
PHYSICAL REVIEW C 85, 044922 (2012)

Azimuthal anisotropies for Au + Au collisions in the parton-hadron transient energy range
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The azimuthal anisotropies of the collective transverse flow of charged hadrons are investigated in a wide
range of heavy-ion collision energies within the microscopic parton-hadron-string dynamics (PHSD) transport
approach, which incorporates explicit partonic degrees of freedom in terms of strongly interacting quasiparticles
(quarks and gluons) in line with an equation of state from lattice QCD as well as the dynamical hadronization
and hadronic collision dynamics in the final reaction phase. The experimentally observed increase of the elliptic
flow v2 of charged hadrons with collision energy is successfully described in terms of the PHSD approach. The
PHSD scaling properties of various collective observables are confronted with experimental data as well as with
hydrodynamic predictions. The analysis of higher-order harmonics v3 and v4 in the azimuthal angular distribution
shows a similar tendency of growing deviations between partonic and purely hadronic models with increasing
collision energy. This demonstrates that the excitation functions of azimuthal anisotropies reflect the increasing
role of quark-gluon degrees of freedom in the early phase of relativistic heavy-ion collisions. Furthermore, the
specific variation of the ratio v4/(v2)2 with respect to bombarding energy, centrality, and transverse momentum
is found to provide valuable information on the underlying dynamics.
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I. INTRODUCTION

The discovery of large azimuthal anisotropic flow at the
Relativistic Heavy Ion Collider (RHIC) provides conclu-
sive evidence for the creation of dense partonic matter in
ultrarelativistic nucleus-nucleus collisions. With sufficiently
strong parton interactions, the medium in the collision zone
can be expected to achieve local equilibrium and exhibit
approximately hydrodynamic flow [1–3]. The momentum
anisotropy is generated due to pressure gradients of the
initial “almond-shaped” collision zone produced in noncentral
collisions [1,2]. The azimuthal pressure gradient extinguishes
itself soon after the start of the hydrodynamic evolution, so the
final flow is insensitive to later stages of the fireball evolution.
The pressure gradients have to be large enough to translate an
early asymmetry in density of the initial state to a final-state
momentum-space anisotropy. In these collisions a new state
of strongly interacting matter is created, being characterized
by a very low shear viscosity η to entropy density s ratio,
η/s, close to a nearly perfect fluid [4–6]. Lattice QCD (lQCD)
calculations [7–9] indicate that a crossover region between
hadron and quark-gluon matter should have been reached in
these experiments.

An experimental manifestation of this collective flow is
the anisotropic emission of charged particles in the plane
transverse to the beam direction. This anisotropy is described
by the different flow parameters defined as the proper Fourier
coefficients vn of the particle distributions in azimuthal angle
ψ with respect to the reaction plane angle �RP . At the highest
RHIC collision energy of

√
sNN = 200 GeV, differential

elliptic flow measurements v2(pT ) have been reported for a

broad range of centralities or number of participants Npart. For
Npart estimates, the geometric fluctuations associated with the
positions of the nucleons in the collision zone serve as the
underlying origin of the initial eccentricity fluctuations. These
data are found to be in accord with model calculations that an
essentially locally equilibrated quark-gluon plasma (QGP) has
little or no viscosity [2,10–12]. Collective flow continues to
play a central role in characterizing the transport properties
of the strongly interacting matter produced in heavy-ion
collisions at RHIC. Particle anisotropy measurements are
considered as key observables for a reliable extraction of
transport coefficients.

A quark-number scaling of the elliptic-flow data is observed
for a broad range of particle species, collision centralities, and
transverse kinetic energy, which is interpreted as being due
to the development of substantial collectivity in the partonic
phase [13]. Small violations of the scaling of v2(Npart) with the
initial eccentricity of the collision zone ε2 suggest a strongly
coupled low-viscosity plasma η/s ∼ (1 − 2)/(4π ) in energetic
Au + Au collisions [13–15]. The initial eccentricity of the
collision zone (and its associated fluctuations) has proven to
be an essential ingredient for these extractions. Nevertheless,
the degree to which the QGP is thermalized is still being
debated [16].

It was shown before that higher-order anisotropy harmon-
ics, in particular v4, may provide a more sensitive constraint
on the magnitude of η/s and the freeze-out dynamics, and the
ratio v4/(v2)2 might indicate whether a full local equilibrium is
achieved in the QGP [17]. The role of fluctuations and so-called
nonflow correlations are important for such measurements.
It is well established that initial eccentricity fluctuations
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significantly influence the magnitudes of v2,4 [18]. However,
the precise role of nonflow correlations, which lead to a
systematic error in the determination of v2,4, is less clear.
Recently, significant attention has been given to the study of
the influence of initial geometry fluctuations on higher-order
eccentricities εn(n � 3) for a better understanding of how
such fluctuations manifest themselves in the harmonic flow
correlations characterized by vn. Even more, it was proposed
that the analysis of v2

n for all values of n can be considered as
an analogous measurement to the power spectrum extracted
from the cosmic microwave background radiation, providing
a possibility to observe superhorizon fluctuations [19].

More recently, the importance of the triangular flow v3,
which originates from fluctuations in the initial collision
geometry, has been pointed out [20–22]. The participant
triangularity characterizes the triangular anisotropy of the
initial nuclear overlap geometry. It arises from event-by-event
fluctuations in the participant-nucleon collision space-time
points, and corresponds to a large third Fourier component in
the two-particle azimuthal correlations at large pseudorapidity
separation �η. This fact suggests a significant contribution
of the triangular flow to the ridge phenomenon and broad
away-side structures observed in the RHIC data [23]. The ridge
might be related to flux-tube-like structures in the initial state
as argued in Ref. [24] or successive coherent gluon radiation
as suggested in Ref. [25].

A large number of anisotropic flow measurements have
been performed by many experimental groups at Schwerionen-
synchroton (SIS), Alternating Gradient Synchrotron (AGS),
Super Proton Synchrotron (SPS) and Relativistic Heavy Ion
Collider (RHIC) energies over the last twenty years. Very
recently, the azimuthal asymmetry has been measured also at
the Large Hadron Collider (LHC) [26]. However, the fact that
these data have not been obtained under the same experimental
conditions as at RHIC experiments does not directly allow
for a detailed and meaningful comparison in most cases. The
experimental differences include different centrality selection,
different transverse momentum acceptance, different particle
species, different rapidity coverage, and different methods for
flow analysis as pointed out in Ref. [27].

The Beam Energy Scan (BES) program proposed at RHIC
[28] covers the energy interval from

√
sNN = 200 GeV, where

partonic degrees of freedom play a decisive role, down to the
AGS energy of

√
sNN ≈ 5 GeV, where most experimental data

may be described successfully in terms of hadronic degrees
of freedom, only. Lowering the RHIC collision energy and
studying the energy dependence of anisotropic flow allows us
to search for the possible onset of the transition to a phase
with partonic degrees of freedom at an early stage of the
collision, as well as possibly to identify the location of the
critical endpoint that terminates the crossover transition at
small quark-chemical potential to a first-order phase transition
at higher quark-chemical potential [13,29].

This work aims to study excitation functions for different
harmonics of the charged-particle anisotropy in the azimuthal
angle at midrapidity in a wide transient energy range, i.e.,
from the AGS to the top RHIC energy. The first attempts to
explain the preliminary STAR data with respect to the observed
increase of the elliptic flow v2 with the collision energy have

failed, since the traditional available models did not allow
clarification of the role of the partonic phase [30]. In this
paper, as an extension of our recent study in Ref. [31], we
investigate the energy behavior of different flow coefficients,
their scaling properties, and differential distributions. Our
analysis of the STAR/PHENIX RHIC data—based on recent
results of the BES program—will be performed within the
parton-hadron-string dynamics (PHSD) transport model [32]
that includes explicit partonic degrees of freedom as well
as a dynamical hadronization scheme for the transition from
partonic to hadronic degrees of freedom and vice versa.

The paper is organized as follows: In Sec. II we will
briefly recall the main ingredients of the PHSD approach as
well as the performance of PHSD for relativistic heavy-ion
collisions from the lower SPS to the top RHIC energies.
Section III is devoted to the actual results from PHSD for
the excitation function of the elliptic flow v2 in comparison to
the hadron-string dynamics (HSD) approach and other related
models, as well as to the available data from the STAR and
PHENIX Collaborations. We also provide results from the
PHSD and HSD models for the excitation functions of v3

and v4 in view of the Beam Energy Scan (BES) program
at RHIC in order to identify partonic contributions. Scaling
properties of experimental data, in particular the universal and
longitudinal scaling relations found empirically, are elaborated
here and compared to a hydrodynamic description. To be more
specific, we will also present the calculated results for the
pT dependence of elliptic flow at midrapidity for minimum
bias collisions of Au + Au for

√
sNN from 5 to 200 GeV.

Furthermore, the centrality dependence of v2, v3, and v4 will
be addressed at the top RHIC energy. Section IV provides
the conclusions of our present study and indicates the open
problems.

II. THE PHSD MODEL

The dynamics of partons, hadrons, and strings in relativis-
tic nucleus-nucleus collisions is analyzed within the novel
parton-hadron-string dynamics (PHSD) approach [32,33]. In
this transport approach the partonic dynamics is based on
the dynamical quasiparticle model (DQPM) [34,35], which
describes QCD properties in terms of single-particle Green’s
functions [in the sense of a two-particle irreducible (2PI)
approach]. In Ref. [33] the actual (essentially three) DQPM
parameters for the temperature-dependent effective coupling
have been fitted to the recent lattice QCD results of Ref. [9].
The latter lead to a critical temperature Tc ≈ 160 MeV, which
corresponds to a critical energy density of εc ≈ 0.5 GeV/fm3.
In PHSD the parton spectral functions ρj (j = q, q̄, g) are
no longer δ functions in the invariant mass squared (as in
conventional cascade or transport models), but are taken as

ρj (ω, p) = γj

Ej

(
1

(ω − Ej )2 + γ 2
j

− 1

(ω + Ej )2 + γ 2
j

)
(1)

separately for quarks/antiquarks and gluons (j = q, q̄, g).
With the convention E2(p2) = p2 + M2

j − γ 2
j , the parameters

M2
j and γj are directly related to the real and imaginary parts of
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FIG. 1. (Color online) The scalar and vector mean-field potentials
in the present PHSD model as a function of the scalar density ρs of
partons.

the retarded self-energy, e.g., j = M2
j − 2iγjω. The spectral

function (1) is antisymmetric in ω and is normalized as

∫ ∞

−∞

dω

2π
ω ρj (ω, p) =

∫ ∞

0

dω

2π
2ω ρj (ω, p) = 1. (2)

The actual parameters in Eq. (1), i.e., the gluon mass Mg and
width γg—employed as input in the PHSD calculations—as
well as the quark mass Mq and width γq , are depicted in Fig. 1
of Ref. [33] as a function of the scaled temperature T/Tc. As
mentioned above, these values for the masses and widths have
been fixed by fitting the lattice QCD results from Ref. [9] in
thermodynamic equilibrium. We recall that the DQPM allows
extraction of a potential energy density Vp from the space-like
part of the energy-momentum tensor, which can be tabulated,
e.g., as a function of the scalar parton density ρs . Derivatives of
Vp with respect to ρs then define a scalar mean-field potential
Us(ρs), which enters the equation of motion for the dynamical
partonic quasiparticles. As one can see from Fig. 1, the scalar
potential is rather large and nonlinearly increases with ρs .
This implies that the repulsive force due to Us(ρs) will change
in a nonmonotonous way with the scalar density. The vector
mean-field potential is not negligible too, especially at high
ρs , and induces a Lorentz force for the partons. Note that the
vector mean-field potential vanishes with decreasing scalar
density whereas the scalar mean-field potential approaches a
constant value for ρs → 0.

Furthermore, a two-body interaction strength can be ex-
tracted from the DQPM as well from the quasiparticle width
in line with Ref. [6] (cf. Refs. [32,33] for details). The
transition from partonic to hadronic degrees of freedom (and
vice versa) is described by covariant transition rates for the
fusion of quark-antiquark pairs or three quarks (antiquarks),
respectively, obeying flavor current-conservation, color neu-
trality, as well as energy-momentum conservation. Since the
dynamical quarks and antiquarks become very massive close
to the phase transition, the formed resonant “pre-hadronic”
color-dipole states (qq̄ or qqq) are of high invariant mass too,
and sequentially decay to the ground-state meson and baryon
octets, increasing the total entropy.

On the hadronic side PHSD includes explicitly the baryon
octet and decouplet, the 0−- and 1−-meson nonets, as well as
selected higher resonances as in the hadron-string dynamics
(HSD) approach [36,37]. Hadrons of higher masses (>1.5 GeV
in the case of baryons and >1.3 GeV in the case of mesons)
are treated as “strings” (color dipoles) that decay to the known
(low-mass) hadrons according to the JETSET algorithm [38].
We discard an explicit recapitulation of the string formation
and decay and refer the reader to the original work [38]. Note
that PHSD and HSD (without explicit partonic degrees of
freedom) merge at low energy density, in particular below the
critical energy density εc ≈ 0.5 GeV/fm3.

The PHSD approach has been applied to nucleus-nucleus
collisions from

√
sNN ∼ 5 to 200 GeV in Refs. [32,33] in

order to explore the space-time regions of “partonic matter.”
It was found that even central collisions at the top SPS energy
of

√
sNN = 17.3 GeV show a large fraction of nonpartonic,

i.e., hadronic or string-like matter, which can be viewed as a
hadronic corona. This finding implies that neither hadronic nor
only partonic “models” can be employed to extract physical
conclusions in comparing model results with data. In addition,
we have found that the partonic phase has a low impact on
rapidity distributions of hadrons but a sizable influence on
the transverse mass distribution of final kaons due to the
repulsive partonic mean fields [32]. It has been, furthermore,
demonstrated in Ref. [33] that at

√
sNN = 200 GeV the

PHSD model gives a reasonable reproduction of hadron
rapidity distributions and transverse mass spectra, and also
a fair description of the elliptic flow of charged hadrons as
a function of the centrality of the reaction and the transverse
momentum pT .

Furthermore, an approximate quark-number scaling of the
elliptic flow v2 of identified hadrons is observed in the PHSD
results at top RHIC energies too. As indicated above, PHSD
merges to HSD in the lower (transient) energy regime. Both
approaches are well in line with experimental data in the lower
SPS energy regime as shown in Ref. [32]. All these previous
findings provide promising perspectives to use PHSD in the
whole range from about

√
sNN = 5 to 200 GeV.

III. RESULTS FOR COLLECTIVE FLOWS

A. Elliptic flow

The largest component, known as elliptic flow v2, is one
of the early observations at RHIC [39]. More recently, it
was noticed that fluctuations in the initial geometry are very
important [20]. The elliptic flow coefficient is a widely used
quantity characterizing the azimuthal anisotropy of emitted
particles,

v2 = 〈cos(2ψ − 2�RP)〉 =
〈

p2
x − p2

y

p2
x + p2

y

〉
, (3)

where �RP is the azimuth of the reaction plane, px and
py are the x and y component of the particle momenta,
and the brackets denote averaging over particles and events.
This coefficient can be considered as a function of centrality,
pseudorapidity η, and/or transverse momentum pT . We note
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FIG. 2. (Color online) The average elliptic flow v2 of charged
particles at midrapidity for minimum bias collisions at

√
sNN = 9.2,

19.6, 62.4, and 200 GeV (given by stars) is taken from the data
compilation of Ref. [30]. The corresponding results from different
models are compared to the data and explained in more detail in the
text.

that the reaction plane in PHSD is given by the x-z plane with
the z axis in the beam direction. The reaction plane is defined
as a plane containing the beam axes and the impact parameter
vector.

We recall that at high bombarding energies the longitudinal
size of the Lorentz contracted nuclei becomes negligible
compared to its transverse size. The forward shadowing effect
then goes away and the elliptic flow fully develops in-plane,
leading to a positive value of the average flow v2 since
no shadowing from spectators takes place. In Fig. 2 the
experimental v2 data compilation for the transient energy range
is compared to the results from HSD calculations and further
available model results as included in Ref. [30]. The centrality
selection is the same for the data and the various models.

In order to interpret the results in Fig. 2 we have to
recall the various ingredients of the models employed for
comparison. The UrQMD (ultrarelativistic quantum molecular
dynamics) model is a microscopic transport theory based on
the relativistic Boltzmann equation [40]. It allows for the
on-shell propagation of all hadrons along classical trajectories
in combination with stochastic binary scattering, color string
formation, and resonance decay. The model incorporates
baryon-baryon, meson-baryon, and meson-meson interactions
based on experimental data (when possible). This Boltzmann-
like hadronic transport model has been employed for proton-
nucleus and nucleus-nucleus collisions from AGS to RHIC
energies [40]. The comparison of the data on v2 to those from
the UrQMD model will thus essentially provide information
on the contribution from the hadronic phase. As seen in Fig. 2,
being in agreement with data at the lowest energy

√
sNN =

9.2 GeV, the UrQMD model results then either remain
approximately constant or decrease slightly with increasing√

sNN ; UrQMD thus does not reproduce the rise of v2 with the
collision energy as seen experimentally.

The HSD model [37,41] is also a hadron-string model
including formally the same processes as UrQMD. However,
being based on the off-shell generalized transport equation [42]
followed from Kadanoff-Baym approach, the quasiparticles in

the HSD model take into account in-medium modifications
of their properties in the nuclear environment, which is rather
essential for many observables and in particular for dileptons.
Detailed comparisons between HSD and UrQMD for central
Au + Au (Pb + Pb) collisions have been reported in
Refs. [43,44] from AGS to top SPS energies with respect to a
large experimental data set. Indeed, both hadronic approaches
yield similar results on the level of 20%–30%, which is also the
maximum deviation from the data sets. Accordingly, the HSD
model also predicts an approximately energy-independent flow
v2 in quite close agreement with the UrQMD results. We may
thus conclude that the rise of v2 with bombarding energy is not
due to hadronic interactions, and models with partonic degrees
of freedom have to be addressed.

The AMPT (a multiphase transport) model [45] uses
initial conditions of a perturbative QCD (pQCD) inspired
model, which produces multiple minijet partons according
to the number of binary initial nucleon-nucleon collisions.
These (massless) minijet partons undergo scattering (without
potentials) before they are allowed to fragment into hadrons.
The string melting (SM) version of the AMPT model (labeled
in Fig. 2 as AMPT-SM) is based on the idea that the existence of
strings (or hadrons) is impossible for energy densities beyond
a critical value of ε ∼ 1 GeV/fm3. Hence they need to melt
the strings to (massless) partons. This is done by converting
the mesons to a quark and antiquark pair, baryons to three
quarks, etc., fulfilling energy-momentum conservation. The
subsequent scatterings of the quarks are based on a parton
cascade with (adjustable) effective cross sections that are
significantly larger than those from pQCD [45]. Once the
partonic interactions terminate, the partons hadronize through
the mechanism of parton coalescence.

We find from Fig. 2 that the interactions between the minijet
partons in the AMPT model indeed increase the elliptic flow
significantly as compared to the hadronic models UrQMD
and HSD. An additional inclusion of interactions between
partons in the AMPT-SM model gives rise to another 20%
of v2, bringing it into agreement (for AMPT-SM) with the
data at the maximal collision energy. So, both versions of the
AMPT model indicate the importance of partonic contributions
to the observed elliptic flow v2 but do not reproduce its
growth with

√
sNN . The authors address this result to the

partonic equation of state (EoS) employed, which corresponds
to a massless and noninteracting relativistic gas of particles.
This EoS deviates severely from the results of lattice QCD
calculations for temperatures below 2Tc–3Tc. Accordingly, the
degrees of freedom are propagated without self-energies and
a parton spectral function.

The PHSD approach incorporates the latter medium effects
in line with a lQCD equation of state as discussed in Sec. II,
and also includes a dynamical hadronization scheme based on
covariant transition rates. As has been shown in our previous
study [31], the elliptic flow v2 from PHSD (red solid lines
in Figs. 2 and 3) agrees with the data from the STAR and
PHENIX Collaborations and clearly shows an increase with
bombarding energy. As was demonstrated in the thorough
analysis of Ref. [27], the difference between STAR/PHENIX
v2 results is less than 2%–5% below pT 	 2.5 GeV/c.
At higher transverse momentum, the STAR elliptic flow v2
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FIG. 3. (Color online) Average elliptic flow v2 of charged par-
ticles at mid-pseudorapidity for two centrality selections calculated
within the PHSD (solid curves) and HSD (dashed lines) models. The
v2 STAR data (stars) for minimal bias are the same as in Fig. 2 (stars);
the preliminary PHENIX data [46] are plotted by filled circles and
other data are taken from the compilation in Ref. [47].

is systematically larger than the PHENIX v2 and the ratio
tends to grow with pT , reaching the value of 20% at pT 	
5.5 GeV/c. The differences in v2 at higher pT might be
attributed to nonflow effects due to di-jets, which are mostly
suppressed by the rapidity gaps in the case of the PHENIX
measurements. Anyhow, we do not consider such high trans-
verse momenta.

Note that PHSD and AMPT-SM practically give the same
elliptic flow at the top RHIC energy of

√
sNN = 200 GeV.

However, PHSD is more elaborated and includes more realistic
properties of dynamical quasiparticles, especially in the
vicinity of the critical energy density.

An explanation for the increase in v2 with collision energy
is provided in Fig. 4. Here we show the partonic fraction of
the energy density with respect to the total energy where the
energy densities are calculated at midrapidity. As discussed
above, the main contribution to the elliptic flow is coming
from an initial partonic stage at high

√
s. The fusion of partons

to hadrons or, inversely, the melting of hadrons to partonic
quasiparticles occurs when the local energy density is about
ε ≈ 0.5 GeV/fm3. As follows from Fig. 4, the parton fraction
of the total energy goes down substantially with decreasing
bombarding energy while the duration of the partonic phase is
roughly the same. The maximal fraction reached is the same in
central and peripheral collisions but the parton evolution time
is shorter in peripheral collisions. One should recall again the
important role of the repulsive mean-field potential for partons
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FIG. 4. (Color online) Evolution of the parton fraction of the total
energy density at midrapidity for different collision energies at impact
parameters b = 1 and 10 fm.

in the PHSD model (see Fig. 1) that leads to an increase of the
flow v2 with respect to HSD predictions (cf. also Ref. [48]).
We point out in addition that the increase of v2 in PHSD
relative to HSD is also partly due to the higher interaction
rates in the partonic medium because of a lower ratio of η/s

for partonic degrees of freedom at energy densities above
the critical energy density than for hadronic media below the
critical energy density [49,50]. The relative increase in v3 and
v4 in PHSD essentially is due to the higher partonic interaction
rate and thus to a lower ratio η/s in the partonic medium,
which is mandatory to convert initial spacial anisotropies to
final anisotropies in momentum space [51].

B. Higher-order flow harmonics

Depending on the location of the participant nucleons in
the nucleus at the time of the collision, the actual shape of the
overlap area may vary: the orientation and eccentricity of the
ellipse defined by the participants fluctuates from event to
event. As seen from Fig. 5, due to fluctuations the overlap area
in a single event can have, for example, a rotated triangular

FIG. 5. (Color online) Projection of a single peripheral Au + Au
(200 GeV) collision on the transverse plane. Spectator and participant
nucleons are plotted by empty and filled circles, respectively. The
participant plane transverse axes are marked by stars (x�, y�).
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rather than an almond shape. Note, however, that by averaging
over many events an almond shape is regained for the same
impact parameter.

Recent studies suggest that fluctuations in the initial state
geometry can generate higher-order flow components [10,19,
20,22]. The azimuthal momentum distribution of the emitted
particles is commonly expressed in the form of Fourier series as

E
d3N

d3p

= d2N

2πpT dpT dy

(
1 +

∞∑
n=1

2vn(pT ) cos[n(ψ − �n)]

)
,

(4)

where vn is the magnitude of the nth order harmonic term rel-
ative to the angle of the initial-state spatial plane of symmetry
�n. The anisotropy in the azimuthal angle ψ is usually charac-
terized by the even-order Fourier coefficients with the reaction
plane �n = �RP : vn = 〈exp[ ı n(ψ − �RP )]〉 (n = 2, 4, . . .),
since for a smooth angular profile the odd harmonics vanish.
For the odd components, say v3, one should take into account
event-by-event fluctuations with respect to the participant
plane �n = �PP . We calculate the v3 coefficients with respect
to �3 as v3{�3} = 〈cos(3[ψ − �3])〉/Res(�3). The event
plane angle �3 and its resolution Res(�3) are calculated as
described in Ref. [52] via the two-sub-events method [53,54].

In Fig. 6 we display the PHSD and HSD results for
the anisotropic flows v3 and v4 of charged particles at
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FIG. 6. (Color online) Average anisotropic flows v3 and v4 of
charged particles at mid-pseudorapidity for minimum-bias Au + Au
collisions calculated within the PHSD (solid line) and HSD (dashed
line) models.
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FIG. 7. (Color online) Impact parameter dependence of
anisotropic flows of charged particles at mid-pseudorapidity for
minimum-bias collisions of Au + Au at

√
sNN = 200 GeV.

Experimental points are from Ref. [55].

mid-pseudorapidity for Au + Au collisions as a function
of

√
sNN . The pure hadronic model HSD gives v3 ≈ 0 for all

energies. Accordingly, the results from PHSD (dashed red line)
are systematically larger than from HSD (dashed blue line).
Unfortunately, our statistics are not good enough to allow for
more precise conclusions. The hexadecupole flow v4 stays
almost constant in the energy range

√
sNN � 10 GeV; at the

same time the PHSD gives noticeably higher values than HSD,
which we attribute to the higher interaction rate in the partonic
phase, i.e., a lower ratio of η/s for the partonic degrees of
freedom [49,50].

Alongside with the integrated flow coefficients vn the PHSD
model reasonably describes their distribution over centrality
or impact parameter b. A specific comparison at

√
sNN =

200 GeV is shown in Fig. 7 for v2, v3, and v4. While
v2 increases strongly with b up to peripheral collisions, v3

and v4 are only weakly sensitive to the impact parameter.
The triangular flow is always somewhat higher than the
hexadecupole flow in the whole range of impact parameters b.

Recently, the triangular flow at
√

sNN = 200 GeV has been
recalculated in the updated AMPT model [56]. The values
of model parameters for the Lund string fragmentation and
the parton scattering cross section from the previous default
version have been refitted to describe the charged multiplicity
distribution, transverse momentum spectra, and elliptic flow
for Au + Au collisions at

√
sNN = 200 GeV. In the novel

AMPT version the parton scattering cross sections decrease
from about 10 to 1.5 mb. As compared to the old AMPT
result v3 ≈ 0.4, the new value v3 ≈ 0.2 is consistent with
the PHSD results in Fig. 6. Note that the magnitude of the
PHSD triangular flow at

√
sNN = 200 GeV is similar also to

that from the (3 + 1)D viscous hydrodynamical model [57]
with the specific viscosity η/s = 0.08. In our calculations
the low transverse momentum particles with pT < 1 GeV/c

are dominating. Unfortunately, experimental data for this
momentum range are not available.

Figure 8 shows the time evolution of flow coefficients v2, v3,
and v4 for a Au + Au collision at impact parameter b = 8 fm.
They reach their asymptotic values by the time of 6–8 fm/c

after the beginning of the collision, which corresponds to the
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FIG. 8. (Color online) Time evolution of vn for Au + Au
collisions at

√
sNN = 200 GeV with impact parameter b = 8 fm.

dominantly partonic phase (cf. Fig. 4). Thus, collective flows
are formed in the early partonic stage of the collision.

Different harmonics can be related to each other. In
particular, hydrodynamics predicts that v4 ∝ (v2)2 [58]. The
simplest prediction that v4 = 0.5(v2)2 is given for a boosted
thermal freeze-out distribution of an ideal fluid, in Ref. [16].
In this work it was noted also that v4 is largely generated by
an intrinsic elliptic flow (at least at high pT ) rather than the
fourth-order moment of the fluid flow. This is a motivation for
studying the ratio v4/(v2)2 rather than v4 alone. As is seen in
Fig. 9, indeed the ratio calculated within the PHSD model is
practically constant in the whole range of

√
sNN considered,

but significantly deviates from the ideal-fluid estimate of 0.5.
This result is qualitatively consistent with the behavior of these
harmonics in Figs. 3 and 6. In contrast, neglecting dynamical
quark-gluon degrees of freedom in the HSD model, we obtain
a monotonous growth of this ratio.

The dependence of the v4/(v2)2 ratio versus the number
of participants Npart is shown in Fig. 10 for charged particles
produced in Au + Au collisions at

√
sNN = 200 GeV. The

PHSD results are roughly in agreement with the experimental
data points from Ref. [59] but overshoot them for Npart � 250.
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FIG. 9. (Color online) Beam-energy dependence of the ratio
v4/(v2)2 for Au + Au collisions. The solid and dashed curves are
calculated within the PHSD and HSD models, respectively.
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FIG. 10. (Color online) Participant number dependence of the
v4/(v2)2 ratio of charged particles for Au + Au (

√
sNN = 200 GeV)

collisions. The experimental data points for 0.5 < pT < 0.8 GeV/c

are from Ref. [46].

We will come back to this quantity in the last subsection when
discussing its pT dependence.

C. Scaling of flow coefficients

The v2 coefficient measures the response of the heated
and compressed matter to the spatial deformation in the
overlap region of colliding nuclei, which is usually quantified
by the eccentricity ε2 = 〈y2 − x2〉/〈x2 + y2〉. Since the flow
response (v2) is proportional to the driving force (ε2), the
ratio v2/ε2 is used to compare different impact parameters and
nuclei.

In Fig. 11 this ratio is plotted as a function of the participant
multiplicity Npart. Note that in these calculations the same
eccentricity ε2 was used as in the experiment [61]. All PHSD
results for

√
sNN � 40 GeV are very close to each other and

in agreement with experiment. At lower collision energies this
scaling starts to be violated with decreasing

√
sNN .

A remarkable property—universal scaling—has been pro-
posed in Ref. [62] (see Fig. 12). It appears that v2/ε2 plotted

partN
0 50 100 150 200 250 300 350
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 / 2v
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| < 1, pηAu + Au, |

PHENIX:
200 GeV preliminary
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PHSD:
200 GeV
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FIG. 11. (Color online) Scaling of v2/ε2 as a function of the
number of participants for different beam energies. Experimental
points are for Au + Au collisions at

√
sNN = 200 (circles) and

62 GeV (squares) [60].
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FIG. 12. (Color online) Scaling of v2/ε2 vs (1/S)(dNch/dy). The
PHSD results are given by lines with open symbols. Predictions of
ideal boost-invariant hydrodynamics are shown in the top panel (from
Ref. [63]) and explained in the text. Our PHSD results are presented
in the bottom panel. The experimental data points for Au + Au
collisions at 200 GeV (circles) and 62 GeV (squares) are from Refs.
[60,63].

versus (1/S)dNch/dy falls on a “universal” curve, which links
very different regimes, ranging from Alternating Gradient
Synchrotron (AGS) to RHIC energies. Here S = π

√
〈x2〉〈y2〉

is the overlap area of the collision system and dNch/dy is the
rapidity density of charged particles.

As seen in Fig. 12 very different systems vary essentially
only in a single scale; this scale does not depend on the
collision energy (note that the NA49 data—filled triangles—
are beyond this systematics) and is connected to the total
entropy produced [64]. Indeed, peripheral and low-energy
collisions are likely to produce systems with incomplete
thermalization. Since rescattering of the particles is rare in
the low-density regime, little change occurs, on average, to the
initial momentum distributions. The measured elliptic flow
v2 is therefore proportional to the initial state eccentricity ε2.
This quantity and the space density of the initial particles
dNch/dy are determined via Glauber calculations. In our case
we calculate these quantities directly within the PHSD model.
Thus,

v2 ∝ 1

S

dNch

dy
ε2. (5)

We point out that only when event-by-event fluctuations
in eccentricity are taken into account, the universal scaling
is observed in PHSD. The term (1/S)(dNch/dy) contains
information about both the longitudinal structure at freeze-out

and the final particle number density (which is a function of
the initial temperature T and baryon chemical potential μB in
the hydrodynamic limit).

We therefore use dNch/dy or, equivalently, the initial
entropy density s0 in central Au + Au collisions as a proxy
for the collision energy: At any given collision energy, a
measurement of dNch/dy in the most central collision events
fixes the value of s0 to be used in ideal fluid simulations at
that energy. Assuming linear longitudinal expansion without
transverse flow at very early time τ0, the quantities dNch/dy

and s0 are thus related by

dNch

dy
∝ τ0s0. (6)

In an ideal (isentropic) expansion, the final entropy is equal
to the initial entropy content of the system [∼ the initial particle
density n(T ,μB )]. Thus, the systems from AGS to RHIC
appear to be controlled by a common scale, related to the
total multiplicity, which varies smoothly and drives both v2/ε2

and (1/S)(dN/dy). This conclusion is a strong indication that
microscopic properties of the system (equation of state and
mean free path) are basically unchanged, up to a shift related
to this scale, in the experimentally addressed energy range.

In the hydrodynamic limit—implying complete thermal-
ization of the system—the ratio of elliptic flow to eccentricity
is saturated at very low impact parameter. In this regime
the centrality dependence of the elliptic flow is mainly
determined by the initial elliptic anisotropy of the overlap
zone in the transverse plane, and the ratio of these two should
be approximately constant. This is seen in Fig. 12 where
this correlation is plotted by three horizontal lines for three
different beam energies according to Ref. [65].

Predictions of ideal boost-invariant hydrodynamics based
on calculations of Ref. [65] are also presented in Fig. 12
(top panel). The lines shown are hydrodynamic results for
two boost-invariant lattice-inspired equations of state (with
a quark-hadron phase transition, marked as “Q”, and for a
pure hadronic system “H”) calculated for the fixed impact
parameter (b = 7 fm) and different particle densities. Note that
hydrodynamic results do not scale perfectly in this case and
in general exhibit a somewhat flatter centrality dependence at
each collision energy. The deviation from experiment is very
large for peripheral collisions [(1/S)dNch/dy � 15], where
the application of hydrodynamics is questionable since the
mean free path of the degrees of freedom is no longer small
compared to the transverse size of the system.

The universal scaling has been investigated in more elab-
orated dissipative hydrodynamic models in Refs. [66,67]. A
finite shear viscosity η strongly suppresses the buildup of
momentum anisotropy and elliptic flow, especially for low
multiplicity densities. The viscosity effect changes the slope
of the multiplicity scaling for v2/ε2 but preserves, to a good
approximation, its general scaling with (1/S)dNch/dy. How-
ever, contrary to experiments, in hydrodynamic simulations—
irrespective of fluid viscosity—the elliptic flow does not follow
the universal scaling. In principle, the shear viscosity scaled
with the entropy density η/s can be extracted in such an
analysis; however, the present accuracy of the extracted values
is not high enough.
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Thus, the experimentally observed scaling in Fig. 12 puts
very strong constraints on the initial microscopic properties
(entropy density, mean free path, etc.), as well as the global
longitudinal structure [68].

D. Scaling in pseudorapidity

Another interesting insight on scale invariance in exper-
imental observables is the longitudinal scaling seen exper-
imentally. The multiplicity longitudinal scaling, dNch/dη, is
found for a variety of colliding systems and is often denoted as
“limiting fragmentation.” Proposed more than 40 years ago by
Feynman [69] and Hagedorn [70], this hypothesis implies that
the multiplicity distribution of particles becomes independent
of

√
s for

√
s → ∞. From the microscopic point of view

the multiplicity longitudinal scaling can be understood if the
rapidity distributions of produced hadrons are functions of the
fraction of the hadron longitudinal momentum x = 2pL/

√
s

alone but not of the total energy. This picture is very close
to the Bjorken scaling of parton distributions. It was found
that models combining ideal hydrodynamics and hadronic
cascades reproduce the longitudinal multiplicity scaling pretty
well, being rather insensitive to the “phase” of the system at
thermalization. This is illustrated in Fig. 13 for very central
Au + Au collisions within the PHSD model. The limiting
fragmentation region is nicely reproduced for (η − ybeam) �
−2, while some deviations are seen closer to midrapidity for
higher collision energies. The situation is different for the
elliptic flow, since, unlike dNch/dη, the collective flow v2 is
sensitive to the phase of the system as shown before.

As follows from Fig. 14 the PHSD model reproduces
the longitudinal v2 scaling up to comparatively low collision
energies (not yet measured). Hadronic results obtained within
in the UrQMD model presented in Ref. [73] are quite close to
our findings, to be formulated as “a qualitative agreement with
experiment.” Such a scaling was observed also for partonic
models such as the AMPT and AMPT-SM [73].

We mention that the v2 scaling with shifted pseudorapidity
can be obtained also by solving the Boltzmann equation with
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FIG. 13. (Color online) The dependence of the charged particle
multiplicity on the shifted pseudorapidity. Experimental data points
are from Ref. [71].
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FIG. 14. (Color online) The v2 dependence versus pseudorapidity
as calculated in the PHSD model. The compilation of experimental
data points is from Ref. [72].

an ellipsoidal profile in the initial transverse density [74],

v2

ε
∼ 〈σv〉

S

dNch

dy
, (7)

where σ is the interaction cross section. In line with Eq. (5)
in the discussion of the universal scaling, such an ansatz will
naturally lead to an observed-like scaling provided that 〈σv〉
does not vary with rapidity.

Furthermore, a comprehensive analysis of the longitudinal
scaling has been performed in Ref. [75] within simple
phenomenological models, trying various assumptions for
hydrodynamic and kinetic descriptions. The authors conclude
that the experimentally observed scaling of multiplicity with
rapidity and collision energy follows from reasonable models
of partonic dynamics. Neither the free-streaming limit nor
the ideal-fluid limit are expected to break up this multiplicity
scaling [75]. The situation is, however, different with the
scaling observed for the elliptic flow v2. It is not clear how
this scaling could arise within nonideal hydrodynamics, even
if its initial conditions mirror closely the ones that reproduce
the scaling observed in dNch/dη. These remarks address the
shape of the scaling distribution. A more serious problem is
the absolute value of v2. In terms of Eq. (7), to get a reasonable
magnitude of v2, the cross section σ should be increased to
the point where the Knudsen number is well below unity [75].
As demonstrated above, the PHSD model allows us to get
reasonable results for the multiplicity and v2 longitudinal
scaling by default without any tuning of parameters.
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E. Differential distributions

It was shown in the RHIC experiments that, for a given
centrality, the differential elliptic flow for all observed hadrons
scales to a single curve when plotted as v2/nq versus ET K/nq ,
where nq is the number of constituent quarks in a given hadron
species and ET K is the transverse kinetic energy for these
hadrons [76,77]. This quark number scaling is consistent with
the recombination model which assumes the collective flow to
develop on the quark level in the QGP phase. Such a scaling of
the elliptic flow v2 for identified hadrons has been measured by
the STAR and PHENIX Collaborations at different centralities
for top RHIC energies and recently also within the BES
program [28]. Our paper deals only with charged-particle
observables and therefore the number of constituent quarks
nq is not accurately defined. The analysis of scaling properties
of identified hadrons we postpone to a future study.

We start with the consideration of rapidity distributions
dv1/dη of the directed flow [78] and its beam energy
dependence as presented in Fig. 15. The directed flow v1 is
the first harmonic coefficient of the above Fourier expansion of
the final momentum-space azimuthal anisotropy Eq. (4), and it
reflects the collective sidewards motion or “bounce-off” of the
particles in the final state. Being generated essentially during
the nuclear passage time ∼2R/γ the directed flow probes the
very early stage of the collision dynamics. In the region closer
to the beam/target rapidity than to midrapidity, the directed
flow is generated very early even at a preequilibrium stage of
the collision [79] and thus it probes the onset of bulk collective
behavior. In Fig. 15 the directed flow of charged particles
is plotted versus the normalized pseudorapidity η/ybeam in
the large range of the BES collision energies for centrality
30%–60%. We observe that v1(η/ybeam) shows a beam-energy
scaling behavior, though not perfect. Both hydrodynamic and
nuclear transport models indicate that the directed flow is a
sensitive signature for a possible phase transition, especially
in the central region of beam energies under investigation. In
particular, the shape of v1(y) in the midrapidity region is of
special interest because it has been argued that differential
directed flow may exhibit flatness at midrapidity due to a
strong, tilted expansion of the source. Such tilted expansion
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FIG. 15. (Color online) Normalized pseudorapidity distributions
of the directed flow v1 in the transient collision energy range. The
experimental data points are from the STAR Collaboration [78].
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FIG. 16. (Color online) Directed flow distributions at different
centrality for Au + Au collisions at

√
sNN = 39 GeV. The

experimental data points are from Refs. [78,83].

gives rise to antiflow [80]. The antiflow is in the opposite
direction to the repulsive bounce-off motion of nucleons. If
the tilted expansion is strong enough, it can cancel and even
reverse the motion in the bounce-off direction and result in
a negative v1(y) slope at midrapidity, potentially producing
a wiggle-like structure in v1(y). A wiggle for baryons is a
possible signature of a phase transition between hadronic
matter and quark-gluon plasma (QGP), although a QGP is
not the only possible explanation [80–82]. As seen from
Fig. 15 the slope of the v1(η/ybeam) distribution at η = 0
is negative and stays almost constant for

√
sNN � 10 GeV;

its magnitude slightly increases with decreasing beam enery,
however, exhibiting no irregularities.

The slope of the pseudorapidity distributions is slightly
changed when different criteria for centrality selection are
applied as demonstrated in Fig. 16. The influence of this
selection is very moderate at midrapidity but becomes no-
ticeably stronger in the target-projectile fragmentation region
with increasing impact parameter.

Let us continue with differential distributions of the elliptic
flow v2 by comparing the pT dependence from data with those
from the PHSD model. The results from PHSD for v2(pT ) are
displayed in Fig. 17 for

√
sNN from 5 to 200 GeV. Also shown

are the corresponding results from the STAR Collaboration
at

√
sNN = 9, 62, and 200 GeV (by symbols). The data

from PHENIX and STAR at midrapidity indicate that the
magnitudes and trends of the differential elliptic flow [v2(pT ),
centrality dependence] are changed only very little over the
collision energy range

√
sNN = 62–200 GeV, indicating an

approximate saturation of the excitation function for v2 at these
energies [27] as exemplified in Fig. 17. We mention that the
PHSD results underestimate the data systematically for pT >

1 GeV, which is attributed to an overestimation of scattering of
partons with high transverse momenta. However, the collective
flow v2 of the “bulk matter” is rather well described at all
energies without any tuning of parameters.

The momentum distribution of the flow v3 is also in a quite
reasonable agreement with experiment (see Fig. 18).

As pointed out before, the ratios of flow coefficients might
shed valuable light on the actual dynamics, since especially
the ratio v4/(v2)2 is sensitive to the microscopic dynamics. In
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FIG. 17. (Color online) Beam-energy evolution of transverse
momentum distributions of v2(pT ) for Au + Au collisions in
comparison to the data of the STAR Collaboration from Refs.
[47,78,84].

this respect we show the transverse momentum dependence of
the ratio v4/(v2)2 in Fig. 19 for charged particles produced in
Au + Au collisions at

√
sNN = 200 GeV (20%–30% cen-

trality). The PHSD results are quite close to the experimental
data points from Ref. [59]; however, they overestimate the
measurements by up to 20%. The hydrodynamic results—
plotted in the same figure—significantly underestimate the
experimental data and noticeably depend on viscosity. The
partonic AMPT model [86] discussed above also predicts
a slightly lower ratio than the measured one; however, it
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FIG. 18. (Color online) Triangular flow v3 as a function of
transverse momentum pT for Au + Au collision at

√
sNN = 200 GeV.

The data points are from Ref. [52].
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FIG. 19. (Color online) Transverse-momentum dependence
of the ratio v4/(v2)2 of charged particles for Au + Au (at√

sNN = 200 GeV) collisions. The dashed and dot-dashed lines are
calculated within the hydrodynamic approaches from Refs. [58,85],
respectively. The shaded region corresponds to the results from the
AMPT model [86]. The experimental data points are from the STAR
Collaboration [59].

is in agreement with both hydrodynamic models for pT �
0.8 GeV/c. Our interpretation of Fig. 19 is as follows: the
data are not compatible with ideal hydrodynamics and a finite
shear viscosity is mandatory (in viscous hydrodynamics) to
come closer to the experimental observations. The kinetic
approaches AMPT and PHSD perform better but either
overestimate (in AMPT) or slightly underestimate (in PHSD)
the scattering rate of soft particles. An explicit study of the
centrality dependence of these ratios should provide further
valuable information.

IV. CONCLUSIONS

In summary, relativistic collisions of Au + Au from√
sNN = 5 to 200 GeV have been studied within the PHSD

approach, which includes the dynamics of explicit partonic
degrees of freedom as well as dynamical local transition rates
from partons to hadrons and also the final hadronic scatterings.
Whereas earlier studies have been carried out for longitudinal
rapidity distributions of various hadrons, their transverse mass
spectra, and the elliptic flow v2 as compared to available data at
SPS and RHIC energies [32,33], here we have focused on the
PHSD results for the collective flow coefficients v1, v2, v3,
and v4 in comparison to recent experimental data in the large
energy range from the RHIC Beam Energy Scan (BES) pro-
gram as well as different theoretical approaches ranging from
hadronic transport models to ideal and viscous hydrodynamics.
We mention explicitly that the PHSD model from Ref. [33] has
been used for all calculations performed in this study and no
tuning (or change) of model parameters has been performed.

We have found that the anisotropic flows—elliptic v2,
triangular v3, and hexadecapole v4—are reasonably described
within the PHSD model in the whole transient energy range,
naturally connecting the hadronic processes at lower energies
with ultrarelativistic collisions where the quark-gluon degrees
of freedom become dominant. The smooth growth of the
elliptic flow v2 with the collision energy demonstrates the
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increasing importance of partonic degrees of freedom. This
feature is reproduced by neither hadron-string based kinetic
models nor a multiphase transport (AMPT) model treating
the partonic phase in a simplified manner. Other signatures
of the transverse collective flow, the higher-order harmonics
of the transverse anisotropy v3 and v4, change only weakly
from

√
sNN ∼ 7 GeV to the top RHIC energy of

√
sNN =

200 GeV, roughly in agreement with experiment. As shown in
this study, this success is related to a consistent treatment of the
interacting partonic phase in PHSD, whose fraction increases
with the collision energy.

The observables calculated within the PHSD model exhibit
some scaling properties for collision energies above

√
sNN =

40 GeV. In particular, the universal scaling of v2/ε2 versus
(1/S)dNch/dy (cf. Fig. 12) is approximately reproduced as
well as the longitudinal scaling of the charged particle pseu-
dorapidity distributions of the elliptic flow v2 in (η − ybeam)
representation (cf. Figs. 13 and 14) in this energy range. This
feature is not reproduced by hadronic transport models (such as
HSD and UrQMD) and meets (severe) problems in the various
hydrodynamic descriptions.

The analysis of correlations between particles emitted in
ultrarelativistic heavy-ion collisions at large relative rapidity
has revealed an azimuthal structure that can be interpreted as
being solely due to collective flow [87,88]. This interesting
new phenomenon, denoted as triangular flow, results from
initial-state fluctuations and a subsequent hydrodynamic-like
evolution. Unlike the usual directed flow, this phenomenon
has no correlation with the reaction plane and should depend
weakly on rapidity. Event-by-event hydrodynamics [89] has
been a natural framework for studying this triangular collective
flow but it has been of interest also to investigate these correla-
tions in terms of the PHSD model. We have found the third har-
monics to increase steadily in PHSD with bombarding energy.
The coefficient v3 is compatible with zero for

√
sNN > 20 GeV

in case of the hadronic transport model HSD, which does not
develop “ridge-like” correlations. In this energy range PHSD
gives a positive v3 due to dominant partonic interactions.

Different harmonics can be related to each other and, in
particular, hydrodynamics predicts that v4 ∝ (v2)2 [58]. In
this work it was noted also that v4 is largely generated by an
intrinsic elliptic flow (at least at high pT ) rather than the fourth-
order moment of the fluid flow. Indeed, the ratio v4/(v2)2

calculated within the PHSD model is approximately constant
in the whole considered range of

√
sNN , but significantly

deviates from the ideal fluid estimate of 0.5. In contrast,
neglecting dynamical quark-gluon degrees of freedom in the
HSD model, we obtain a monotonous growth of this ratio.

The transverse momentum dependence of the ratio v4/(v2)2

at the top RHIC energy has given further interesting infor-
mation (cf. Fig. 19) by comparing the various model results
to the data from STAR, which are interpreted as follows: the
STAR data are not compatible with ideal hydrodynamics and a
finite shear viscosity is mandatory (in viscous hydrodynamics)
to come closer to the experimental ratio observed. The
kinetic approaches AMPT and PHSD perform better but
either overestimate (in AMPT) or slightly underestimate the
scattering rate of soft particles (in PHSD). An explicit study
of the centrality dependence of these ratios should provide
further valuable information.

It will be promising to extend our studies to asymmetric
heavy-ion collisions that can be used to constrain models
dealing with flow fluctuations in heavy-ion collisions but
with a larger sensitivity for v2-related observables than for
v3 [90]. Independently, an extension of the PHSD approach
to LHC energies with possible color-glass-condensate initial
conditions has to be performed in future.
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[38] H.-U. Bengtsson and T. Sjöstrand, Comput. Phys. Commun. 46,

43 (1987).
[39] K. H. Ackermann et al. (STAR Collaboration), Phys. Rev. Lett.

86, 402 (2001).
[40] S. A. Bass et al., Prog. Part. Nucl. Phys. 41, 255 (1998);

M. Bleicher et al., J. Phys. G 25, 1859 (1999).
[41] E. L. Bratkovskaya, W. Cassing, and H. Stöcker, Phys. Rev. C
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