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We analyze event-by-event fluctuations of the transverse momentum in relativistic heavy-ion collisions at√
sNN = 200 GeV in the framework based on the fluctuating Glauber-model initial conditions, event-by-event

(3 + 1)-dimensional viscous hydrodynamics, and statistical hadronization. We use the scaled fluctuation measure
〈�pT i�pTj 〉/〈〈pT 〉〉. The identified “geometric” mechanism of generating the transverse-momentum fluctuations
from the initial size fluctuations, transmitted to the final statistical-hadronization phase with hydrodynamics, is
capable of easily reproducing the magnitude of the effect and explains the basic features of the data. On the
other hand, it is somewhat too strong, hinting on modification of the popular Glauber approach to the earliest
phase of the collision. We have checked that the considered measure is insensitive of the values of the shear and
bulk viscosity coefficients, the freeze-out temperature, and the smoothing parameter for the initial distribution.
It remains unaltered in the core-corona picture and is insensitive to the transverse-momentum conservation,
approximately imposed in the statistical hadronization.
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I. INTRODUCTION

In Ref. [1] a new mechanism for generating the transverse-
momentum fluctuations in relativistic heavy-ion collisions was
identified. It is based on the random event-by-event fluctua-
tions of the initial size of the formed system, its subsequent
hydrodynamic evolution, and statistical hadronization. In the
present work we further explore and extend this analysis,
applying (3 + 1)-dimensional [(3 + 1)-D)] viscous event-by-
event hydrodynamics. The basic idea of Ref. [1] is as follows:
Even when we consider a very narrow centrality class of events,
e.g., with a strictly fixed number of wounded nucleons, Nw, the
size of the initial fireball fluctuates event-by-event due to the
random nature of the nuclear collision in the Glauber treatment.
These fluctuations are then transferred by hydrodynamics to
the fluctuations of the generated transverse flow velocity. At
freeze-out, this translates into the event-by-event fluctuations
of the average transverse momentum of hadrons produced in
the event, 〈pT 〉. In essence, via simple scaling arguments, a
more squeezed initial condition leads to more rapid expansion,
larger velocity flow, and higher 〈pT 〉, while a swollen initial
condition leads to slower expansion, lower flow, and lower
〈pT 〉. We will now explore this mechanism through the
use of state-of-the-art tools, such as GLISSANDO [2] Monte
Carlo code for the Glauber phase, (3 + 1)-D event-by-event
viscous hydrodynamics [3,4] for the dynamical evolution,
and THERMINATOR [5,6] for the statistical hadronization at
freeze-out.

The event-by-event 〈pT 〉 fluctuations in relativistic col-
lisions have been actively studied theoretically [7–26] and
experimentally [27–38], as they may reveal relevant details
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of the dynamics of the system, more accurate than contained
in the one-body observables. Moreover, they are expected be
sensitive to the critical phenomena at the phase transition,
providing an important probe for these effects.

Throughout the paper we use the notation

〈.〉, 〈〈.〉〉 (1)

to indicate averaging in a given event, and averaging of the
single-event averages over all events, respectively.

The structure of the paper is as follows. In Sec. II we
give the details of the Monte Carlo simulations of the initial
phase, focusing on the size fluctuations. Section III provides
some necessary description of the applied (3 + 1)-D viscous
hydrodynamics, while the statistical hadronization is described
in Sec. IV. We then proceed in Sec. V to presenting the
results, which are compared to the data from the STAR and
PHENIX collaborations. We investigate the influence of model
details on the results of our calculation, finding them very
robust. In particular, the STAR measure of the event-by-event
transverse momentum fluctuations is insensitive to the medium
viscosity, freeze-out temperature, or the smoothing parameter
of the initial distribution of sources. Our final conclusions and
discussion is contained in Sec. VI.

II. INITIAL STATE FLUCTUATIONS IN
THE GLAUBER APPROACH

The initial condition for hydrodynamics may be obtained
from the Glauber approach, leading to the successful wounded-
nucleon picture [39,40] (a wounded nucleon is a nucleon
that collided inelastically at least once) or its descendants,
such as the mixed model [2,41]. When the initial condition is
obtained via Glauber Monte Carlo simulations, the distribution
of sources (wounded nucleons or positions of binary collisions)
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in the transverse plane fluctuates, reflecting the randomness in
positions of the nucleons in the colliding nuclei. This leads to
fluctuations of shape.

The event-by-event fluctuations of the elliptic component
of initial shape have been actively studied, as they lead to
significantly enhanced elliptic flow [26,42–53]. They also
generate odd Fourier components, absent from the event-
averaged studies, such as the triangular deformation [54–56],
as well as higher-order components of the flow. Other
interesting phenomena appear as the result of fluctuations,
e.g., the torque effect [57] of the reaction planes at forward
and backward pseudorapidities, or the directed flow at central
rapidity [58,59].

We now describe in some detail the implementation of
the Glauber model used in this work. The density of charged
particles per unit of pseudorapidity, as a function of centrality,
can be parametrized using a formula [41,60,61] incorporating
an admixture of binary collisions, Nbin, into the wounded-
nucleon model in the following way:

dNcharged

dη
∝

(
1 − α

2
Nw + αNbin

)
, (2)

where α is a phenomenological parameter, α = 0.145 for
the highest RHIC energy of

√
sNN = 200 GeV [61]. The

initial-state simulations are carried out with GLISSANDO [2],
including a component from binary collisions. The parameter
α in the initial distribution is somewhat smaller from the value
extracted from the final distributions (see the following). The
difference is due to the longitudinal expansion and entropy
production in the (3 + 1)-D viscous hydrodynamic expansion
[3].

The positions of nucleons in each of the colliding nuclei are
randomly generated from a Woods-Saxon distribution, with
an additional constraint enforcing the short-range repulsion,
namely, that the centers of nucleons in each nucleus cannot
be generated closer than the expulsion distance d = 0.9 fm.
Nucleons from the two colliding nuclei are wounded, or a
binary collision occurs, when their centers get closer to each

other than the distance
√

σ inel
NN/π , with σ inel

NN denoting the
inelastic nucleon-nucleon cross section. For the highest RHIC
energy of

√
sNN = 200 GeV one has σ inel

NN = 42 mb.1

The notion of sources, originally limited to the transverse
plane, may be extended on the rapidity dependence of
the particle emission. Although this extension is not crucial
for the present study, focused on the midrapidity region, we
include it for the integrity of the paper. The spatial pseudora-
pidity (η‖) distribution of the emission profile is given as the
sum of contributions from the forward- and backward-moving
wounded nucleons. Within such an extended framework Białas
and Czyż have properly described [63] the pseudorapidity
distributions of charged particles in the d-Au collisions.
Therefore, we assume an asymmetric emission profile [63,64]
peaked in the forward (backward) rapidity for the forward

1One may more appropriately use a Gaussian wounding profile
instead of the applied hard-sphere wounding profile, but the results
do not differ significantly in the case of size fluctuations [62].

(backward) moving wounded nucleons, denoted as f+(η‖)
[f−(η‖)],

f±(η‖) =
(

1 ± η‖
ybeam

)
f (η‖), (3)

where ybeam is the beam rapidity. The initial profile in space-
time rapidity is

f (η‖) = exp

(
− (η‖ − η0)2

2σ 2
η

θ (|η‖| − η0)

)
, (4)

with η0 = 1.5, ση = 1.4 [3]. The initial entropy density is
assumed to have a factorized form

s(x, y, η‖) = κ
∑

i

f±(η‖)gi(x, y)
[
(1 − α) + N coll

i α
]
.

(5)

Here N coll
i is the number of collisions of the participant nucleon

i, and

gi(x, y) = 1

2πw2
exp

[
− (x − xi)2 + (y − yi)2

2w2

]
(6)

implements a Gaussian smearing, replacing the point-like
source at the transverse position (xi, yi) with a Gaussian
profile. The smearing parameter is taken to be w = 0.4 fm,
and the overall scale factor is κ = 2.5 GeV. The parameter α

of the mixed model is fixed to reproduce the dependence of
dN/dη on centrality. In the (3 + 1)-D viscous hydrodynamic
model the optimum value is α = 0.125 at the top RHIC
energies [3]. We remark that the mixed model works also very
well for the description of multiplicities a the LHC energy of√

sNN = 2.76 TeV, where α = 0.15 [65,66].
In Fig. 1 we show two snapshots of typical configurations

of sources in the transverse plane generated with GLISSANDO.
The dots indicate the positions of the wounded nucleons.
Since we have in mind the distributions as starting conditions
for the event-by-event hydrodynamics, we need to smear out
the point-like distributions. The smearing procedure, although
physically motivated and necessary, is somewhat arbitrary in
introducing a smearing scale. In Fig. 1, the contours show the
smeared entropy density, s, with w = 0.4 fm. Although both
selected events correspond to the same number of wounded
nucleons, Nw = 100, they have radically different rms radii,
which after the hydrodynamic expansion results in different
transverse flows.

To have a simple size measure we look at the average
transverse size of the initial fireball, defined in each event
via the mean squared radius at the central space-time rapidity

〈r2〉 ≡
∫

dxdy(x2 + y2)s(x, y, 0)∫
dxdy s(x, y, 0)

. (7)

In the following we use the notation 〈r〉 ≡ 〈r2〉1/2. The point,
clearly seen from Fig. 1, is that even at precisely fixed
centrality the size 〈r〉 fluctuates [1]. The feature is presented
quantitatively in Fig. 2, where we plot the event-by event scaled
standard deviation of 〈r〉 obtained at each Nw. As expected,
σ (〈r〉)/〈〈r〉〉 is a decreasing function of Nw.
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FIG. 1. (Color online) Two typical configuration of wounded
nucleons in the transverse plane (dots) generated with GLISSANDO

and the corresponding contours of the smeared density of entropy, s.
Solid, dashed, and dotted lines correspond to isentropes at s = 0.05,
0.2, and 0.4 GeV−3, respectively. The densities for the two events
have radically different rms radii of 3.14 and 2.38 fm, respectively,
despite the equal number of the wounded nucleons, Nw = 100.

As noted in Ref. [1], very similar curves to Fig. 2
are obtained for other variants of Glauber models, such as
models with overlaid distributions of particles produced from
the sources [2], simulations applying a Gaussian wounding
profile [67] for the NN collisions, or the use of the nucleon
distributions including realistic (central) NN correlations of
Refs. [68–70]. This means that the behavior of the initial
geometry shown in Fig. 2 is robust, essentially reflecting the
statistical feature of the Glauber approach.
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FIG. 2. (Color online) Event-by-event scaled standard deviation
of the size parameter 〈r〉, evaluated at fixed values of the number
of wounded nucleons Nw from the initial entropy density for events
used in hydrodynamic simulations.

III. VISCOUS EVENT-BY-EVENT HYDRODYNAMICS

It is widely believed that a successful and uniform de-
scription of the physics of relativistic heavy-ion collisions
is achieved with the help of relativistic hydrodynamics (for
reviews see, e.g., [71–73]). Event-by-event hydrodynamic cal-
culations for fluctuating initial conditions have been performed
for perfect fluid [47,56,59,74–76] and for the viscous case
[4,77–79], focusing on collective flow.

In the second-order viscous hydrodynamic formalism
[80–82], the hydrodynamic equations

∂μT μν = 0 (8)

with the energy-momentum tensor

T μν = (ε + p)uμuν − pgμν + πμν + ��μν (9)

are supplemented with equations for the stress corrections from
the shear,

�μα�νβuγ ∂γ παβ = 2ησμν − πμν

τπ

− 4

3
πμν∂αuα, (10)

and the bulk viscosity,

uγ ∂γ � = −ζ∂γ uγ − �

τ�

− 4

3
�∂αuα, (11)

σμν = 1

2

(
∇μuν + ∇μuν − 2

3
�μν∂αuα

)
.

Here ∇μ = �μν∂ν , while η and ζ denote the shear and bulk
viscosity coefficients, respectively. In our default calculations
we use constant η/s = 0.08, ζ/s = 0.04 in the hadronic phase,
τπ = 3η/(T s), and τ� = τπ . To test the sensitivity of our
results on viscosity, we perform calculations for η/s = 0.16,
ζ/s = 0.04 and η/s = 0.08, ζ/s = 0.08 as well.

The applied equation of state is a crossover equation of
state, interpolating between the lattice-QCD results at high
temperatures [83] and a hadronic gas equation of state at low
temperatures. The construction of the equation of state follows
the method of Chojnacki and Florkowski [84] (for details
see [3]).
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In this work we apply the event-by-event (3 + 1)-D viscous
hydrodynamics [4,77], starting the evolution at 0.6 fm/c. The
configurations of wounded nucleons and binary collisions cor-
responding to the centrality range 0–70 % are generated with
GLISSANDO. The procedure does not fix the impact parameter
for each centrality bin, as the Monte Carlo scheme picks the
impact parameter in each event according to the distribution
P (b) = dσinel(b)/(db σinel) 2 [85]. For each configuration of
wounded nucleons a hydrodynamic evolution is calculated
starting from the density (5).

IV. STATISTICAL HADRONIZATION

The last stage of our approach is the simulation of the
statistical hadronization at freeze-out [86] (for a review,
see, e.g., [73]) with THERMINATOR [5,6]. The code includes
all resonances and decay channels from SHARE [87]. The
particles (stable and unstable, which subsequently decay)
are formed at the freeze-out hypersurface according to the
Frye-Cooper formula. In the case of viscous hydrodynamics,
the momentum distributions at freeze-out are modified by the
viscous corrections. The shear and bulk viscosity corrections
are [88]

δfshear = f0 (1 ± f0)
1

2T 2(ε + p)
pμpνπμν (12)

and [89,90],

δfbulk = Cbulkf0 (1 ± f0)

(
c2
s u

μpμ − (uμpμ)2 − m2

3uμpμ

)
�,

(13)

respectively, with f0 denoting the equilibrium distributions and
cs standing for the velocity of sound. In the local rest frame
the normalization constant is

1

Cbulk
= 1

3

∑
n

∫
d3p

(2π )3

m2

E
f0 (1 ± f0)

(
c2
s E − p2

3E

)
,

(14)

where the sum runs over all the hadron species. The (single-
fluid) hydrodynamic evolution uses an equation of state with
zero chemical potentials. However, the chemical potentials are
reintroduced in the Frye-Cooper formula with the ratio μ/T

fixed through the fits to the particle ratios at the chemical
freeze-out, which works properly at the RHIC energies [91].

Before showing the pT -correlation results, let us state that
our approach properly describes the relevant one-body features
of the collisions, in particular, the transverse-momentum
spectra. As an example, in Fig. 3 we show the inclusive
average transverse momentum as the function of Nw for pions,
kaons, and protons and antiprotons for our default parameters
Tf = 150 MeV, η/s = 0.08, ζ/s = 0.04 (solid lines). The
result compares favorably to the PHENIX data [92]. The
agreement is important, as it shows that we have the correct

2This is simply achieved by generating a uniform distribution in
b2 and accepting those events where at least one NN interaction
occurred.
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FIG. 3. (Color online) Averaged inclusive transverse momentum
vs. number of wounded nucleons, Nw . The data (extrapolated to
the whole pT range) come from the PHENIX Collaboration [92] and
show the charged pions (down triangle), charged kaons (up triangles),
and protons and antiprotons (squares). The lines correspond to our
model calculation with η/s = 0.08, ζ/s = 0.04, and Tf = 150 MeV
(solid lines), and Tf = 140 MeV (dashed lines).

one-body background to study correlations. Fixing the freeze-
out temperature of Tf = 150 MeV reproduces the transverse
momenta of identified particles at midrapidity. To check the
sensitivity of the results of the freeze-out temperature and
viscosity, we have investigated also the cases when one of the
parameter is modified from the default value to Tf = 140 MeV,
η/s = 0.16, or ζ/s = 0.08. The calculations with a lower
freeze-out temperature or with an increased shear or bulk
viscosity give average transverse momenta within the range
of the systematic errors quoted by the PHENIX Collaboration.
Admittedly, there is some model dependence on parameters,
but it is weak, and the default parameters serve as an optimum
choice.

It has been noted that event-by-event hydrodynamics with
lumpy initial conditions yields harder spectra than hydrody-
namics starting with averaged initial conditions [93]. This
effect follows from higher gradients in the lumpy initial
condition. To compensate, i.e., to soften the spectra, one
needs to run hydrodynamics for a shorter time, i.e., to higher
freeze-out temperatures [3].

V. RESULTS

The simulations presented in this section employ the ex-
perimental cuts in the STAR [32] (0.15 GeV < pT < 2 GeV)
and PHENIX [29] (0.2 GeV < pT < 2 GeV) analyses. In both
cases |η| < 1. Our samples have 100 events at each considered
centrality bin. These, involving the hydrodynamic evolution,
are time-consuming to generate. To increase the accuracy of
the statistical hadronization, we generate 200 THERMINATOR

events for each hydro event.
Our determination of centrality matches closely the exper-

iment. In the case of STAR [32], the multiplicity of generated
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charged particles in the window |η| < 0.5 is used to determine
the centrality bins. In the case of PHENIX [29], where a
combination of signals from the BBC and ZDC detectors is
used, we simply take the number of wounded nucleons Nw as
the variable fixing the centrality.

A. Fixed number of wounded nucleons

For better understanding, we begin the analysis for the
event-by-event fluctuations by selecting a very narrow cen-
trality class, with Nw = 100. We run GLISSANDO to generate
the initial conditions, carry out our event-by-event hydrody-
namics, and, finally, run THERMINATOR and compute 〈pT 〉 in
each event. As argued before [1], the fluctuations of the initial
condition manifest themselves in the fluctuations of the initial
size 〈r〉. In Fig. 4 we plot the values of 〈pT 〉, histogrammed
in bins of 〈r〉. Each point corresponds to one event, while
the bars give the event-by-event average, 〈〈pT 〉〉. We note a
clear anticorrelation of 〈〈pT 〉〉 and 〈〈r〉〉. This shows that in
a full-fledged event-by-event simulation the basis qualitative
argument holds: for a squeezed initial condition the system
expands with a larger flow velocity and acquires a higher
average transverse momentum, 〈〈pT 〉〉, than for the stretched
state. The same effect can be observed when comparing case
by case the events generated from different initial conditions
(Fig. 1). The event with a squeezed initial density has a larger
transverse flow and 〈pT 〉.

The fit to the histogram bars in Fig. 4 yields 〈〈pT 〉〉 =
0.79 − 0.07〈〈r〉〉 GeV/fm, which in turn gives

d〈〈pT 〉〉
d〈〈r〉〉 	 −0.3

〈〈pT 〉〉
〈〈r〉〉 (15)
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FIG. 4. (Color online) Averaged transverse momentum as the
function of the initial size 〈r〉 for events with a fixed number of
wounded nucleons, Nw = 100. Viscous (3 + 1)-D event-by-event
hydrodynamics with η/s = 0.08, ζ/s = 0.04, and Tf = 150 MeV
is used. The scattered small dots show 〈pT 〉 obtained in individual
events, while the bars show the event-by-event averages 〈〈pT 〉〉 in the
selected bins of 〈r〉. The anticorrelation is apparent, with lower size
〈r〉 resulting in higher 〈〈pT 〉〉.

in the considered range. This result can be written as

σ (〈pT 〉)
〈〈pT 〉〉 	 0.3

σ (〈r〉)
〈〈r〉〉 , (16)

which may be compared to the estimate of Ref. [94],

σ (〈pT 〉)
〈〈pT 〉〉 = 2P̄

ε̄

σ (〈r〉)
〈〈r〉〉 , (17)

with P̄ and ε̄ denoting the average pressure and energy density
during the evolution of the system. Thus P̄ /ε̄ ∼ 0.15, which
is the right ball park for the applied equation of state [95].

B. Transverse momentum fluctuations vs. centrality

Now we come to the main results of this paper. In order to
compare to the data, we analyze the STAR correlation measure
[32], 〈�pT i�pTj 〉, defined as

〈�pT i�pTj 〉 ≡ 1

Nev

Nev∑
k=1

Ck

Nk(Nk − 1)
, (18)

where Nev is the number of events, Nk the multiplicity in event
k, and

Ck =
Nk∑
i=1

Nk∑
j=1,j �=i

(pi − 〈〈pT 〉〉)(pj − 〈〈pT 〉〉), (19)

with

〈〈pT 〉〉 = 1

Nev

Nev∑
k=1

〈pT 〉k. (20)

Introducing the mean momentum in event k, denoted by 〈pT 〉k ,
we can transform

Ck = Nk(Nk − 1)(〈pT 〉k − 〈〈pT 〉〉)2 −
Nk∑
i=1

(pi − 〈pT 〉k)2,

(21)

and rewrite

〈�pT i�pTj 〉 = Nev − 1

Nev
var(〈pT 〉) − 1

Nev

Nev∑
k=1

[
vark(p)

Nk

]
.

(22)

Thus the STAR correlation measure is the difference of two
terms: one involving the variance of the mean momenta in
events, and the other being the event-averaged variance of the
momentum in each event decided by the multiplicity of this
event. Note that expression (22) involves only single sums in
a given event. As a matter of fact, the STAR analysis [32]
replaces 〈〈pT 〉〉 with the quantity 〈pT 〉(Ncharged), the average
momentum as a function of the number of charged particles
in the pseudorapidity bin |η| < 0.5—the same as used to
determine centrality. The function is obtained by a numerical
fit to the results prior to the analysis of the correlations. The
method slightly reduces the value of 〈�pT i�pTj 〉. We follow
the same prescription.
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FIG. 5. (Color online) Comparison of the theoretical predictions
for 〈�pT i�pTj 〉1/2/〈〈pT 〉〉 (for

√
sNN = 200 GeV) to the experi-

mental data extracted from the STAR Collaboration [32] (squares).
The dots correspond to simulation with event-by-event (3 + 1)-D
viscous hydrodynamics with our default parameters Tf = 150 MeV,
η/s = 0.08, ζ/s = 0.04. The statistical errors of the model simulation
are obtained with the jackknife method. The experimental statistical
errors are negligible.

Our results are shown in Fig. 5, where we compare
the theoretical points (circles) to the experimental data from
the STAR Collaboration [32] (squares). At low centralities, the
model calculations overshoot the data by about 50%, yielding
more pT fluctuations than needed. This conclusion supports
the original findings of Ref. [1] in the present state-of-the-art
event-by-event treatment. We have checked for a few centrality
bins that modifying the shear or bulk viscosity coefficients,
the freeze-out temperature or the width of the smearing
Gaussian in the initial conditions does not change the results
at the level of the statistical errors of our calculations (see
Sec. V C).

Nevertheless, we note a proper magnitude of the effect and
the correct dependence on centrality, Also, since the results of
Fig. 2 very weakly depend on σNN [1], with the expectation
that the hydrodynamic “push” is similar at different collision
energies, our results should weakly depend on the incident
energy. This is a desired feature, as the STAR data [32] are
very similar from

√
sNN = 20 GeV to 200 GeV.

The statistical errors of the model simulations in Fig. 5 are
estimated with the jackknife method. Essentially, the relative
error is equal to 1/

√
2n, where n = 100 is the number of the

hydrodynamic events in the considered centrality class.
We remark that the STAR measure (18) is designed in such

a way that purely statistical fluctuations do not contribute.
For that reason, as explained in Ref. [32], it should vanish
within statistics for the case of mixed events, where the particle
correlations are broken. In our case of rather limited statistics,
as well as in the presence of resonance decays, the question
may arise as to how much of the effect may be generated
by the THERMINATOR modeling of the statistical hadronization
phase. To have an estimate, we have carried out our simulations
starting from the event-averaged initial conditions, i.e., with no
size fluctuations. With 20 000 events we find that 〈�pT i�pTj 〉
ranges from 2% (the most central class) to 4% (peripheral

classes) of the value for the event-by-event fluctuating initial
conditions. The values are farther reduced with an increased
number of events. Thus the effect is small and innocuous for
our general conclusions.

The PHENIX Collaboration [29] published results on the
ratio of the pT fluctuations using the measure

FpT
= ωdata

pT
− ωmixed

pT

ωmixed
pT

, (23)

where

ωdata
pT

= var(〈pT 〉)1/2

〈〈pT 〉〉 (24)

and ωmixed
pT

is the same quantity obtained with mixed events.
For small dynamical fluctuations and sharp distributions in the
multiplicity variable one can estimate3

〈�pT i�pTj 〉 	 2FpT

var(pT )

〈N〉 , (25)

where var(pT ) denotes the inclusive variance of the transverse
momentum distribution, and 〈N〉 is the average multiplicity of
the detected particles in the considered centrality class. The
values of the quantities on the right-hand side of Eq. (25)
are available from the PHENIX Collaboration web page
associated with Ref. [29]. We stress that the result Eq. (25) is
approximate, but sufficiently accurate [96] for our purpose. A
more direct comparison to the PHENIX data could be achieved
with the mixing technique, however, this is beyond our reach
due to a very limited number of the model events.

The result of the analysis is shown in Fig. 6, with similar
conclusions as from Fig. 5, i.e., the model points are above
the experiment. We also show that the results of applying the
event-by-event viscous hydrodynamics (dots) are very close to
the approximate calculation of Ref. [1] for perfect (2 + 1)-D
hydrodynamics with averaged initial conditions (crosses).

The dependence of the fluctuation measure
〈�pT i�pTj 〉1/2/〈〈pT 〉〉 on the upper transverse-momentum
cut-off has been measured by the PHENIX Collaboration [29].
As can be seen in Fig. 7, the fluctuations in the model increase
with the cutoff, following closely the trend observed in the
data. This crosschecks that the observed pT dependence of
the transverse momentum fluctuations can be interpreted as a
hydrodynamic flow effect.

C. Dependence on model parameters

In this section we investigate the dependence of our
predictions on the model parameters, such as the viscosity
coefficients of the medium, the freeze-out temperature, Tf , or
the smoothing parameter, w. For this purpose we have run
simulations with various values of these parameters at fixed
Nw = 100.

3The relations between various popular correlations measures in
this limit are discussed in the appendix of Ref. [96]. One of us (W.B.)
thanks Jeff T. Mitchell for the discussion concerning Eq. (23).
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FIG. 6. (Color online) Comparison of the theoretical predictions
for 〈�pT i�pTj 〉1/2/〈〈pT 〉〉 (for

√
sNN = 200 GeV) to the experi-

mental data from the PHENIX Collaboration [29] (squares). The
dots correspond to simulation with event-by-event (3 + 1)-D viscous
hydrodynamics with our default parameters Tf = 150 MeV, η/s =
0.08, ζ/s = 0.04. The crosses indicate the approximate result from
Ref. [1] for perfect (2 + 1)-D hydrodynamics with averaged initial
conditions from the mixed model. The statistical errors for the model
simulations are obtained with the jackknife method.

In Fig. 8 we compare the dependence of 〈pT 〉 on 〈r〉
for several variants of viscous hydrodynamics. The points
correspond to mean 〈〈pT 〉〉 in a given 〈r〉 bin, and the curves
are linear fits to these points. Our default result is for the set
of parameters η/s = 0.08, ζ/s = 0.04, Tf = 150 MeV, and
w = 0.4 fm, indicated with the up-triangles and dot-dashed
line in the plot. We then do our comparison by changing
one of the parameters: the shear or bulk viscosity coefficient,
the freeze-out temperature, or the smoothing parameter. As
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FIG. 7. (Color online) Dependence of 〈�pT i�pTj 〉1/2/〈〈pT 〉〉
(for

√
sNN = 200 GeV) on the upper transverse-momentum cutoff,

compared to the experimental data from the PHENIX Collaboration
[29] for centrality 20–25 % (squares). The dots correspond to
simulation with event-by-event (3 + 1)-D viscous hydrodynamics
with our default parameters Tf = 150 MeV, η/s = 0.08, ζ/s = 0.04.
The statistical errors of the model simulation are obtained with
the jackknife method. The shaded band in the upper right corner
represents the error band of the result of the simulation with an
infinite upper momentum cutoff.
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FIG. 8. (Color online) Dependence of 〈〈pT 〉〉 on 〈r〉 for the
variants of the hydrodynamic evolution: calculation with η/s = 0.08,
ζ/s = 0.04, Tf = 150 MeV, and w = 0.4 fm (default) (triangles
and dashed-dotted line), with η/s = 0.16 (filled circles and dotted
line), with Tf = 140 MeV (squares and solid line), with ζ/s = 0.08
(open circles and dashed line), and with the width of the smearing
w = 0.6 fm (stars and long dashed line). The points with the errors
bars represent the histogram of the average momentum 〈〈pT 〉〉 as
function of the rms radius of the initial density of the event. The lines
represent linear fits to the points.

expected, increasing the shear viscosity or decreasing the
freeze-out temperature leads to a hardening of the spectra, i.e.,
higher 〈〈pT 〉〉. On the other hand, increasing bulk viscosity
leads to a reduction of the effective pressure and a decrease
of the average transverse momentum. Increasing the smearing
width of the initial density distribution yields smaller gradients,
and reduces the transverse push. The described behavior holds
bin-by-bin in the 〈r〉 variable giving the size of the initial
geometry.

At the same time we note that the slope of the dependence
of 〈〈pT 〉〉 on 〈r〉 changes as well. For all the studied cases it
turns out that to a high accuracy

d〈pT 〉
d〈r〉

〈r〉
〈pT 〉 	 0.31. (26)

As a result, according to the arguments of Sec. V A, the
scaled measure 〈�pT i�pTj 〉/〈〈pT 〉〉2 is hardly modified.
Increasing the transverse pressure or the local gradients
gives a larger transverse flow and, simultaneously, larger
fluctuations, such that the scaled fluctuations of the transverse
momentum practically do not depend on viscosity, the freeze-
out temperature, or the smearing of the initial conditions. We
thus find that the scaled pT fluctuations are dominated by
the fluctuations of the transverse size of the initial fireball.
This feature makes the scaled measure particularly suitable
for constraining the models of the initial phase. In a similar
way, the directed flow at central rapidity has been proposed as
a tool to limit the dipole deformation of the fireball predicted
by different models of the initial state [97].
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D. Other effects

In peripheral collisions the particle emission can take place
in the thermalized, collectively expanding core, as well as in
the outer corona, where rescattering is small [98–101]. In the
following we estimate the transverse momentum fluctuations
in the case where the particles are emitted from these two
sources, the core and the corona. Different definitions of
the dense core are possible; we use the prescription that a
wounded nucleon belongs to the core if it collides more than
once. This choice of the separation between the core and the
corona describes the centrality dependence of the strangeness
production and of the effective slopes of the particle spectra
[99,102]. The particle density at central rapidity is a sum of
the contributions from the corona and the core,

dNcharged

dη
= dNNN

charged

dη
(Ncorona + βNcore), (27)

with Ncore + Ncorona = Nw. To reproduce the centrality depen-
dence observed experimentally we choose the parameter β =
1.75, which effectively describes the enhanced production
in the thermalized matter [100]. The average transverse
momentum,

〈〈pT 〉〉 = (1 − c)
〈〈
p

pp

T

〉〉 + c
〈〈
pcore

T

〉〉
, (28)

is a combination of the average momentum in a NN -collision
and of the average transverse momentum of particles emitted
from the core. The fraction of particles emitted from the core is
c = βNcore/(βNcore + Ncorona). By neglecting the fluctuations
of the number of nucleons in the core, we get

〈�pT i�pTj 〉 	 1

〈Ncorona〉 (1 − c)2〈�pT i�pTj 〉NN

+ c2(1 − c)2(〈〈pNN
T

〉〉 − 〈〈
pcore

T

〉〉)2

+ c2〈�pT i�pTj 〉〉core. (29)

The first term is a contribution from the Ncorona independent
NN sources, the second term comes from the difference of
the transverse momenta from the two sources, and the third
term is a contribution from the hydrodynamically expanding
core. We use the PHENIX data [29] on the average transverse
momentum and its fluctuations in the pp-collisions, and take
for 〈�pT i�pTj 〉core the results from the hydrodynamic model
calculation. With all elements of Eq. (29) combined, we find
that 〈�pT i�pTj 〉1/2/〈〈pT 〉〉 is changed very little compared to
the results of Sec. V B. For the most central collisions, where
the corona contribution is tiny, naturally the effect is negligible.
In peripheral collisions (c = 60–70 %) all terms of Eq. (29)
contribute to the transverse momentum fluctuations. However,
in the last term the reduction of the core due to the (1 − c)2

factor is compensated with increased fluctuations σ (〈r〉)/〈r〉,
such that with all terms combined the change is at the level
of 10%. At intermediate centralities the reduction effect is
at a similar level. Therefore the core-corona model does not
improve nor deteriorate the agreement with the experimental
data.

We have also checked that imposing a finite detector
acceptance, by simply accepting a simulated particle with
the typical probability of 50%, does not alter the results

for 〈�pT i�pTj 〉/〈〈pT 〉〉. This is a feature of the scaled pT

fluctuation measure [29,37].
Finally, we have estimated the possible effect of the

global transverse-momentum conservation, not implemented
in the standard simulations of the statistical hadronization
with THERMINATOR. This can be approximately achieved
by accepting only those events which have limited total
transverse momentum. Specifically, we consider the quantity
P 2 = (

∑
pi,x)2 + (

∑
pi,y)2 in a given event and include the

event for the further analysis when P is less than a specified
value, which is gradually decreased. With our statistics we
are able to reduce the limit for P down to 15 GeV (there
are a few hundred of particles in the event), which leaves
about 5% from all (unconstrained) events for the most central
case. No noticeable effect is detected, therefore the considered
correlation measure is not sensitive to the global transverse-
momentum conservation.

VI. CONCLUSIONS

The initial shape and the volume of the fireball fluctuate
due to the random nature of the Glauber approach. As is well
known, the subsequent hydrodynamic evolution carries over
the asymmetry of the shape of the fireball into anisotropies of
the particle spectra. A similar mechanism, analyzed in detail
in this work, transmits the event-by-event fluctuations of the
transverse size of the fireball into the fluctuations of the average
transverse momentum in each event, as identified in Ref. [1].
Here are the main findings of our analysis:

(i) The state-of-the-art event-by-event viscous (3 + 1)-D
hydrodynamic calculations with fluctuating initial con-
ditions confirm that fluctuations of the mean transverse
momentum in each event are generated from the
fluctuations of the initial geometry.

(ii) The amount of scaled transverse momentum fluctu-
ations is determined by the scaled fluctuations of
the transverse size of the fireball. We observe an
anticorrelation of the initial size of the fireball and of
the transverse momentum generated in an event. The
expansion of a source of larger extent yields smaller pT

then in the case of a squeezed source, and vice versa.
(iii) Hydrodynamic expansion is applied to an ensemble of

events, corresponding to centralities 0–70 % in Au-Au
collisions at

√
sNN = 200 GeV. We find a similar

magnitude and centrality dependence of the scaled
momentum fluctuations 〈�pT i�pTj 〉/〈〈pT 〉〉 as in the
STAR [32] and PHENIX experiments [29].

(iv) The dependence of the results on the upper cutoff for
the transverse momentum of the particles agrees nicely
with the data from the PHENIX Collaboration [29].

(v) However, the initial density from the mixed model
(wounded nucleons with an admixture of binary col-
lisions), tuned to reproduce the particle multiplicities,
yields a visible overprediction of the observed value of
〈�pT i�pTj 〉/〈〈pT 〉〉 in the whole centrality range. For
most central events the overprediction is at the level
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of 50%, while it gets relatively closer to the data with
increased centrality.

(vi) Hydrodynamic expansion yields a stronger transverse
push and, simultaneously, stronger pT fluctuations
when the shear viscosity is increased, the freeze-
out temperature is lowered, or if the bulk viscosity
is lowered. However, the scaled fluctuation measure
〈�pT i�pTj 〉/〈〈pT 〉〉 shows very little changes with
these modifications of the physical parameters.

(vii) Predictions of our approach remain essentially un-
changed when the core-corona mechanism of particle
emission is incorporated. Other effects, such as the
transverse-momentum conservation or the finite detec-
tor acceptance do not affect the results, either.

The above points indicate that the identified “geometric”
mechanism of generating the transverse-momentum fluctua-
tions from the initial Glauber-like model is, on the one hand,
very important, easily reproducing the size of the effect and
catching the basic features of the data, on the other hand,
it is somewhat too strong. That hints on an improvement of
the popular Glauber approach of the initial phase. We recall

that the calculations using the averaged initial conditions [1]
show that the fluctuations of the initial size are reduced if the
density in the fireball is determined with the wounded nucleons
only, i.e., without the admixture of binary collisions. At the
same time, however, the model with the wounded nucleons
only fails to generate the proper multiplicity dependence
on centrality, thus is less realistic. Moreover, hydrodynamic
fluctuations in the evolution could add another source of
〈pT 〉 fluctuations [103,104]. Thus, it remains a challenge
to understand in detail the earliest phase of the collision
and reproduce in a uniform way the rich collection of the
one-body and the correlation data, including also the harmonic
flow.
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Commun. 180, 69 (2009).
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