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We study the effects of bulk viscosity on pT spectra and elliptic flow in heavy-ion collisions. For this purpose,
we compute the dissipative correction δf to the single-particle distribution functions in leading-log QCD, and in
several simplified models. We consider, in particular, the relaxation time approximation and a kinetic model for
the hadron resonance gas. We implement these distribution functions in a hydrodynamic simulation of Au + Au
collisions at the Relativistic Heavy Ion Collider (RHIC). We find significant corrections due to bulk viscosity in
hadron pT spectra and the differential elliptic flow parameter v2(pT ). We observe that bulk viscosity scales as
the second power of conformality breaking ζ ∼ η(c2

s − 1/3)2, whereas δf scales as the first power. Corrections
to the spectra are therefore dominated by viscous corrections to the distribution function, and reliable bounds
on the bulk viscosity require accurate calculations of δf in the hadronic resonance phase. Based on viscous
hydrodynamic simulations and a simple kinetic model of the resonance phase, which correctly extrapolates to the
kinetic description of a dilute pion gas, we conclude that it is difficult to describe the v2 spectra at RHIC unless
ζ/s ∼< 0.05 near freeze-out. We also find that effects of the bulk viscosity on the pT integrated v2 are small.

DOI: 10.1103/PhysRevC.85.044909 PACS number(s): 25.75.−q

I. INTRODUCTION

One of the fascinating discoveries of the Relativistic Heavy
Ion Collider (RHIC) program is the near ideal nature of the
fluid produced in the collision of two heavy nuclei [1–5].
There is a general consensus in the community that the ratio
of the shear viscosity to the entropy density of the system is
no more than a few times the bound η/s � 1/4π conjectured
by Kovtun, Son, and Starinets [6]. However, it is difficult to
determine the level of accuracy that can be obtained when
extracting the transport properties. To date, the best estimate
of the shear viscosity comes from a detailed comparison of
particle spectra and elliptic flow with viscous hydrodynamic
simulations [7]. But, within these state-of-the-art calculations,
there are many systematic uncertainties which are not fully
under control. Some of these include the precise form of
the initial condition, the details of the equation of state, the
handling of the freeze-out dynamics, and the role of bulk
viscosity. Irrespective of its role in constraining shear viscosity,
the bulk viscosity of the matter produced at RHIC and the
Large Hadron Collider (LHC) is clearly an interesting quantity
in itself. In this work, we will study the effects of bulk viscosity
on the spectra and the elliptic flow parameter. Our goal is to
assess the uncertainty in the extraction of η/s due to the bulk
viscosity, and to identify observables that constrain the bulk
viscosity.

The earliest viscous hydrodynamic simulations only in-
cluded corrections due to shear viscosity. One could argue that
this may be a safe assumption as there are a number of physical
systems, possibly relevant to heavy-ion collisions, where the
bulk viscosity is zero or negligible. For example, it is well
known that bulk viscosity vanishes in both the nonrelativistic
and ultrarelativistic limits of a gas when the number of particles
are conserved [10]. In a weakly coupled quark-gluon plasma, it
was found that the bulk viscosity is on the order of 1000 times
smaller than the shear viscosity [11]. Finally, in the simplest
kinetic model, the relaxation time approximation, one finds

that the bulk viscosity goes as the square of the deviation from
conformality,

ζ ≈ 15η
(

1
3 − c2

s

)2
. (1)

The above relation was first found by Weinberg for a
photon gas coupled to matter [12]. It also happens to give
parametrically correct results for weakly coupled QCD, but
not for a scalar field theory. In the context of AdS/CFT, an
analogous relationship [13] has been found:

ζ � 2η
(

1
3 − c2

s

)
. (2)

In this case, the bulk viscosity is proportional to the first power
of conformal breaking. Based on these above examples, it is
clear that for a system which is nearly conformally invariant
(such as weakly coupled QCD), the bulk viscosity will be
small. However, lattice QCD computations [14] have shown
that the equation of state differs strongly from the conformal
limit at temperatures relevant to heavy-ion collisions (see
Fig. 1). For example, if the speed of sound approaches c2

s ≈ 0.2
near the phase transition, we find ζ ≈ 0.25η using either of the
expressions (1) or (2) given above. Even larger values ζ ≈ 0.6η

have been obtained in direct lattice studies of the bulk viscosity
in the regime T = (1.25–1.65)Tc [15]. It is therefore important
to study how bulk viscosity modifies hadronic observables,
such as pT spectra and elliptic flow. Previous studies of this
type can be found in [16–23].

We begin by reminding the reader how shear viscosity
manifests itself in the spectra of produced particles. The
equation of hydrodynamics expresses the conservation of the
energy momentum tensor

∂μT μν = 0, (3)

which is given as a sum of ideal and dissipative parts,

T μν = (ε + P)uμuν + Pgμν + πμν + 	
μν. (4)

In the above expression for the stress-energy tensor, we have
used the definition of the three-frame projector 
μν = gμν +
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KEVIN DUSLING AND THOMAS SCHÄFER PHYSICAL REVIEW C 85, 044909 (2012)

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 100  150  200  250  300  350  400  450  500

T [MeV]

cs
2

Ideal Gas

Lattice

FIG. 1. (Color online) Sound speed squared as a function of
temperature from the parametrization of the lattice QCD equation
of state given in [8]. See [9] for a discussion of the various
parametrizations available for the QCD equation of state.

uμuν . In the first-order (or Navier-Stokes) approximation, the
dissipative parts of the stress-energy tensor can be written in
the local rest frame as

πij = −η
(
∂iuj + ∂jui − 2

3δij ∂ku
k
) = −ησ ij

≡ −2η〈∂iuj 〉, (5)

	 = −ζ∂ku
k, (6)

where η (ζ ) is the shear (bulk) viscosity and 〈· · ·〉 indicates
that the bracketed tensor should be symmetrized and made
traceless. In principle, it would be satisfactory to solve the
relativistic Navier-Stokes equations in order to compute the
first-order viscous correction to particle spectra. However,
the first-order theory is plagued with difficulties such as
instabilities and violations of causality. In order to circumvent
these difficulties, it is necessary to use a second-order theory,
such as the one proposed by Israel and Stewart [24,25] or
Öttinger and Grmela [26,27]. The two theories are qualitatively
the same in that they both approach the first-order theory for
small relaxation times. In this work, we will not be interested
in the higher-order corrections arising from the second-order
theory. Instead, we use second-order hydrodynamics as a
practical way to obtain the lowest-order correction in going
from ideal to Navier-Stokes hydrodynamics.

The solution to the Navier-Stokes equations will lead to
viscous corrections to the resulting temperature and flow
profiles. Particle spectra are then computed using the Cooper-
Frye [28] formula

Ep
dN

d3p
= 1

(2π )3

∫
σ

f (Ep)pμdσμ, (7)

where σμ is the freeze-out hypersurface taken as a surface
of constant energy density in this work. For a system out of
equilibrium, f (Ep) is not the equilibrium distribution function
but also contains viscous corrections

f (Ep) = f0(Ep) + δf (Ep), (8)

where f0 is the usual equilibrium Bose-Fermi distribution
function. The only constraint on δf is that the stress-energy

tensor remains continuous across the freeze-out hypersurface:

δT μν =
∫

d3p
(2π )3Ep

pμpνδf (Ep). (9)

As shown in [29], this constraint still leaves a lot of freedom
in the form of δf for shear viscosity. It was argued that the
functional form of δf could fall anywhere between a linearly
increasing function of momentum to a quadratically increasing
function of momentum. These two forms of the distribution
function lead to qualitatively different behavior for v2(pT ) as
demonstrated by the right plot of Fig. 2. By definition, v2(pT )
is given by

v2(pT ) ≡
∫

dφ cos(2φ) (dN + δdN)∫
dφ (dN + δdN)

, (10)

where dN is short for dN/(dpT dφ) and δdN is the first
viscous correction to this. If, as a pedagogical exercise we
neglect the viscous correction to the distribution function
all together (which violates energy-momentum conservation
across the freeze-out surface), v2(pT ) would follow the curve
labeled “f0” as shown in the left plot of Fig. 2. Clearly, the
form of the viscous correction to the distribution function will
play an important role in extracting the shear viscosity.

There is an analogous viscous correction to the distribution
function coming from bulk viscosity as well. The main goal
of this work is to characterize the functional form of δf due
to bulk viscosity for various theories and models. We will
also show how bulk viscous corrections exhibit themselves in
spectra as well as some phenomenological consequences.

II. BOLTZMANN TRANSPORT EQUATION

Let us first start by setting up the notation that will be used
throughout this work. The equilibrium distribution functions
for bosons and fermions are

np = 1

eβEp ∓ 1
, (11)

where the upper (minus) sign is for bosons and the lower (plus)
sign is for fermions. We will use capital letters P,Q to label
4-vectors and bold type p, q for their corresponding 3-vector
components having energy Ep, Eq. The magnitude of the
three-momentum will be written as p, q. The sign convention
for the metric tensor is [−,+,+,+] and therefore the hydro-
dynamic fluid four-velocity obeys the normalization condition
uμuμ = −1. We also use the notation ωp ≡ Pμ(β)uμ(t, x)
for the quasiparticle’s energy in the laboratory frame having
four-momentum P μ = (P 0 ≡ Ep, p) in the local rest frame.

The starting point for our analysis will always be the
Boltzmann transport equation

Df (t, x, p) ≡ (∂t + vp · ∂x + F · ∂p)f (t, x, p) = −C[f, p],

(12)

where vp is the particle’s velocity and F is the external force
on the particle,

vp ≡ ∂pEp , F ≡ dp
dt

= −∂xEp. (13)
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FIG. 2. (Color online) Typical results for v2(pT ) from a viscous hydrodynamic model using a quadratic deviation from equilibrium;
δf (p) ∼ p2. The left plot also shows the viscous result without including the off-equilibrium correction to the distribution function. The right
plot compares the quadratic ansatz with a linear ansatz; δf (p) ∼ p. Both curves result in the same shear viscosity to entropy ratio.

In this work, we will consider only small deviations from
local thermal equilibrium and therefore expand the Boltzmann
equation around the local thermal equilibrium solution

feq(t, x, p) = 1

e−β(t,x)ωp(t,x) ∓ 1
. (14)

This procedure is known as the Chapman-Enskog expansion.
In the Chapman-Enskog procedure, we expand the left-
hand side of the Boltzmann equation in gradients of the
thermodynamic variables and linearize the collision operator
in δf = f − feq. Using the relations1

∂feq
∂β

= np(1 ± np)
∂(βωp)

∂β
, (15)

∂feq
∂ωp

= np(1 ± np)β, (16)

the left-hand side of the Boltzmann equation can be written
as2

Dfeq
np(1 ± np)

= ∂(βEp)

∂β
(∂t + vp · ∂x)β

+β(∂t + vp · ∂x + F · ∂p)ωp. (17)

Let us now assume that the quasiparticles in our system have
a dispersion relation of the form

Ep =
√

m2(β(x, t)) + p2, (18)

where we have implicitly included a mass that may be a
function of temperature. With this dispersion relation, the

1Two useful identities are ∂np/∂p = −np(1 ± np) and ∂2np/∂p
2 =

np(1 ± np)(1 ± 2np).
2Even though we are working in the local rest frame, gradients that

are acting on the flow velocity are still nonvanishing. For example,
∂μui �= 0 but ∂μu0 = 0 since uμuμ = −1.

following identities hold:

vp = p
Ep

, F = − m

Ep
∂xm = −∂Ep

∂β
∂xβ. (19)

Making use of the above relations, the left-hand side of the
Boltzmann equation can be rewritten as3

EpDfeq

βnp(1 ± np)
= 1

2
pipjσij + ∂iu

i

(
p2

3
− c2

s Ep
∂(βEp)

∂β

)
,

(20)

where we have defined

σ ij = 2〈∂iuj 〉 = (
∂iuj + ∂jui − 2

3δij ∂ku
k
)
. (21)

In order to match the kinetic description to hydrodynamics,
we need to define a covariantly conserved energy-momentum
tensor in the kinetic theory. There is a subtlety that comes about
due to the space-time dependence of the mass in the dispersion
relation. In order to see this, let us first start with the canonical
form of the stress-energy tensor, which is typically used in
kinetic theory

T μν(t, x) =
∫

d3p
(2π )3Ep

P μP νf (t, x, p). (22)

For situations where the dispersion relation is independent of
the medium, this form is satisfactory as one can show that
energy and momentum is covariantly conserved.4 Here,

∂μT μν = 0. (25)

In the case where we have a nontrivial dispersion relation,
the partial integration can not pass through the integration

3In deriving this expression, we have used the two equilibrium
identities ∂tui = ∂i ln β and ∂t ln β = c2

s ∂iu
i .

4This can be seen by using the definition of the stress-energy tensor
given in Eq. (22) and differentiating both sides. For the specific case
where the dispersion relation is independent of space-time, we find

∂μT μν =
∫

d3p
(2π )3Ep

pνpμ∂μf (t, x, p). (23)

044909-3
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measure. Instead, we find that

∂μT μν = Sν, (26)

where

Sν =
∫

d3p
(2π )3

f (t, x, p)∂μ

(
P μP ν

Ep

)

−
∫

d3p
(2π )3

P ν F · ∂pf (t, x, p). (27)

We would like to modify the stress-energy tensor such that the
above source term vanishes. This can be achieved by using the
definition

T μν =
∫

d3p
(2π )3Ep

(
P μP ν − uμuνT 2 ∂m2

∂T 2

)
f (t, x, p).

(28)

Throughout this work, we will always use this modified form of
the stress-energy tensor when matching from the kinetic theory
to the macroscopic hydrodynamic fields. We stress that if the
quasiparticle’s mass is space-time independent, the above two
definitions of the stress-energy tensor coincide. We also note
that these observations are not new. The modified form of the
stress-energy tensor was used in studies of the bulk viscosity
of a hadronic gas [30–33] and of scalar field theory [34,35].

III. RELAXATION TIME APPROXIMATION

In this section, we consider the simplest form of the
collision kernel, which is known as the relaxation time
approximation (RTA) or Bhatnagar-Gross-Krook (BGK) ap-
proximation. In this model, the collision term has the simple
form

C[f, p] = f (p) − np

τR(Ep)
. (29)

If we define the deviation from equilibrium as δf (t, x, p) ≡
np − f (p) and use the linearized form of the streaming
operator given in Eq. (20), we find that

δf = −τR(Ep)

EpT
np(1 ± np)

×
[

1

2
pipjσij + ∂iu

i

(
p2

3
− c2

s Ep
∂(βEp)

∂β

)]
. (30)

We would now like to identify the relaxation time encoded
in δf with the transport coefficients η and ζ . First, we start
with the shear viscosity. Looking at any of the off-diagonal
components of the stress-energy tensor given in Eqs. (4) and

In this case, the Boltzmann equation is pμ∂μf (t, x, p) = −EpC[f, p]
and we find

∂μT μν = −
∫

d3p
(2π )3

pνC[f, p]. (24)

The four-momentum is a collisional invariant and the right-hand side
vanishes.

(28), we find in the local rest frame

δT xy = −2η〈∂xuy〉 =
∫

d3p
(2π )3

pxpy

Ep
δf, (31)

and the shear viscosity can be identified as

η = β

30π2

∫
p6

E2
p
τR(Ep)np(1 ± np) dp. (32)

If we take a relaxation time of the form5

τR(Ep) = τ0β(βEp)1−α, (33)

we find the following relation between the shear viscosity and
relaxation time:

η = τ0T
3

30π2
Iα(βm), (34)

where the dimensionless phase-space integral Iα is worked out
in Appendix B1.

We now come to bulk viscosity, which characterizes the
deviation of the pressure from its equilibrium value as the fluid
expands or contracts more quickly than the time it takes the
pressure to relax back to its equilibrium value. The bulk viscous
pressure 	 is therefore related to the extra pressure from the
departure from equilibrium δf . However, the departure from
equilibrium can not only shift the pressure but also the energy
density by an amount δε. This shift in energy density will also
lead to a shift in pressure, which should not be included in
the bulk viscous pressure. This is because the bulk viscous
pressure should only include the difference between the actual
pressure and the pressure determined by thermodynamics [11],
which in our case will be P(ε + δε). This additional pressure
shift must therefore be subtracted when defining the bulk
viscous pressure6

	 ≡ 1

3
T ii − P(ε + δε)

=
∫

d3p
(2π )3Ep

(
p2

3
− c2

s Ep
∂(βEp)

∂β

)
δf. (37)

By making use of the form of the dispersion relation in Eq. (18),
it will be convenient to define the quantities m̃ and Ẽp via

Ep
∂(βEp)

∂β
= p2 +

(
m2 − ∂m2

∂T 2
T 2

)
≡ p2 + m̃2 ≡ Ẽ2

p.

(38)

5We follow the notation of [29] whereby taking α = 0 corresponds
to the usual quadratic ansatz. In this case, the relaxation time grows
linearly with momentum τR ∼ Ep and χ ∼ p2. The other extreme
case follows from α = 1 where now the relaxation is independent
of momentum, τR ∼ const and χ ∼ p. For leading-order QCD, one
numerically finds α = 0.62 and χ ∼ p1.38.

6We have used

P(ε0 + δε) ≈ P(ε0) + c2
s δe, (35)

where from Eq. (28) we have

δε =
∫

d3p
(2π )3Ep

(
E2

p − T 2 ∂m2

∂T 2

)
δf. (36)

044909-4



BULK VISCOSITY, PARTICLE SPECTRA, AND FLOW IN . . . PHYSICAL REVIEW C 85, 044909 (2012)

The following relation between the relaxation time and bulk
viscosity coefficient ζ then holds:

ζ = τ0T
3

2π2
Jα(βm, βm̃), (39)

where the dimensionless phase-space integral Jα depends on
both the thermal mass m and the shifted mass m̃. This phase-
space integral is discussed at length in Appendix B1. In the
high-temperature limit (T 	 m, m̃), one finds

η = τ0T
3

30π2
�(6 − α), ζ = τ0T

3

2π2
�(6 − α)

(
1

3
− c2

s

)2

,

(40)

where the function �, defined in Appendix B1, depends on the
statistics of the particles. For classical statistics, � is the usual
gamma function. From the above formulas, we can recover the
well-known relationship [36] between shear and bulk viscosity,

ζ = 15η
(

1
3 − c2

s

)2
. (41)

We note that this relation is independent of the momentum
dependence of the relaxation time.

A. Landau matching in the relaxation time approximation

Landau matching is a way to uniquely specify the energy
density ε and fluid four-velocity uμ in terms of four-
components of T μν . If we use the Landau-Lifshitz convention

ε = uμuνT
μν, (42)

εuμ = −uνT
μν, (43)

then the other six independent components of T μν are given by
a nonequilibrium stress tensor πμν satisfying uμπμν = 0. In
order that the stress-energy tensor remains continuous across
the freeze-out surface, the functional form of δf must be such
that the Landau-matching condition is satisfied; uμδT μν = 0.
From Eq. (28), the matching condition is

0 =
∫

d3p
(2π )3Ep

(
ωpP

ν + uνT 2 ∂m2

∂T 2

)
δf (Ep). (44)

It is sufficient for the above matching condition to be satisfied
in the local rest frame. This corresponds to the condition that
the shift in energy density stemming from δf vanishes:

δε = 0 =
∫

d3p
(2π )3Ep

Ẽ2
p δf (Ep). (45)

Let us now look at the energy density shift coming from the
off-equilibrium distribution given in Eq. (30):

δεRTA = 	β5

Jα(βm, βm̃)

∫
d3p

(2π )3

(
Ẽp

Ep

)2

np(1 ± np)

×
(

p2

3
− c2

s Ẽ
2
p

)
(βEp)1−α. (46)

The above expression simplifies considerably when there are
no mean fields Ẽp → Ep:

δεRTA ∝
∫

d3p
(2π )3

np(1 ± np)

(
p2

3
− c2

s E
2
p

)
(βEp)1−α.

(47)

The above integral vanishes only for α = 1, which is the case
where the relaxation time τR(Ep) is momentum independent.7

Therefore, if one considers a gas of particles where the
deviation from conformality comes from the bare mass of
the particle only (no mean fields), then the relaxation time
approximation can be used if and only if the relaxation time is
independent of momentum.

In the presence of mean fields (i.e., the quasiparticle’s mass
is temperature dependent), we can write Eq. (46) as

δεRTA ∝
∫

d3p
(2π )3

np(1 ± np)

(
p2

3
− c2

s Ẽ
2
p

)
(βEp)1−α

− ∂m2

∂T 2

∫
d3p

(2π )3
np(1 ± np)

×
(

p2

3
− c2

s Ẽ
2
p

)
(βEp)−α−1. (49)

In this case, taking α = 1 makes the first term vanish, but
the second term remains finite (even though it may be
parametrically small since it is proportional to the coupling). It
is possible, however, to use the relaxation time approximation
consistent with Landau matching by a fine tuning of the
parameter α.

IV. SCALAR FIELD THEORY

The case of a weakly coupled scalar field theory was
studied by Jeon [34], where the Boltzmann equation and
collision kernel were derived from first principles. While the
full computation of the transport coefficients are numerically
intensive, a lot can be said about the form of the off-equilibrium
distribution function from certain general considerations. As
shown in [35], one can compute the transport coefficients in
gφ3 + λφ4 theory at weak coupling by solving Boltzmann
equation8

(∂t + vp · ∂x + F · ∂p)f (t, x, p)

= −C2↔2[f, p] − C2↔4[f, p], (50)

where the collision operator has been split into a term con-
taining 2 ↔ 2 processes and a second term involving number-
changing 2 ↔ 4 processes. While the number-changing pro-
cesses are higher order in the coupling constant (λ), they
are required in order for a system undergoing a uniform

7This is easily seen by using the definition of the sound speed,

c2
s =

1
3

∫
d3p

(2π )3 p2np(1 ± np)∫
d3p

(2π )3 Ẽ2
pnp(1 ± np)

. (48)

8For our discussion, it will be sufficient to look at a pure λφ4 theory.
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expansion or contraction to equilibrate. If number-changing
processes were not included, the above Boltzmann equation
would have no solution. Formally, this is due to the presence
of a (spurious) zero mode associated with particle-number
conservation in the 2 ↔ 2 processes. This zero mode is not
orthogonal to the source term and subsequently renders the
linearized Boltzmann equation noninvertible. We should also
point out that there is a zero mode corresponding to energy
conservation. This zero mode is not problematic since it is
orthogonal to the source.

It is precisely the above behavior of a scalar field theory
that allows one to obtain the approximate form of the off-
equilibrium distribution function. In order to see how this
works out, let us start by linearizing the above Boltzmann
equation around its equilibrium solution

δf (p) = −np(1 + np)χπ (p)p̂i p̂j 〈∂iuj 〉
−np(1 + np)χ

	
(p)∂ku

k. (51)

This equation for δf follows from the Chapman-Enskog
expansion Eq. (17). The equations in the shear and bulk
channels can be separated. In the spin-0 (bulk) channel, we
find

β

Ep

(
p2

3
− c2

s Ep
∂(βEp)

∂β

)
= −C2↔2[δf, p] − C2↔4[δf, p],

(52)

where we have written C[δf, p] to make it explicit that the
collision term should be linearized around the equilibrium
solution. The resulting operators (including the final-state
symmetry factors) are

C2↔2[δf, p] = 1

2!

∫
k,p′,k′

�pk→p′k′ npnk(1 + np′)(1 + nk′)

× [χ
	

(p) + χ
	

(k) − χ
	

(p′) − χ
	

(k′)], (53)

C2↔4[δf, p]

= 1

3!2!

∫
k,p′,k′,q,q′

�p′k→pk′qq′ npnk′nqnq′(1 + np′)(1 + nk)

× [χ
	

(p′)+χ
	

(k) − χ
	

(p)−χ
	

(k′)−χ
	

(q) − χ
	

(q ′)]

− 1

4!1!

∫
k,p′,k′,q,q′

�pk→p′k′qq′ np′nk′nqnq′(1+np)(1+nk)

× [χ
	

(p)+χ
	

(k)−χ
	

(p′)−χ
	

(k′)−χ
	

(q) − χ
	

(q ′)],
(54)

where we have used the shorthand
∫

p = ∫
d3p

(2π)3 . The transition
rates are given as

�pk→p′k′ = |M2→2|2
(2Ep)(2Ek)(2Ep′)(2Ek′)

(2π )4δ4

× (P + K − P ′ − K ′), (55)

�pk→p′k′qq′ = |M2→4|2
(2Ep)(2Ek)(2Ep′)(2Ek′)(2Eq)(2Eq′)

(2π )4δ4

× (P + K − P ′ − K ′ − Q − Q′). (56)

Formally, we can solve Eq. (52) by inverting the collision
operator. Lu and Moore observed that the largest contribution
will come from the near-zero mode [37], which has the form

χ
	

(p) = χ0 − χ1Ep, (57)

where χi are constants to be determined. By substituting the
above form of χ

	
(p) into the spin-0 channel of the linearized

Boltzmann equation (52), and integrating both sides over all
phase space, we obtain

χ0 = βF
4�inelastic

, (58)

where

�inelastic = 1

48

∫
pkp′k′qq′

�pk→p′k′qq′ np′nk′nqnq′

× (1 + np)(1 + nk), (59)

and we have defined the function

F ≡
∫

d3p
(2π )3Ep

(
p2

3
− c2

s Ep
∂(βEp)

∂β

)
np(1 + np), (60)

which characterizes the deviation of the theory from confor-
mality. The total inelastic cross section given in Eq. (59) can
be computed by doing the phase-space integrals numerically.
From a phenomenological perspective, this is not necessary.
Instead, the total inelastic cross section can be related to the
bulk viscosity coefficient by using Eq. (37). This identification
leads to

χ0 = ζ

F . (61)

The constant χ1 is undetermined by the Boltzmann equation.
Instead, it is constrained by requiring that the deviation from
equilibrium does not bring about a shift in the energy density,

δε = 0 =
∫

d3p
(2π )3Ep

Ẽ2
pδf. (62)

We therefore find the following form for the off-equilibrium
distribution function:

χ
	

(p) = ζ

F (1 − GEp), (63)

where F has been defined in Eq. (60) and

G ≡
∫

d3p
(2π)3Ep

Ẽ2
pnp(1 + np)∫

d3p
(2π)3 Ẽ2

pnp(1 + np)
. (64)

For completeness, it is worth discussing the parametric
behavior of the bulk viscosity at high temperature. The bulk
viscosity coefficient is given by

ζ = βF2

4�inelastic
. (65)

In the high-temperature limit, we can evaluate F semiana-
lytically (see Appendix B2). In this regime, we can ignore
the bare and thermal mass of the scalar quasiparticles (up to
logarithms). The deviation from conformality contained in F
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is controlled by the running of the coupling. For a scalar field
theory, we have

m2
thermal = λT 2

24
−→ m̃2 = β(λ)T 2

48
, (66)

and using β(λ) = 3λ2

16π2 , we find that

F = λ2T 4 ln (γ λ)

3(32π2)2
where γ ≡ 1

96
e15ζ+(3)/π2

. (67)

Naively, the total inelastic rate would go as λ4T 4. However,
there is a soft enhancement which leads to � ∝ λ3T 4 [35]. We
therefore find that

ζ ∝ λ3T 3 ln2 (γ λ)

9(32π2)4
. (68)

V. LEADING-LOG TREATMENT IN QCD

In this section, we will use the Boltzmann equation in
the leading-log(T/mD) approximation. In this approximation,
the dynamics can be summarized by a Fokker-Plank equation
which describes the momentum diffusion of the quasiparticles.
The functional form of χ

	
can be found by solving a simple

ordinary differential equation. We start by discussing the pure
glue theory and then consider a multicomponent quark-gluon
plasma (QGP).

A. Pure glue

In a leading-log approximation, log(T/mD) is considered
to be parametrically large. The resulting dynamics describes
Coulomb scattering with a small momentum transfer of order
q ∼ gT , but with a rapid collision rate of ∼g2T (up to
logarithms). At leading-log order, the linearized Boltzmann
equation can be recast as a Fokker-Planck equation [38,39].
This equation allows us to determine χ (p) in a suitable limit
(absence of “gain” terms) by solving a differential equation
rather than an integral equation. The Fokker-Planck equation
is

1

2
pipjσij + ∂iu

i

(
p2

3
− c2

s Ep
∂(βEp)

∂β

)

= T μA

np(1 + np)

∂

∂pi

(
np(1 + np)

∂

∂pi

[
δf (p)

np(1 + np)

])

+ gain terms

np(1 + np)
, (69)

where μA is the drag coefficient in the leading-log approxima-
tion

dp
dt

= μAp̂, μA = g2CAm2
D

8π
log

(
T

mD

)
. (70)

The Debye mass is given by m2
D = 1

3 (CA + Nf

2 )g2T 2 with
CA = Nc. Equation (69) without the gain terms is a Fokker-
Planck equation for a hard particle undergoing drag and
diffusion in a thermal bath. In order to conserve energy and

momentum, the gain terms must be included. The gain terms
can be written as [38]

gain terms ≡ 6

T 3

[
1

p2

∂

∂p
p2np(1 + np)

]
dE

dt

+ 6

T 3

[
∂

∂p
np(1 + np)

]
· dP

dt
, (71)

where dE/dt and dP/dt are the energy and momentum
transfer to the hard particle from the thermal bath per unit
time;

dE

dt
=

∫
d3p

(2π )3
p̂ · jp,

dP
dt

=
∫

d3p
(2π )3

jp, (72)

where

jp = −T μAnp(1 + np)
∂

∂p

[
δf

np(1 + np)

]
. (73)

We express the off-equilibrium distribution function in terms
of χπ and χ

	
as in Eq. (51). By substituting this expression into

the Fokker-Planck equation, we find that the shear and bulk
contributions decouple. In the shear channel, the gain terms
vanish and we are left with the following ordinary differential
equation for χπ (p):

p

T
= μAT

[
−χ ′′

π +
(

1 + 2np

T
− 2

p

)
χ ′

π + 6

p2
χπ

]
. (74)

At high momentum, (1 + 2np) → 1 and we find [29]

χπ (p) = 1

2T μA

p2. (75)

The above differential equation can also be solved numerically.
For this purpose, two boundary conditions must be specified.
The first boundary condition is that χπ (p = 0) = 0, which
implies that in QCD soft gluons equilibrate rapidly. The second
boundary condition follows from the structure of the solution
at large momentum. In general, the differential equation has
two independent solutions, one being a polynomial in p and
the other growing exponentially in p. We choose the second
boundary condition so that the exponentially growing solution
is suppressed. In practice, this can be done using a shooting
method on χ ′(p = 0) such that χ ′′′(p = pmax) = 0, which
removes the exponential solution. The result of this procedure
is shown in Fig. 3. The shear viscosity can be found using the
relation

η =
∑

a

νa

30π2

∫
p4

Ep
np(1 ± np)χπ (p), (76)

and we find η/(g4T 3 ln) = 27.1 in agreement with [39].
In the case of bulk (l = 0) channel, while dP/dt is zero the

gain term dE/dt is nonvanishing. In order to understand the
role of this term, we first analyze the Fokker-Planck without
the gain term(

1

3
− c2

s

)
p

T
− c2

s m̃
2
A

1

pT

= μAT

[
−χ ′′

	
+

(
1 + 2np

T
− 2

p

)
χ ′

	

]
. (77)
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FIG. 3. (Color online) Nonequilibrium distribution functions χπ

(red curve labeled shear) and χ
	

(blue curves labeled bulk) of gluons
in leading log approximation. The functions χπ and χ

	
are defined

in Eq. (51). We have rescaled χπ by one power of the conformal
breaking parameter (1/3 − c2

s ) in order to check the expected scaling
behavior χ

	
∼ (1/3 − c2

s )χπ . The dotted line shows the bulk viscous
correction χ

	
before it was made orthogonal to the energy density.

The curves in this plot were obtained for mD/T = 1, corresponding
to a very weak coupling αs = 1/(4π ).

This differential equation has one exact zero mode, χ
	

∝
const, related to particle-number conservation in 2 ↔ 2
scattering. This zero mode is removed if 2 ↔ 3 splitting
and joining processes are included. We can take this into
account by imposing the boundary condition χ

	
(p = 0) = 0.

The second boundary condition is chosen in order to suppress
the exponentially growing solution as discussed in the shear
case.

The solution obtained in this way is not physically accept-
able because it does not respect energy conservation. The fact
that the collision term conserves energy implies that the most
general solution of the linearized Boltzmann equation must be
of the form χ

	
(p) = χ0

	
(p) + χ1p, where χ1 is a constant and

we have used the fact that the leading-log collision integral is
computed using Ep � p. It is easy to see that this is a property
of the Fokker-Planck equation in the bulk channel with the
gain term included, but not without it. We find that restoring
the zero mode χ

	
∝ p is the dominant effect of the gain term,

and that χ0
	

(p) is very well approximated by the solution of
the ordinary differential equation (77).

The freedom in adding the zero mode has no effect on the
calculation of the bulk viscous pressure via Eq. (37) because
any shift in the pressure due to a shift in the energy density is
projected out. However, in this work, we are also interested in
the correction to the single-particle spectra, and in that context
the linear term in χ

	
matters. We therefore fix χ1 by the

requirement that δf does not contribute to the energy density
as required by the Landau-matching conditions

0 =
∫

d3p
(2π )3Ep

Ẽ2
pnp(1 + np)[χ

	
(p) − χ1p]. (78)

In this case, there is no need to remove the shift in pressure
due to the shift in energy density when computing the bulk

viscosity

ζ =
∫

d3p
(2π )3Ep

p2

3
np(1 + np)[χ

	
(p) − χ1p]. (79)

The numerical solution of Eq. (77) is shown in Fig. 3.
We observe that χB changes sign at p ∼ 4T , and that for
large values of the momentum p ∼> 7T , the nonequilibrium
distribution function in the bulk channels scales as the
distribution function in the shear channel multiplied by one
power of the conformal symmetry-breaking parameter

χ
	

∼ (
1
3 − c2

s

)
χπ . (80)

Integrating the solution gives ζ/(T 3α2
s ) ln = 0.44, in agree-

ment with the result in [11]. The bulk viscosity scales as the
second power of the conformal symmetry parameter

ζ ∼ 47.9
(

1
3 − c2

s

)2
η. (81)

This result has the same structure as the relation obtained in
the relaxation time approximation [Eq. (41)], but with a larger
numerical coefficient.

B. Quark-gluon plasma

The previous analysis can be easily extended to a multi-
component system. For a quark-gluon plasma, the extension
of Eq. (77) is [38,39]

qA(p) = CLoss(χ
g) − 2γ

p

Nf dF

dA

nF
p

nB
p

(χq + χq − 2χg), (82)

2qF (p) = CLoss(χ
q) + CLoss(χ

q)

+ 2γ

p
(χq + χq − 2χg)

[
1 + nB

p

1 − nF
p

]
, (83)

0 = CLoss(χ
q) − CLoss(χ

q)

+ 2γ

p
(χq − χq)

[
1 + nB

p

1 − nF
p

]
, (84)

where χg,q = χg,q
	

(p) is the off-equilibrium distribution func-
tion for gluons and quarks, and qI=A,F is the corresponding
source term (A adjoint gluons, F fundamental quarks). The
source and loss terms are different in the shear (l = 2) and
bulk (l = 0) channels. In the bulk channel,

qI (p) ≡
(

1

3
− c2

s

)
p

T
− c2

s m̃
2
I

1

pT
, (85)

CLoss(χ ) ≡ μIT

[
−χ ′′ +

(
1 ± 2np

T
− 2

p

)
χ ′

]
. (86)

For comparison, we also show the corresponding source and
loss term in the shear channel,

qI (p) ≡ p

T
, (87)

CLoss(χ ) ≡ μIT

[
−χ ′′ +

(
1 ± 2np

T
− 2

p

)
χ ′ + 6

p2
χ

]
.

(88)
The coupled second-order differential equations for χg,q can
be solved in the same manner as the pure glue case. The
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FIG. 4. (Color online) Deviation of quarks and gluons from
equilibrium due to a bulk stress in leading-log approximation. The
dashed curves show the results before the solutions were made
orthogonal to the energy density.

result is shown in Fig. 4. We observe that there are important
differences between quarks and gluons, and that there is a
shift in the gluon distribution due to the presence of quarks.
Integrating the distribution functions gives a bulk viscosity
ζ/(T 3α2

s ) ln = 0.66 for Nf = 3.
We are now in a position to compute viscous corrections

to the elliptic flow of quarks and gluons. Our calculations
are based on the (2 + 1)-dimensional second-order hydrody-
namics code described in [2]. See Appendix A for details of
the hydrodynamic model. We choose an initial energy density
appropriate for Au + Au collisions at 200 A GeV. The results
shown in Fig. 5 correspond to an impact parameter b = 6.8 fm.
The differential elliptic flow parameter v2(pT ) for quarks
and gluons is computed using the strategy outlined in the
Introduction. We have used mD = 2.9T , which corresponds
to c2

s = 0.2. For these parameters, leading-log QCD predicts
η/s = 0.16 and ζ/s = 0.08. These values of the transport
coefficients lead to rather large corrections of the spectra. The

results shown in Fig. 5 were obtained for a smaller value of
the bulk viscosity ζ/s = 0.04.

In both the left and the right panels of Fig. 5, the elliptic
flow parameter v2(pT ) in ideal hydrodynamics is shown as the
solid red line, and the elliptic flow of quarks and gluons in
a simulation with shear viscosity only is shown as the solid
green and blue curves. The dashed curves in the left panel show
the result if bulk viscosity is included in the hydrodynamic
evolution, but not in the distribution functions (shear viscosity
is included in δf ). We note that this procedure violates energy-
momentum conservation across the freeze-out hypersurface,
but it gives an indication of the role that bulk viscosity plays in
the hydrodynamic evolution. The inclusion of bulk viscosity
reduces both the radial flow and the momentum anisotropy.
These two effects lead to a small reduction of v2(pT ) for pT ∼<
2 GeV.

The right panel in Fig. 5 shows the full result including the
effect of bulk viscosity on the distribution function. Comparing
with the left panel, we clearly observe the importance of
viscous correction to δf . From Eq. (51) and Fig. 4, we can
see that the shift in the distribution functions due to bulk
viscosity is positive at small pT . From Fig. 4, the sign change
in χ

	
occurs around p/T ∼ 5. At a decoupling temperature

of 150 MeV, this corresponds to pT ∼< 750 MeV. Taking into
account the boost due to radial expansion, the critical pT is
further reduced to pT ∼< 400 MeV, which is barely visible
on the plot. At higher momentum, the bulk viscosity tends to
soften the pT spectra. As the spectra enter into the denominator
in Eq. (10), this leads to an increase in v2(pT ).

Overall, the effect of bulk viscosity on v2(pT ) in the regime
pT ∼< 2 GeV is modest, considering that ζ is only a factor of
four smaller than η. This result is consistent with the scaling
relations (80) and (81). At very weak coupling, ζ is suppressed
by two powers of the small parameter (1/3 − c2

s ), whereas
δf is only suppressed by one power. At strong coupling,
however, the large numerical coefficient in Eq. (81) enhances
ζ/η relative to χ

	
/χπ .
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FIG. 5. (Color online) Differential elliptic flow of quarks and gluons. The solid curves labeled “quarks” and “gluons” represent the quark
and gluon elliptic flow using the leading-log form of the shear viscous correction to the distribution function. In both figures, the shear viscosity
to entropy ratio is η/s = 0.16. The corresponding dashed curves are the results for a viscous hydrodynamic evolution having η/s = 0.16
and ζ/s = 0.04. The dashed curves in the left plot neglect the bulk viscous correction to the distribution function at freeze-out. The left plot
should be taken as strictly pedagogical since energy-momentum conservation is violated. The right plot shows the complete leading-log result.
Additional details of the hydrodynamic parameters can be found in Appendix A.
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C. Leading-order behavior at large momentum

In perturbative QCD, the leading-order result for the bulk
viscosity is governed by small-angle 2 ↔ 2 scattering, and
inelastic 2 ↔ 3 processes are suppressed by a logarithm of
the coupling constant. At large momenta, p > T/ ln(1/g), the
logarithmic suppression is compensated by the growth of the
2 ↔ 3 reaction with energy. In this regime, the correction to
the distribution function is determined by the physics of energy
loss. Arnold et al. showed that at leading order in the coupling,
these effects can be included in terms of an effective 1 ↔ 2
collision term [40]

pνaC1↔2
a

(2π )3
=

∑
bc

∫
dx

x5/2
γ c

ab[p; xp, (1 − x)p]

× na
pn

b
(1−x)p/x

(
1 ± nc

p/x

) [
χa

p + χb
(1−x)p/x − χc

p/x

]
+ 1

2

∑
bc

∫
dx γ a

bc[p; xp, (1 − x)p
]
na

p

(
1 ± nb

xp

)
× (

1 ± nc
(1−x)p

) [
χa

p − χb
xp − χc

(1−x)p

]
, (89)

where a, b, c = g, q for quarks/gluons and χp ≡ χ
	

(p). The
splitting functions γ a

bc are given by

γ g
gg =

√
2q̂

αsCAdA

(2π )4

√
1 + x2 + (1 − x)2

1 + x4 + (1 − x)4

[x(1 − x)]3/2
,

(90)

γ g
qq =

√
2q̂

αsCF dF

(2π )4

√
κ + x2 + (1 − x)2

x2 + (1 − x)2

[x(1 − x)]1/2
,

(91)

γ q
gq =

√
2q̂

αsCF dF

(2π )4

√
1 + κx2 + (1 − x)2

1 + (1 − x)2

[x3(1 − x)]1/2
,

(92)

where κ ≡ (2CF − CA)/CA and

q̂ = CAg2T m2
D

∫
d2q⊥
(2π )2

1

q2
⊥ + m2

D

= CAαsT m2
D ln

( 〈k2
T 〉

m2
D

)
(93)

is the transverse diffusion constant that controls energy loss in
a quark-gluon plasma. We can study the effect of the 1 ↔ 2
splitting term on the solution of the Boltzmann equation in the
bulk channel at large pT . We find that the asymptotic form of
χ

	
is suppressed relative to the asymptotic solution for χπ by

the first power of the conformal symmetry-breaking parameter

χa

	
(p) = (

1
3 − c2

s

)
χa

π (p) for p 	 T ln−1(1/g). (94)

The asymptotic form of the gluon distribution in the shear
channel is given by

χg
π (p) ≈ 0.7

αsT
√

q̂
p3/2, (95)

where we have used Nf = 0. The corresponding result for the
quark distribution, as well as the dependence on the number
of flavors, is given in [29].

VI. HADRONIC GAS

In the previous section, we saw that there are significant
differences between the viscous corrections to the differential
elliptic flow of quarks and gluons. Of course, the spectra
of quarks and gluons are not directly observable. In this
section, we study the question as to whether similar differences
are expected in the spectra and v2(pT ) of different hadronic
species.

A. Low-temperature pion gas

The bulk viscosity of a pion gas was studied by a number
of authors [37,41–43]. Lu and Moore argued that the system
is similar to the scalar field theory studied in Sec. IV, and that
the bulk viscosity is controlled by number-changing processes
[37]. We will therefore follow the discussion leading up to
Eq. (57) and assume that the deviation from equilibrium is
governed by the near-zero mode

χ (p) = χ0 − χ1Ep. (96)

The coefficient χ1 is determined by Landau matching, and the
coefficient χ0 is controlled by the inelastic cross section

χ0 = βF
4�inelastic

, (97)

where F as written in Eq. (60) is a measure of the deviation
from conformal behavior. In the case of a pion gas, we will
ignore mean-field effects (m̃π = mπ ), and take the deviation
from conformality to be driven by the bare mass of the pion.
In this case, F takes the form

F =
∫

d3p
(2π )3Epπ

(
p2

3
− c2

s E
2
pπ

)
np(1 + np). (98)

The total inelastic rate is dominated by the lowest-order
number-changing process, which is kinematically allowed:
ππ ↔ ππππ . The inelastic cross section also controls the
chemical equilibration rate of pions. The rate at which a pion
chemical potential will return to equilibrium is given by [44]

1

τ chem
π

=
∑

i

(
δnπ

i

)2
�i

nπ

, (99)

where the sum is over all reactions which increase the pion
number by δnπ

i . We can therefore make the following iden-
tification between the bulk viscosity and chemical relaxation
time:

ζ = F2

nπ

τ chem
π . (100)

If we use classical statistics, which is valid for mπ 	 T ,
the phase-space integrals appearing in F can be evaluated
analytically. Normalizing the bulk viscosity by the entropy
density, we arrive at the following relationship between the
bulk viscosity of a low-temperature pion gas and the chemical
equilibration rate:

ζ

s
= mπ

K2 K3

(
K2

2 − K1 K3

3K3 + βmπK2

)2

τ chem
π , (101)
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where Ki=1,2,3 is the modified Bessel function of order
i = 1, 2, 3 evaluated at (βmπ ). The chemical reaction time
arising from inelastic pion reactions can be computed in
chiral perturbation theory. For example, the work of [45]
(see also [46]) found τ chem.

π = 450 fm/c at T = 140 MeV and
τ chem.
π = 120 fm/c at T = 160 MeV for a pion mass mπ = 138

MeV. Based on these calculations, we find ζ/s ≈ 0.14 at
T = 140 MeV and ζ/s ≈ 0.03 at T = 160 MeV.

B. Hadronic resonance gas

The estimate of ζ for a pure pion gas is likely to be
relevant only in a relatively small temperature regime. In the
regime between the freeze-out and the critical temperature,
many resonances are important. We will assume that the
bulk viscosity of a hadronic resonance gas is also dominated
by number-changing processes. If this is the case, we may
approximate the deviation from equilibrium due to bulk
viscosity for each hadronic species by the near-zero mode

δf a(p) = −na
p

(
1 ± na

p

)
∂ku

k
(
χa

0 − χ1Epa

)
, (102)

where Epa
= √

p2 + m2
a . The coefficient χ1 (which is the

same for all species) is determined by the Landau-matching
condition

δε = 0 =
∑

a

νa

∫
d3p

(2π )3
Epa

δf a(p), (103)

where a = π,K, . . . is a sum of all hadronic species in a
resonance gas having degeneracy νa . Using the generalization
of Eq. (37) to a system of multiple species, we find

ζ =
∑

a

νaχ
a
0 Fa, (104)

where

Fa =
∫

d3p
(2π )3Epa

(
p2

3
− c2

s E
2
pa

)
na

p

(
1 ± na

p

)
. (105)

As in the case of a dilute pion gas, we neglect mean-field effects
and assume that the deviation from conformality is related
to the bare masses of the resonances. The off-equilibrium
distribution in a multicomponent system is determined by
one parameter χ1, which is common to all species, and
Nspecies parameters χa

0 that are different for each species. The
parameter χ1 is determined by the Landau-matching condition,
and one linear combination of the χa

0 can be related to the
bulk viscosity. Explicit information on inelastic hadronic cross
sections is needed to determine the remaining (Nspecies − 1)
coefficients.

In this work, we will not attempt to compute these inelastic
rates. Instead, we will rely on a model that is motivated by
prior calculations of chemical equilibration rates in a hadronic
resonance gas [44–48]. By using a phenomenological model
for the inelastic cross section, Pratt and Haglin showed that
the chemical equilibration time near thermal freeze-out is
5–10 times larger for kaons than it is for pions [44]. A
similar estimate was also obtained in a Boltzmann-Uehling-
Uhlenbeck (BUU) transport model [47]. We therefore expect

the bulk viscous correction of kaons to be that much larger than
pions (i.e., χK

0 /χπ
0 ∼ 5–10.). A larger set of resonances (but

excluding strangeness) was studied by Goity [45]. In this paper,
the deviation from chemical equilibrium (at fixed temperature)
is parametrized in terms of effective chemical potentials for
nonconserved charges such as the total number of pions, rho
mesons, nucleons plus antinucleons, etc. Goity finds that the
largest relaxation time corresponds to a chemical potential for
meson (baryon) resonances approximately twice (2.5 times)
larger than that of pions near the transition temperature.

In the following, we will use the ansatz in Eq. (102) and
choose χa

0 for each meson and baryon species to be a constant
multiple Cm and Cb of χπ

0 :

χa
0 =

⎧⎪⎨
⎪⎩

χπ
0 pions,

Cm × χπ
0 mesons,

Cb × χπ
0 baryons.

(106)

Due to the strong ρ → 2π reaction rate, we expect the ρ

and π mesons to be in relative chemical equilibrium. This
suggests that μρ = 2μπ and therefore Cm ≈ 2. Additionally,
the average pion multiplicity in the strong pp → nπ reaction
is n ∼ 5 [49], so that 2μN ≈ 5μπ and therefore Cb ≈ 2.5.
These numbers are in good agreement with results obtained
by Goity [45]. The remaining coefficient χπ

0 is related to the
bulk viscosity via Eq. (104):

ζ = χπ
0

∑
a

νaCaFa where Ca =

⎧⎪⎨
⎪⎩

1 pions,

Cm mesons,

Cb baryons.

(107)

We emphasize that in a complete calculation that includes
inelastic rates such as NN̄ → 5π , the value of ζ is completely
determined by microscopic dynamics. Without microscopic
information about inelastic rates, we can place bounds on χπ

0
from the observed spectra, and then extract bounds on ζ from
Eq. (107).

Details of the hydrodynamic simulation are described in
Appendix A. We use the same initial conditions and impact
parameter as in the case of the pure QGP simulation. The
equation of state is a parametrization of a lattice QCD equation
of state [8]. In the kinetic model defined in Eq. (102), we
include meson/baryon resonances up to a mass of 1.6 GeV
(mesons) and 1.8 GeV (baryons). We have checked that the
corresponding equation of state matches the lattice equation
of state at freeze-out. Our resonance gas model implies χ0

π �
−100ζ/(sT ). We have chosen (ζ/s)frzout = 0.005, which
corresponds to χ0

p � −0.5/T . Using the average expansion
rate (∂ku

k) at freeze-out, the value of χπ
0 can be translated

into an effective pion chemical at freeze-out [see Eq. (109)].
We find μπ � 25 MeV. This value is roughly consistent with
the pion chemical potential μπ � 10 MeV used in the thermal
fireball model developed by Rapp [50].

We note that we use the same speed of sound, and therefore
the same deviation from conformality, in our calculations in the
quark-gluon plasma phase and the hadron resonance gas. The
difference between the values of ζ/s in the two phases is con-
nected with the different relations between χ

	
and ζ for the two
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FIG. 6. (Color online) Transverse momentum spectra of pions, protons (left panel), as well as kaons and lambda baryons (right panel).
The solid lines correspond to shear viscosity only, and the dashed lines show the result for shear and bulk viscosity with η/s = 0.16 and
ζ/s = 0.005.

systems. These relations reflect different physical mechanisms
for producing bulk viscosity. In the quark-gluon plasma, bulk
viscosity is controlled by momentum rearrangement, and shear
and bulk viscosity are intimately related [see Eq. (81)]. In the
hadron resonance gas model, bulk viscosity is dominated by
particle-number changing processes, and there is no direct re-
lation between shear and bulk viscosity. The fairly small value
of ζ/s in the hadron resonance gas is further related to cancel-
lations between low- and high-mass resonances in Eq. (105).

In Fig. 6, we show the pT spectra of pions, protons, kaons,
and lambdas. The shear viscosity was chosen to be η/s = 0.16
as in Fig. 5. Corrections to the hadronic spectra due to the shear
viscosity were computed as described in [29]. We observe that,
as in the case of quarks and gluons, bulk viscosity increases
the spectra at small pT , and suppresses the spectra at large
pT . The high-pT suppression is more prominent in the case of
pions because the spectra are determined by the competition
between the constant term χa

0 and the linear term −χ1Epa

term, where the constant contribution is bigger in the case of
baryons, χB

0 > χπ
0 .

While not obvious from Fig. 6, we should point out that
the total particle number depends on the bulk viscous pressure
[see Eq. (109)] and this shift in number density at freeze-out
is species dependent. Particle ratios will therefore have a
sensitivity to the bulk viscosity. Of course, any conserved
quantity (such as baryon number) remains conserved. Since the
off-equilibrium correction is the same for particles and antipar-
ticles, the net baryon (B − B) number remains unchanged. On
the other hand, the total baryon number (B + B) will deviate
from its equilibrium value by an amount proportional to the
bulk viscous pressure.

The effect of bulk viscosity on the elliptic flow parameter
v2(pT ) is shown in Fig. 7. For comparison, we also show
the elliptic flow from ideal hydrodynamics, and separately for
a shear viscosity of (η/s = 0.16). We find that bulk viscosity
tends to increase elliptic flow for pT ∼> 1 GeV. The reason is the
same as in Fig. 5: bulk viscosity suppresses the single-particle
spectra at large pT , and the spectra enter into the denominator
of the definition of v2(pT ) [see Eq. (10)]. The effect becomes
very large for pT ∼> 2.5 GeV. A similar behavior was seen

in [17]. Clearly, the large-pT behavior is unphysical and stems
from the fact that the particle distribution function becomes
negative at some pT . In order to circumvent this, we can
attempt to do a resummation of the viscous correction. We can
expand f a(p) to first order in δT and chemical potential μ,

δf a(p) = na
p

(
1 ± na

p

) (
μa

T
+ Epa

δT

T 2

)
. (108)

Comparing this with the form of the off-equilibrium
distribution given in Eq. (102), we make the identification

μa = −(∂ku
k)T χa

0 , (109)

δT = +(∂ku
k)T 2χ1. (110)

The physics behind this is straightforward. As a system under-
goes an expansion (in heavy-ion collisions the expansion rate is
∂ku

k ∼ 1
τ

), the density of the system drops. However, due to the
inefficiency of number-changing processes, there is an excess
of particles with respect to what would be expected given the
energy density of the system. This excess of particles can be
parametrized by a positive shift in the chemical potential. We
can resum the viscous correction by using the ideal distribution
function with a shifted temperature and chemical potential9

f a(p) ≈ 1

e
Epa

T +δT
−βμa ± 1

. (111)

The above nonequilibrium distribution function is manifestly
positive definite. The resulting v2 spectrum is shown in the left
panel of Fig. 7. At low pT , the spectrum matches the linearized
form, but it has the advantage that it is well behaved at high pT .

Resumming the effects of bulk viscosity on the spectra is not
as important if shear viscosity is also included. Shear viscosity
tends to harden the pT spectra, and therefore prevents the
distribution function from becoming negative (provided η/s

is sufficiently large). In the right panel of Fig. 7, we show the

9In our calculations, we have put the factor eμa/T in the numerator
in order to avoid possible problems with Bose condensation in certain
regions of phase space.
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FIG. 7. (Color online) The left panel shows the elliptic flow of pions for a bulk viscosity at freeze-out of (ζ/s)frzout ≈ 0.005. The dashed
curve shows the result using the linear form of the viscous correction given in Eq. (102), and the solid curve shows the result using the resummed
form given in Eq. (111). The right panel shows the elliptic flow of pions from viscous hydrodynamics when both shear and bulk viscosity are
included. The two curves labeled “bulk + shear” are labeled as in the left panel: the dashed line is the linear form of the distribution function,
and the solid line shows the resummed result.

elliptic flow of pions when both shear and bulk viscosity are
taken into account. In this case, we see much better agreement
between the linear and resummed result even at large pT . We
observe that the effect of bulk viscosity on the pion v2(pT ) is
comparable to the analogous correction to the quark v2(pT ),
despite the smaller bulk viscosity used in our simulation of
the hadronic phase. This is related to the larger numerical
coefficient that appears in the relation between ζ and ( 1

3 −
c2
s )χ (p) in the quark-gluon plasma compared to the hadron

resonance gas.
In Fig. 8, we compare viscous corrections to the differential

elliptic flow parameter v2(pT ) for different hadronic species.
Reference [29] observed that a simple model for elastic meson
and baryon cross section reproduces the empirically observed
quark number scaling of v2(pT ). Figure 8 shows that bulk
viscosity leads to significant modifications of the v2(pT ) of
individual species, but the scaling relations between different
species are approximately preserved.

At a fixed deviation from conformality, the off-equilibrium
correction to the spectrum increases linearly with the bulk
viscosity coefficient ζ . This means that the value of ζ can
not be increased by very much without resulting in spectra
and flow parameters that are in clear disagreement with the
data. However, because of the partial cancellation between
shear and bulk corrections, it is possible to increase both η

and ζ simultaneously without changing v2(pT ) very much.
This is demonstrated in Fig. 9, where we show that v2(pT ∼<
2 GeV) is fairly stable in the range (η/s, ζ/s) = (0.16, 0.005)
to (η/s, ζ/s) = (0.4, 0.012).

This result does not imply that the data do not constrain
η and ζ separately. In Fig. 10, we show the pT -integrated
flow parameter v2 for pions and protons as a function of
the number of participants. The number of participants was
determined from the Glauber model used in [2]. We observe
that pT integrated v2 is quite insensitive to the bulk viscosity.
There are two reasons for this result. First, for values of ζ/s
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FIG. 8. (Color online) Differential elliptic flow v2(pT ) for pions and protons (left panel), as well as kaons and lambdas (right panel). The
curves are labeled as in Fig. 6. The solid lines show the result for shear viscosity only, and the dashed lines correspond to shear and bulk
viscosity with η/s = 0.16 and ζ/s = 0.005.
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FIG. 9. (Color online) Differential elliptic flow of pions using the linearized expression for δf (left) and the resummed form of δf (right).
The same v2(pT ) can be obtained for pT � 2 GeV when increasing η/s by a factor of 2.5 as long as the bulk viscosity is increased as well.

in the range studied in this work, the effect of bulk viscosity
on the velocity field is small. Larger values of ζ/s may lead
to stronger effects on the integrated v2. Second, because of
Landau matching, the pT -integrated change in the distribution
function is small.

VII. SUMMARY AND OUTLOOK

In this work, we examined the functional form of the
nonequilibrium correction to the particle phase-space distribu-
tion caused by bulk viscosity (see the summary in Fig. 11). In
the high-temperature quark-gluon phase, the distribution func-
tion can be computed using the leading-log approximation. In
this limit, bulk viscosity is controlled by 2 ↔ 2 processes
that rearrange momentum. Particle-number-changing 2 ↔ 3
processes only play an indirect role, in that they prevent the
development of an effective chemical potential for gluon or
quark number.

We showed that there is a significant bulk viscous correction
to the quark and gluon elliptic flow even for a fairly small
bulk viscosity coefficient. In addition, there are nontrivial
differences in the quark and gluon off-equilibrium distribution

function. These differences are related to differences in the
transport coefficients and effective masses. While the quark
and gluon distributions are not directly observable, these
distributions serve as direct input for calculations of photon
and dilepton production from a bulk viscous medium. The
effect of shear viscous corrections to the distribution function
on photon and dilepton production was studied in [51–54].
It is conceivable that bulk viscosity is responsible for the
large elliptic flow of photons as compared to hadrons that
was recently observed by the PHENIX collaboration [55].
This possibility is related to the fact that the bulk strain is
larger at early times, when most photons are produced, and
to our observation that bulk viscosity enhances v2(pT ) at
intermediate pT .

For the hadron resonance stage near Tc, the calculation of
the distribution functions is more difficult, and one has to rely
on simplified models. The simplest model is the relaxation time
approximation. The relaxation time approximation correctly
captures the scaling of ζ and χ with the deviation from
conformal symmetry, but it can not predict the functional
form of χ (p) [it relates the behavior of χ (p) to the unknown
energy dependence of τ ], and it is in general not consistent
with Landau matching. The relaxation time approximation
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FIG. 10. (Color online) Integrated v2 as a function of the number of participants for pions (left panel) and protons (right panel). We show the
result in ideal hydrodynamics, the case of only shear viscosity with η/s = 0.16, and the case of both shear and bulk viscosity with η/s = 0.16
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FIG. 11. (Color online) In this figure, we summarize different
functional forms of the correction to the single-particle distribution
function due to bulk viscosity χ

	
(p). The curves show the linear

and quadratic form of the relaxation time approximation, the result
in leading-log pure gauge theory, and the result in a gas of massive
pions.

also assumes that shear and bulk viscosity are related to the
same process, which need not be the case.

A simple model for theories in which bulk viscosity is
controlled by chemical nonequilibration is scalar φ4 theory.
In this theory, the form of the nonequilibrium distribution
functions is determined by the exact (energy) and approximate
(particle-number) zero modes of the collision operator χ �
χ0 − χ1Ep. The coefficient of χ0 is related to the chemical
equilibration time τ chem, and χ1 is fixed by Landau matching.
For a given expansion rate (∂kuk) = 1/τ , we can also relate
χ0 to the effective chemical potential that describes the
overpopulation of the single-particle distribution function
μ � − T

τ
χ0.

The bulk viscosity and nonequilibrium distribution function
in a low-temperature pion gas is correctly captured by the
physics of scalar φ4 theory with the appropriate chemical
equilibration time. In this work, we assume that this is also
true for a hadron resonance gas. We assume, in particular, that
the nonequilibrium distribution function of the hadron species
a is of the form χa � χa

0 − χ1Epa
, where χ1 is again fixed

by Landau matching. The relative magnitude of the coefficient
χa

0 for different species was fixed by a simple model for the
effective chemical potentials of meson and baryon resonances.

In an expanding system, inefficiencies in particle-number-
changing processes lead to a particle excess, and both χ0(∂kuk)
and χ1Ep(∂kuk) are negative. This means that bulk viscosity
softens the pT spectra of the produced particles. The change in
the spectra leads to an enhancement of v2(pT ) at intermediate
momenta pT ∼ (1–2) GeV. This enhancement tends to cancel
against the effects of shear viscosity. We showed, however,
that the shear viscosity can be determined reliably by focusing
on the pT -integrated elliptic flow parameter. We also showed
that bulk viscosity tends to preserve the approximate “quark-
number scaling” observed in in the identified particle v2(pT ).
Once η is fixed, bulk viscosity is strongly constrained by the
spectra and v2(pT ). The main difficulty is that in the hadron
resonance gas, the relationship between χ (p) and ζ is very
sensitive to the contribution from high-lying resonances.
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FIG. 12. (Color online) Elliptic flow of KS mesons from viscous
hydrodynamics. The hydrodynamic model was tuned such that the
“shear only” result (solid black curve) fits the data points. The short-
dashed green curve and long-dashed blue curve show results from
viscous hydrodynamics having a bulk viscosity to entropy ratio ζ/s =
0.005 and = 0.015, respectively. The data were obtained by the STAR
collaboration at RHIC [56].

For the results shown in Figs. 6–10, we used (ζ/s)frzout ∼<
0.005, and found modest bulk viscous correction to v2(pT ).
In order to obtain a rough bound on the maximum value of
ζ/s allowed by the data obtained at RHIC, we have studied
the dependence of our results on ζ/s. Figure 12 shows the
v2(pT ) for identified KS mesons. We have chosen Ks mesons
because the contribution from resonance decays, which were
not included in this work, are negligible. Our hydrodynamic
model was tuned previously to reproduce the measured spectra
using shear viscosity only. This implies that the inclusion of
bulk viscosity will typically worsen the agreement with data.
For (ζ/s)frzout = 0.005, discrepancies with the data are not
large, and the previous level of agreement could presumably
be restored by retuning the parameters of the hydrodynamic
model. For (ζ/s)frzout ≈ 0.015, the discrepancy with data in the
range 1 ∼< pT ∼< 2 GeV is significant, and it is unlikely that
agreement with the data could be achieved without affecting
other observables, such as the pT integrated v2. We therefore
feel that it is safe to claim that the resonance gas model implies
(ζ/s)frzout ∼< 0.015. We plan to perform more detailed fits in
the future.

The most important uncertainty in this bound is related to
model dependence in the relation between χ (p) and ζ . In the
hadron resonance gas, this relation depends on the inelastic
cross sections of high-lying resonances. We can estimate
the uncertainty of our results by reducing the number of
resonances included in the model. For example, if we only
keep mesons (baryons) with masses below 0.8 (1.0) GeV,
we find χ0

π � −30ζ/(sT ). This relation allows for roughly
identical fits to the spectra with a ζ/s larger by about a factor
of 3. We conclude that a more conservative bound is given
by (ζ/s)frzout ∼< 0.05. We emphasize that the data support a
nonvanishing bulk viscosity. Statistical fits to hadronic yields
[57] show the need to increase the abundance of baryons
(i.e., protons + antiprotons) through a chemical-abundance
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factor10 γq ≈ 1.6 at RHIC energies. This result can be naturally
accounted for in terms of a nonvanishing bulk viscosity.

There are a number of issues that we have not addressed
in this work. Clearly, more work is needed to constrain the
bulk viscosity of a hadron resonance gas. We have also not
taken into account a possible increase in the bulk viscosity
near Tc due to critical fluctuations [58,59]. If there is a rapid
increase in the bulk viscosity near Tc, one also expects a
rapid rise in the bulk relaxation time. Onuki [60] showed
that the bulk relaxation time diverges near Tc more rapidly
than the bulk viscosity. This implies that the system may
free-stream through the transition region without significant
effects on single-particle observables. Clearly, further study in
this direction is necessary.
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APPENDIX A: DETAILS OF THE HYDRODYNAMIC
EVOLUTION

In this Appendix, we summarize some details of the
hydrodynamic calculations that were used to compute the
velocity and temperature profiles that determine the spectra of
produced particles. We assume longitudinal boost invariance
with initial conditions in the transverse plane taken from a
Glauber model (see Appendix A in [29] for more details). For
all noncentral collisions, we have used an impact parameter of
b = 6.8 fm, and a decoupling temperature Tfrzout = 150 MeV.

We solve second-order hydrodynamic equations using a
second-order fluid model developed by Grmela and Öttinger

10The abundance factor γ has to be distinguished from the fugacity
λ = eμ/T , which enhances the abundance of particles while suppress-
ing that of antiparticles.

[26,27]. This model is quite similar to the theory of Israel
and Stewart [24,25]. Grmela and Öttinger introduce a new
dynamical tensor variable cμν . We will see in the following
that this variable is closely related to the velocity gradient
tensor πμν . In the local rest frame, the stress-energy tensor
takes the form

T
ij

LRF = p(δij − αcij ), (A1)

where α is a small parameter, which will be shown to be related
to the relaxation time. The tensor variable cμν is conveniently
defined to have the property

cμνu
ν = uμ. (A2)

We decompose cμν in terms of isotropic and traceless compo-
nents c and c̊:

cμν = −uμuν + c̊μν + cμν, (A3)

cμν = 1
3

(
cλ
λ − 1

)
(gμν + uμuν). (A4)

The equations of motion are dictated by conservation of energy
and momentum ∂μT μν = 0 along with an evolution equation
for the tensor variable cμν :

uλ(∂λcμν − ∂μcλν − ∂νcμλ) = − 1

τ0
cμν − 1

τ2
c̊μν. (A5)

In the limit that the relaxation times (τ0, τ2) are very small, the
evolution equation yields

cij = τ2
(
∂iu

j + ∂ju
i − 2

3δij ∂ku
k
) + 2

3τ0δ
ij ∂ku

k. (A6)

Substituting the above equation into T
ij

LRF and comparing
the result to the Navier-Stokes equation, the bulk and shear
viscosities can be identified as

η = τ2pα,
(A7)

ζ = 2
3τ0pα.

In our work, we have taken the parameter α = 0.7. These
relaxation times are small enough so that the Navier-Stokes
limit is approximately maintained near freeze-out. This is
demonstrated in Fig. 13 where the bulk viscous stress 	 is
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FIG. 13. (Color online) Bulk viscous pressure −	/ζ (solid curves) versus proper time along the freeze-out hypersurface shown against
the Navier-Stokes value ∂ku

k (dashed curve) for (ζ/s)frzout ≈ 0.005 (left) and (ζ/s)frzout ≈ 0.015 (right).
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FIG. 14. (Color online) Freeze-out hypersurface (Tfrzout = 150
MeV) for a central (b = 0) collision with σ0 = 0.01 [(ζ/s)frzout ≈
0.005] shown as the solid black curve and for σ0 = 0.03 [(ζ/s)frzout ≈
0.015] shown as the dashed blue curve.

plotted versus the Navier-Stokes expectation for a central (b =
0) collision. For reference, we also show the corresponding
freeze-out hypersurface in Fig. 14. The dynamical variable
cμν was initialized to the Navier-Stokes value.

In Fig. 5, we show the elliptic flow of quark and gluons
obtained in a simulation with a pure QGP equation of state.
In order to allow for a speed of sound that is different from
the conformal value c2

s = 1/3, we use a polytropic equation of
state

P = (γ − 1) ε. (A8)

The adiabatic index γ is chosen in order to fix a constant sound
speed c2

s = 0.2 compatible with lattice parametrizations near
Tc. The viscous correction to the distribution was computed
with a Debye mass mD = 3.9T so that the QGP sound speed
is c2

s = 0.2, consistent with the speed of sound used in the
hydrodynamic evolution. We employed a simple parametriza-
tion of the solution of the Fokker-Planck equation for the
off-equilibrium distribution functions. The parametrization is
given in Table I.

All final-state hadron spectra shown in this work were
calculated using a realistic equation of state, which is a
parametrization of the lattice QCD equation of state from [8].
This equation of state matches to our hadron resonance gas
equation of state below T ∼ 160 MeV. The bulk viscosity
during the hydrodynamic evolution was assumed to scale with

TABLE I. Parametrization of the leading-log QCD off-
equilibrium distribution function. We use the functional form
χ

	
(p) = (c0p

x0 + c1p
x1 ) ln (p/p0), for mD = 3.9 and Nf = 2. The

above parametrization yields ζ/T 3 ≈ 3.07.

Quarks Gluons

p0 2.51 4.32
c0 9.56 × 10−2 6.28 × 10−2

x0 5.25 × 10−1 9.56 × 10−1

c1 8.64 × 10−3 3.43 × 10−6

x1 1.66 3.48

the second power of conformality breaking

ζ/s = 15σ0
(

1
3 − c2

s

)2
, (A9)

where σ0 is a free parameter chosen to set the desired
magnitude of the bulk viscosity coefficient near freeze-out.
At our freeze-out temperature of 150 MeV, the lattice equation
of state used in this work yields c2

s ≈ 0.15. In Sec. VI B, we
examine a hadronic resonance gas with (ζ/s)frzout ≈ 0.005,
corresponding to σ0 = 0.01.

APPENDIX B: PHASE SPACE INTEGRALS

1. Relaxation time approximation

In the relaxation time approximation, we found the rela-
tionship between the shear viscosity and energy-dependent
relaxation time τR(Ep) in Eq. (32), which we rewrite here as

η = β

30π2

∫
p6

E2
p
τR(Ep)np(1 ± np) dp. (B1)

If we take a relaxation time of the form

τR(Ep) = τ0β(βEp)1−α, (B2)

the relationship becomes

η = τ0
β4

30π2

∫
p6

(βEp)1+α
np(1 ± np) dp. (B3)

Making the change of variables x ≡ βEp, we find Eq. (34):

η = τ0
T 3

30π2
Iα(βm), (B4)

where the remaining phase-space integral is

Iα(βm) ≡
∫ ∞

βm

[x2 − (βm)2]5/2

xα
nx(1 ± nx)dx. (B5)

Even though we have arrived at the above phase-space integral
by studying the relaxation time approximation, it will turn out
we will need the same phase-space integrals in other contexts
as well. It is therefore worthwhile to study some limits where
analytic results can be obtained. For a classical gas, we can
replace nx(1 ± nx) → nx and the phase-space integral can be
computed analytically when α = 0:

Iα=0 = 15(βm)3K3(βm). (B6)

Another case where an analytic expression can be found is in
the high-temperature limit (βm → 0). For α < 4, we find

Iα(βm = 0) = �(6 − α), (B7)
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where for convenience we have defined11

�(x) ≡

⎧⎪⎨
⎪⎩

�(x) Maxwell,

�(x)ζ+(x − 1) Bose,

�(x)ζ−(x − 1) Fermi

(B9)

for x > 2 and where

ζ±(s) ≡
∞∑

k=1

(±)k−1

ks
. (B10)

ζ+(s) is the usual Riemann-zeta function and ζ−(s) = (1 −
21−s)ζ+(s). We will also need the α = 4 behavior of the above
phase-space integral. For classical and Fermi statistics, the
above results hold as long as we note that lims→1 ζ−(x) = ln 2.
We therefore have that Iα=4 = �(2) for classical statistics
and Iα=4 = �(2) ln(2) for Fermi statistics. The above integral
is logarithmically divergent for bosons when α = 4. The
divergence is regulated by the mass (or thermal mass) of the
relevant quasiparticles. We define the following values for
�(x = 2):

�(x = 2) ≡

⎧⎪⎨
⎪⎩

�(2) Maxwell,

ln
(

2T
m

) − 8
15 Bose,

�(2) ln(2) Fermi.

(B11)

The relevant phase-space integral for bulk viscosity can be
found by using the change of variable x ≡ βEp in Eqs. (35)
and (36):

Jα(βm, βm̃) ≡
∫ ∞

βm

[x2 − (βm)2]5/2

xα
nx(1 ± nx)

×
[

1

3
− c2

s

(
1 + (βm̃)2

x2 − (βm)2

)]2

dx.

(B12)

As in the shear case, analytic expressions are available. For
α = 0 and classical statistics, we find

Jα=0 = 15
(

1
3 − c2

s

)2
(βm)3K3(βm)

− 6(βm̃cs)
2
(

1
3 − c2

s

)
(βm)2K2(βm)

+ (βm̃cs)
4 (βm)K1(βm). (B13)

If both βm and βm̃ are taken to zero, the integral is

Jα = (
1
3 − c2

s

)2
�(6 − α). (B14)

Another limit of interest is when (βm) → 0 but m̃ remains
finite. This is physically relevant since m̃ quantifies the
deviations from conformality, which is crucial to keep when
studying bulk viscosity, while the bare or thermal mass

11We have used the relation∫ ∞

0

xn−1

ex ∓ 1
dx = ζ±(n)�(n), (B8)

which can be derived by expanding the numerator in terms of its
geometric series and then performing the integral of each term in
the series individually. The remaining summation will then be of the
form (B10).

only effects the kinematics in the phase-space integrals. The
only subtlety is if the phase-space integral is logarithmically
divergent, in which case the mass serves as a cutoff for the
integral. The resulting expression in this limit is

Jα = (
1
3 − c2

s

)2
�(6 − α) − 2(βm̃cs)2

(
1
3 − c2

s

)
�(4 − α)

+ (βm̃cs)
4 �(2 − α). (B15)

2. Scalar field theory

In this section, we evaluate the necessary phase-space
integrals for a scalar field theory. Let us first start with the
integral labeled F in Eq. (60):

F =
∫

d3p
(2π )3Ep

(
p2

3
− c2

s Ep
∂(βEp)

∂β

)
np(1 + np). (B16)

In the high-temperature limit, we can take βm → 0 while
keeping m̃ finite. Using the phase-space integrals defined in
Appendix B1, we find12

�̃(x = 2) ≡ lim
m→0

β2
∫

p2

Ep
np(1 ± np)dp

=

⎧⎪⎨
⎪⎩

�(2) Maxwell,

ln
(

2T
m

)
Bose,

�(2) ln(2) Fermi,

(B17)

F = T 4

2π2

[(
1

3
− c2

s

)
�(4) − (m̃β)2c2

s �̃(2)

]
. (B18)

The function F characterizes the deviation from conformality.
The relationship between the shifted mass m̃ and the sound
speed can be found by using the fact that the source term for
bulk viscosity is orthogonal to the energy-changing zero mode

0 =
∫

d3p
(2π )3

np(1 ± np)

(
p2

3
− c2

s Ẽ
2
p

)
. (B19)

This leads to

1
3 − c2

s ≈ (m̃β)2 �(3)
3�(5)

. (B20)

Using this relation, we find for bosons

F = (m̃T )2

6π2

[
15ζ+(3)

2π2
− ln

(
2T

m

)]
. (B21)

12In Appendix B1, the phase-space integral in Eq. (B3) has the form∫
p6/E1+α

p . The term in Eq. (B16) proportional to m̃2 has the form∫
p6−α/Ep. For massless particles, these two integrals are the same

except if α = 4 in the case of bosons. This is due to the way the
logarithmic divergence is regulated in the two cases. In the latter
case, where there is only one power of Ep in the denominator we
define Eq. (B17).
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