π2

11Nc − 2Nf

.

The parameters are tC = −2, tF = 0.5, �qcd = 592 MeV,
Nc = 3, and Nf = 3. (Because the value of �qcd is not
important here, �qcd is used as a scale factor.) We assume
that strange quark plays a role only in the running coupling
and the running coupling has no chemical potential.

The CJT effective potential (23) for QCD is obtained
by multiplying by the number of colors Nc = 3 and flavors
Nf = 2. The numbers of colors and flavors result from the
trace in Eqs. (17) and (18). To find a critical point for the chiral
phase transition, we consider the difference between the
Nambu-Goldstone phase [Bn(x) �= 0] and the Wigner phase
[Bn(x) = 0]. Thus, a critical point is determined by calculating

V (B �= 0) − V (B = 0) = −NcNf T

π2

∑
n

∫ ∞

0
dy y2

{
log

[−C2
n(y)p2

0 + A2
n(y)y2 + B2

n(y)

−CW2
n (y)p2

0 + AW2
n (y)y2

]

+p2
0

[
Cn(y)

C2
n(y)p2

0 − A2
n(y)y2 − B2

n(y)
− CW

n (y)

CW2
n (y)p2

0 − AW2
n (y)y2

]

−y2

[
An(y)

C2
n(y)p2

0 − A2
n(y)y2 − B2

n(y)
− AW

n (y)

CW2
n (y)p2

0 − AW2
n (y)y2

]}
, (25)

where CW
n and AW

n are solutions at the Wigner phase. If V (B �= 0) − V (B = 0) � 0, the chiral symmetry is restored [7]. Because
there is a tricritical point at nonzero chemical potential, we especially investigated the effects on tricritical points.

We used the iterative method to solve the SDE. For example, Eq. (22) on the iterative calculation is formally

Bnew(x) = −T
3e2

8π2x

∑
m

∫ ∞

0
dy

yBold(y)

C2
old(y)q2

0 − A2
old(y)y2 − B2

old(y)
log

(p0 − q0)2 − (x + y)2

(p0 − q0)2 − (x − y)2
. (26)
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FIG. 1. The chemical potential dependence of ReB0(0) in cases
(A1) and (B1). To facilitate visualization, we depict the results of
V (B �= 0) − V (B = 0) � 0.

It repeats until a value is converged. Then, we impose the
following restrictions:

(i) we repeat until a difference between Bnew and Bold

becomes of order 10−4 MeV, and a difference be-
tween Cnew (Anew) and Cold (Aold) becomes of order
10−7 MeV,

(ii) for a decision on a tricritical point, we consider
10−1 MeV order for a temperature and a chemical
potential,

(iii) for a decision on a tricritical point, we consider that
a point where Bn(x) has a value of orders of 100 ∼
10−1 MeV before Bn(x) becomes zero numerically is a
tricritical point,

(iv) when Bn(x) has a value of order 10−2 MeV, we regard
Bn(x) as zero numerically.

We regard Bn(x) as the order parameter for the chiral transition.
Thus, the first-order transition Bn(x) becomes zero discon-
tinuously. The second-order transition Bn(x) becomes zero

FIG. 2. The chemical potential dependence of V (B �= 0) −
V (B = 0) in cases (A1) and (B1).

FIG. 3. The chemical potential dependence of B0(0) in case (A1).
T = 0.135 and 0.14 GeV.

continuously. Restriction (iii) defines the numerical boundary
between the first order and the second order.

A tricritical point fluctuates somewhat by a numerical setup
and precision. We note that a tricritical point obtained by our
numerical calculation is not highly precise, because our main
purpose is to study the effect of an imaginary part. For example,
if we take 10−2 MeV for the order of Bn(x) in restriction
(iii), the tricritical point moves to (142, 35) MeV in case (A1)
(see below).

A. Effect of the imaginary part

Since we want to know the effect of the imaginary part of the
SDE, we try two cases: (A1) including the imaginary part and
(B1) not including the imaginary part. When performing the
numerical calculation, we use the real part and the imaginary
part of the SDE in case (A1), and we use only the real part of
the SDE in case (B1) (fixing ImCn(x), ImAn(x), and ImBn(x)
to zero). Then, by inserting a solution in cases (A1) and (B1)

FIG. 4. The chemical potential dependence of V (B �= 0) −
V (B = 0) in case (A1). T = 0.14 GeV.
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FIG. 5. The temperature dependence of B0(0) at μ = 0 in
case (A1).

into the CJT effective potential, we can verify the effect of an
imaginary part for a tricritical point.

The results for cases (A1) and (B1) are shown in Figs. 1
and 2. Figure 1 indicates that the phase transition at nonzero
chemical potential is of first order at low temperature (because
Bn(x) vanishes discontinuously). The tricritical point in cases
(A1) and (B1) are (143, 28) and (128, 209) MeV, respectively
(see Fig. 9). ReB0(0) and ImB0(0) at T = 0.135 and 0.14
(GeV) in case (A1) are shown in Fig. 3, and the effective
potential at T = 0.14 GeV is shown in Fig. 4. Although the
process leading to B0(0) = 0 undergoes a change at around
the tricritical point, the effective potential is unchanged.

The chemical potential dependence of the effective poten-
tial in case (B1) behaves in the same way as the temperature
dependence. (The temperature dependence is shown in Figs. 5
and 6.) There is a region where the effective potential
V [Bn(x) �= 0] − V [Bn(x) = 0] does not become positive by
increasing the chemical potential. Although Bn(x) decreases
smoothly by increasing the chemical potential, Bn(x) vanishes
discontinuously. (When nonzero physical quark masses are
used, the chiral transition at zero chemical potential becomes

FIG. 6. The temperature dependence of V (B �= 0) − V (B = 0)
at μ = 0 in case (A1).

FIG. 7. The chemical potential dependence of ReB0(0) in cases
(A2) and (B2).

a crossover [19].) Even so, the phase transition is of first order,
and a tricritical point exists. In contrast, as mentioned above,
although the chemical potential dependence of Bn(x) in case
(A1) behaves like the temperature dependence at around the
tricritical points, V [Bn(x) �= 0] − V [Bn(x) = 0] has a positive
value.

As a result, the imaginary part affects the phase transition
and enhances the effect of the first-order transition. Moreover,
the critical chemical potential is displaced by the imaginary
part (about 200 MeV).

B. Effect of the wave-function renormalization constant

In place of Eq. (19), we use the exact fermion Green’s
function,

Gβ(p) = −1

γ0p0 + γipi − Bn( p)
. (27)

This is the approximate form by Cn( p) = An( p) = 1, and
this is used from the analogy of zero temperature. (Adopting
the Landau gauge, C(p) and A(p) are 1 at zero temperature

FIG. 8. The chemical potential dependence of V (B �= 0) −
V (B = 0) in cases (A2) and (B2).
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FIG. 9. Tricritical points in cases (A1), (A2), (B1), and (B2). The
crosses indicate each tricritical point. The other symbols are the phase
transition points of first order.

and chemical potential. However, Cn( p) and An( p) are not
1 at nonzero temperature and chemical potential [17].) The
effect of the wave-function renormalization constant Cn( p)
and An( p) is verified by comparing Eqs. (19) and (27). Thus,
we calculate two cases:

(A2) the SDE includes the imaginary part and has no wave-
function renormalization constant,

(B2) the SDE does not include the imaginary part and has
no wave-function renormalization constant.

The results obtained using Eq. (27) are shown in Figs. 7 and
8. The chemical potential dependence in cases (A2) and (B2)
behaves in the same way as in cases (A1) and (B1). Then, as
shown in Fig. 9, the chemical potential at the tricritical point
in case (B2) is much larger than that of case (A2): (T ,μ) =
(170, 15) MeV in case (A2) and (151, 222) MeV in case (B2).
In contrast to this, the temperature of the tricritical point in
case (B2) is slightly smaller than that in case (A2). As a result,
in case (A1) [(B1)], Cn(x) and An(x) decrease the temperature

FIG. 10. The chemical potential dependence of C0(0) and A0(0).
T = 0.14 GeV.

of the tricritical point and increase (decrease) the chemical
potential of the tricritical point.

The clear effect of the wave function renormalization con-
stant for the tricritical point is to lower the critical temperature.
The difference is about 20 MeV. However, because the effect
of the wave-function renormalization constant for the critical
chemical potential is different in cases (A) and (B), the effect of
their imaginary part for the critical chemical potential should
be strong. However, Fig. 10 shows that ImCn(x) and ImAn(x)
are very small at around the tricritical point. In contrast,
ImBn(x) has a value of the same order of ReBn(x) at around
the tricritical point and has a strong effect [comparing the
results of cases (A2) and (B2)]. Thus, the main cause of this
difference arises from Bn(x).

V. SUMMARY

In this paper, we calculated the improved ladder approxi-
mation SDE at nonzero temperature and chemical potential,
and we verified the effect of the imaginary part and the wave-
function renormalization constant in the SDE. Considering
the imaginary part and the wave-function renormalization
constant, all effects in the ladder approximation are included.
Thus, we calculated four cases:

(A1) the SDE includes the imaginary part and has the wave-
function renormalization constant,

(A2) the SDE includes the imaginary part and has no wave-
function renormalization constant,

(B1) the SDE does not include the imaginary part and has
the wave-function renormalization constant,

(B2) the SDE does not include the imaginary part and has
no wave-function renormalization constant.

In particular, we took notice of a tricritical point. The
tricritical point is (T ,μ) = (143, 28) MeV in case (A1),
(170, 15) MeV in case (A2), (128, 209) MeV in case (B1),
and (151, 222) MeV in the (B2). The chemical potential at
the tricritical point is very small in case (A). This is different
from the lattice simulation [20]. There are several reasons
for the discrepancy. In particular, the problem is that we do
not have the exact information of effective interactions at
nonzero chemical potential. If the current lattice simulation
at nonzero chemical potential is exact, we must construct
an effective interaction that is consistent with the lattice
simulation. However, as discussed below, note that ImBn(x)
affects the tricritical point.

The tricritical point in Ref. [8] is (142, 82) MeV in case (A1)
and (210, 43) MeV in case (A2). The difference should result
from using a different running coupling constant and a different
procedure for the numerical calculation. (From the result in
case (A1), although it seems that the temperature at a tricritical
point does not depend on a choice of a running coupling
constant, it should be a coincidence. So, case (A2) disagrees
with our result.) The property that the critical temperature
decreases and the critical chemical potential increases when
using Eq. (19) in place of Eq. (27) corresponds with our
result. Thus, when compared to the critical temperature
and the critical chemical potential for Cn(x) = An(x) = 1
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FIG. 11. The difference of ReB0(0) and ImB0(0). Critical points
are (100, 268), (125, 133), and (140, 48) MeV.

at the tricritical point [in cases (A2) and (B2)], the critical
temperature decreases and the critical chemical potential
increases (decreases) in case (A) [(B)].

Moreover, although a tricritical point is moved by Cn(x)
and An(x), it is a small move (about 10 MeV). Furthermore,
Cn(x) and An(x) should not affect the properties of the phase
transition strongly. For example, they do not alter the order
of the phase transition. Thus, when one studies the chiral
phase transition, one should be able to use Cn(x) = An(x) = 1
sufficiently. (Moreover, their imaginary parts are very small.)

The chemical potential dependence of Bn(x) and the
effective potential in case (B) behave like the temperature
dependence. When there are not imaginary parts, the effect
of temperature, which produces the second-order phase tran-
sition, should be stronger. Moreover, the chemical potential
of the tricritical point in case (B) is larger than that in case
(A) (about 200 MeV). As a result, the imaginary part affects
the phase transition and enhances the effect of the first-order
transition.

For both cases (A) and (B), the imaginary part moves to the
chemical potential largely (above 100 MeV) at the tricritical
point. These results for both cases are the same as those
in Ref. [9]. In particular, ImBn(x) affects a tricritical point
strongly. Thus, when one studies a tricritical point, one should
not ignore the imaginary part in the SDE. On the other hand,
the contribution of ImBn(x) is small at a point away from the
tricritical point. For example, the critical point is (100, 268)
MeV in case (A1) and is (100, 355) MeV in case (B1). This is
understood from the fact that the difference between ReBn(x)
and ImBn(x) increases at low temperature (see Fig. 11). Thus,
we should be able to ignore the imaginary part at a point
away from the tricritical point, because the imaginary part
is very small. However, as mentioned above, the chemical
potential dependence of the effective potential becomes like
the temperature dependence by ignoring the imaginary part.
Due to this, although one can ignore the imaginary part in
determining a critical point approximately, one should not
ignore the imaginary part in studying a property of the phase
transition.

Although we considered only the chiral phase transition,
there is the deconfinement phase transition in hot and dense
QCD. These relations are less well understood. For example,
the critical temperature is different in Ref. [21]. However, in
Ref. [22], the critical temperature is the same. Moreover, the
analysis at nonzero chemical potential is more uncertain. We
show the simple result in Appendix B. The behavior of Bn(x) in
the chiral limit is identical with that in Ref. [23]. The critical
temperature for the chiral phase transition should coincide
with the deconfinement transition within the error. However,
the critical chemical potential has a gap even in the chiral limit.
It is necessary to study the relation between the chiral and the
deconfinement phase transition at nonzero chemical potential.

APPENDIX A: I, H , REAL PARTS, AND IMAGINARY
PARTS IN THE SDE

We show explicit expressions of I and H in Eqs. (20)–(22):

a+ = (p0 − q0)2 − (x + y)2, a− = (p0 − q0)2 − (x − y)2.

� Cn(x)

I1 = 2q0 log
a+
a−

, I2 = q0

[
−2(p0 − q0)2

(
1

a+
− 1

a−

)
− log

a+
a−

]
,

I3 = −(p0 − q0)

{
log

a+
a−

− [−(p0 − q0)2 + x2 − y2
] (

1

a+
− 1

a−

)}
.

� An(x)

H1 = (p0 − q0)q0

{
[x2 − y2 + (p0 − q0)2]

(
1

a+
− 1

a−

)
+ log

a+
a−

}
,

H2 = −4xy + [x2 + y2 − (p0 − q0)2] log
a+
a−

, H3 =
(

x2 + y2 − x2 + y2 − (p0 − q0)2

2

)
log

a+
a−

−
(

(x2 − y2)2 − (p0 − q0)4

2

)(
1

a+
− 1

a−

)
.
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The real parts and imaginary parts in Eqs. (20)–(22) are

ReCn(x) = 1 + e2T

8π3x

1(
ω2

n + μ2
) ∑

m

∫ ∞

0
dyy[(I ′

1 + I ′
2)(u1v1 − u2v2) + I ′

3(v1ReAm − v2ImAm)]
1

R2
1 + R2

2

,

ImCn(x) = e2T

8π3x

1(
ω2

n + μ2
) ∑

m

∫ ∞

0
dyy[(I ′

1 + I ′
2)(u2v1 + u1v2) + I ′

3(v2ReAm + v1ImAm)]
1

R2
1 + R2

2

,

ReAn(x) = 1 + e2T

8π3x3

∑
m

∫ ∞

0
dyy[−H ′

1(u1R1 + u2R2) + (H2 − H3)(R1ReA + R2ImA)]
1

R2
1 + R2

2

,

ImAn(x) = e2T

8π3x3

∑
m

∫ ∞

0
dyy[−H ′

1(u2R1 − u1R2) + (H2 − H3)(R1ImA − R2ReA)]
1

R2
1 + R2

2

,

ReBn(x) = 3e2T

8π2x

∑
m

∫ ∞

0
dyy

R1ReBm + R2ImBm

R2
1 + R2

2

log
a+
a−

, ImBn(x) = 3e2T

8π2x

∑
m

∫ ∞

0
dyy

R1ImBm − R2ReBm

R2
1 + R2

2

log
a+
a−

,

where

R1 = (
ω2

m − μ2
)[

ReC2
m(y) − ImC2

m(y)
] + 4μωmReCm(y)ImCm(y)

+ y2
[
ReA2

m(y) − ImA2
m(y)

] + [
ReB2

m(y) − ImB2
m(y)

]
,

R2 = 2
(
ω2

m − μ2
)
ReCm(y)ImCm(y) − 2μωm

[
ReC2

m(y) − ImC2
m(y)

]
+ 2y2ReAm(y)ImAm(y) + 2ReBm(y)ImBm(y),

u1 = ωmReCm(y) + μImCm(y), u2 = ωmImCm(y) − μReCm(y),

v1 = ωnR1 + μR2, v2 = μR1 − ωnR2,

I ′
1 = 2 log

a+
a−

, I ′
2 = −2(p0 − q0)2

(
1

a+
− 1

a−

)
− log

a+
a−

,

I ′
3 = −(ωn − ωm)

{
log

a+
a−

− [(ωn − ωm)2 + x2 − y2]

(
1

a+
− 1

a−

)}
,

H ′
1 = −(ωn − ωm)

{
[x2 − y2 − (ωn − ωm)2]

(
1

a+
− 1

a−

)
+ log

a+
a−

}
.

APPENDIX B: DECONFINEMENT PHASE TRANSITION

We briefly show a critical point of the deconfinement phase
transition at nonzero chemical potential. For this purpose, we
use the dual quark condensate as an order parameter for center
symmetry. The dual quark condensate is defined by [24]

�n =
∫ 2π

0

dφ

2π
e−iφn〈ψψ〉φ. (B1)

Here 〈ψψ〉φ is given by

〈ψψ〉φ = NcT
∑

n

∫
d3p

(2π )3
trGβ[ωn(φ), p]= 2NcT

π2

×
∑

n

∫ ∞

0
dx

x2Bn(x)

C2
n(x)[ωn(φ)−iμ]+A2

n(x)x2+B2
n(x)

,

where ωn(φ) = 2πT (n + φ/2π ). φ/2π is caused by the
boundary condition ψ(β, x) = eiφψ(0, x). �1, which is called
the dressed Polyakov loop, contains the Polyakov loop. Thus,
�+1 (or �−1) is the order parameter for deconfinement.

Although 〈ψψ〉φ=π has no imaginary part, 〈ψψ〉φ �=π has
an imaginary part at nonzero chemical potential. The real

FIG. 12. The angular dependence of Re〈ψψ〉φ and Im〈ψψ〉φ.

T = 150 MeV. μ = 120 MeV.
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FIG. 13. The temperature dependence of the chiral condensate
〈ψψ〉π , the dressed Polyakov loop �1, and ∂�1/∂T . 〈ψψ〉π = 0
indicates the chiral symmetry restoration. 〈ψψ〉π = 0 and the peak
of ∂�1/∂T is identical within 1 MeV.

part is symmetric and the imaginary part is antisymmetric
(see Fig. 12). For this reason, �±1 becomes

�±1 =
∫ 2π

0

dφ

2π
(Re〈ψψ〉φ cos φ ± Im〈ψψ〉φ sin φ). (B2)

The second term vanishes at zero chemical potential.
To find the underlying property, we consider a simple ap-

proximation. Thus, we use the ladder approximation, Cn(x) =
An(x) = 1, and the chiral limit [thus, we use Eq. (27)].
The critical temperature for deconfinement can be defined
by [23]

τ = ∂�1

∂T
. (B3)

FIG. 14. The chemical potential dependence of the chiral conden-
sate, the dressed Polyakov loop �±1, and ∂�±1/∂μ at T = 150 MeV.
The critical chemical potential obtained by the effective potential for
the chiral phase transition is 127 MeV.

We regard the peak of this as the critical temperature. (τ is not
dimensionless.) Similarly, we consider

τ± = ∂�±1

∂μ
. (B4)

Our results are shown in Figs. 13 and 14. The critical
temperature for the deconfinement phase transition is identical
to that for the chiral phase transition. That is T = 171 MeV.
This result for the critical temperature in the chiral limit agrees
with the result in Ref. [23]. On the other hand, the critical
chemical potential is different even in the chiral limit. The
difference is about 50 MeV at T = 150 MeV. (The critical
chemical potential for the chiral phase transition is determined
by the effective potential.) Thus, the deconfinement phase
transition is clearly distinguished from the chiral transition
at nonzero chemical potential.

[1] E. V. Shuryak, Nucl. Phys. A 750, 64 (2005).
[2] M. G. Alford, A. Schmitt, K. Rajagopal, and T. Schäfer, Rev.
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