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Tensors describing boost-invariant and cylindrically symmetric expansion of a relativistic dissipative fluid are
decomposed in a suitable chosen basis of projection operators. This leads to a simple set of scalar equations which
determine the fluid behavior. As special examples, we discuss the case of the Israel-Stewart theory and the model
of highly anisotropic and strongly dissipative hydrodynamics (ADHYDRO). We also introduce the matching
conditions between the ADHYDRO description suitable for the very early stages of heavy-ion collisions and the
Israel-Stewart theory applicable to later stages when the system is close to equilibrium.
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I. INTRODUCTION

Soft-hadronic observables measured in the ultrarelativistic
heavy-ion experiments may be very well described by the
standard perfect-fluid hydrodynamics (for a recent review,
see Ref. [1]) or by dissipative hydrodynamics with a small
viscosity to entropy ratio [2–7]. These approaches assume
generally that the produced system reaches a state of local
thermal equilibrium within a fraction of a fermi.1

On the other hand, many microscopic approaches assume
that the produced system is initially highly anisotropic in the
momentum space, e.g., see Ref. [8]. High anisotropies present
at the early stages of relativistic heavy-ion collisions exclude
formally the application of the perfect-fluid and dissipative
hydrodynamics. This situation has triggered development
of several approaches which combine the anisotropic early
evolution with a later perfect-fluid [9–12] or viscous [13,14]
description. Very recently, a concise model describing con-
sistently different stages of heavy-ion collisions has been
proposed in Refs. [15–18] (a highly anisotropic and strongly
dissipative hydrodynamics, ADHYDRO); see also a similar
work that has been presented in Refs. [19,20].

In this paper, in order to analyze in more detail the con-
nections between different effective descriptions of very early
stages of heavy-ion collisions, we consider a simplified case of
the boost-invariant and cylindrically symmetric expansion of
matter. In the first part of the paper, we introduce tensors that
form a suitable basis for decompositions of various tensors
characterizing dissipative fluids. Then, we use this basis to
analyze the Israel-Stewart [21,22] and ADHYDRO equations
[15–18]. Finally, we show how the solutions of the ADHYDRO
model may be matched with the solutions of the Israel-Stewart
theory. The last result may be treated as a generalization of the
approach presented in Ref. [13] where no transverse expansion
of matter was considered.

*wojciech.florkowski@ifj.edu.pl
†radoslaw.ryblewski@ifj.edu.pl
1We use the natural system of units where h̄ = c = 1. The metric

tensor gμν = diag(1,−1, −1, −1).

The formal results presented in this paper, when imple-
mented as numerical procedures, may be used to model
the behavior of matter produced at the very early stages of
heavy-ion collisions. Of course, the use of boost-invariance
and cylindrical symmetry implies that this description should
be limited at the moment to central collisions and the central
rapidity region. A generalization of our framework to more
complicated geometries is a work in progress.

We note that the strong anisotropies discussed in this paper
are solely due to the specific form of the initial conditions.
More generally, one may consider anisotropic fluids where the
pressure anisotropy is induced by external parameters such as
magnetic fields. This type of behavior has been discussed, for
example, in Refs. [23–26].

II. BOOST-INVARIANT AND CYLINDRICALLY
SYMMETRIC FLOW

The space-time coordinates and the four-vector describing
the hydrodynamic flow are denoted in the standard way as
xμ = (t, x, y, z) and

Uμ = γ (1, vx, vy, vz), γ = (1 − v2)−1/2. (1)

For boost-invariant and cylindrically symmetric systems, the
scalar quantities may depend only on the (longitudinal) proper
time

τ =
√

t2 − z2 (2)

and the radial distance

r =
√

x2 + y2. (3)

In addition, for the hydrodynamic flow (1) we may use the
following parametrization:

U 0 = cosh θ⊥ cosh η‖, U 1 = sinh θ⊥ cos φ,
(4)

U 2 = sinh θ⊥ sin φ, U 3 = cosh θ⊥ sinh η‖,

where θ⊥ is the transverse fluid rapidity defined by the formula

v⊥ =
√

v2
x + v2

y = tanh θ⊥, (5)
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η‖ is the space-time rapidity

η‖ = 1

2
ln

t + z

t − z
, (6)

and φ is the azimuthal angle

φ = arctan
y

x
. (7)

In addition to Uμ we define three other four-vectors. The
first one, Zμ, defines the longitudinal direction that plays a
special role due to the initial geometry of the collision,

Z0 = sinh η‖, Z1 = 0, Z2 = 0, Z3 = cosh η‖. (8)

The second four-vector, Xμ, defines a transverse direction to
the beam,

X0 = sinh θ⊥ cosh η‖, X1 = cosh θ⊥ cos φ,
(9)

X2 = cosh θ⊥ sin φ, X3 = sinh θ⊥ sinh η‖,

while the third four-vector, Yμ, defines the second transverse
direction,2

Y 0 = 0, Y 1 = − sin φ, Y 2 = cos φ, Y 3 = 0. (10)

The four-vector Uμ is time-like, while the four-vectors
Zμ,Xμ, Yμ are space-like. In addition, they are all orthogonal
to each other,

U 2 = 1, Z2 = X2 = Y 2 = −1,

U · Z = 0, U · X = 0, U · Y = 0, (11)

Z · X = 0, Z · Y = 0, X · Y = 0.

All these properties are most easily seen in the local rest
frame of the fluid element (LRF), where we have θ⊥ = η‖ =
φ = 0 and

U = (1, 0, 0, 0), Z = (0, 0, 0, 1),
(12)

X = (0, 1, 0, 0), Y = (0, 0, 1, 0).

In the formalism of dissipative hydrodynamics one uses
the operator �μν = gμν − UμUν , that projects on the three-
dimensional space orthogonal to Uμ. It can be shown that3

�μν = −XμXν − YμY ν − ZμZν. (13)

Using Eqs. (11) we find that Zμ,Xμ and Yμ are the
eigenvectors of �μν ,

�μνXν = Xμ, �μνYν = Yμ, �μνZν = Zμ. (14)

The total time derivative (the operator Uα∂α) will be
denoted below by a dot. The following relations turn out to
be useful in dealing with different forms of the hydrodynamic

2By analogy to the terminology used in interferometry (Hanbury-
Brown–Twiss) studies, one may say that the four-vector Xμ defines
the out direction, while Y μ defines the side direction.

3One may check easily that Eq. (13) holds in LRF. Hence, as a
tensor equation, Eq. (13) should hold in all reference frames.

equations:

Zμ∂μ = ∂

τ∂η‖
, ∂μZμ = 0, Żν = 0, Y μ∂μ = ∂

r∂φ
,

∂μYμ = 0, Ẏ ν = 0, Xμ∂μZν = 0, Xμ∂μY ν = 0.

(15)

III. EXPANSION AND SHEAR TENSORS

In this section we follow the standard definitions of the
expansion and shear tensors [22] and show that they can be
conveniently decomposed in the basis of the tensors obtained
as products of the four-vectors Xμ, Yμ, and Zμ.

The expansion tensor θμν is defined by the expression

θμν = �α
μ�β

ν ∂(βUα), (16)

where the brackets denote the symmetric part of ∂βUα . Using
Eqs. (4) in the definition of the expansion tensor (16) and
also using Eqs. (8)–(10), we may verify that the following
decomposition holds:

θμν = θXXμXν + θY YμY ν + θZZμZν, (17)

where

θX = XμXνθ
μν = −∂θ⊥

∂r
cosh θ⊥ − ∂θ⊥

∂τ
sinh θ⊥, (18)

θY = YμYνθ
μν = − sinh θ⊥

r
, (19)

and

θZ = ZμZνθ
μν = −cosh θ⊥

τ
. (20)

The contraction of the tensors �μν and θμν gives the volume
expansion parameter

θ = �μνθμν. (21)

Equations (13) and (21) yield

θ = −θX − θY − θZ. (22)

Substituting Eqs. (18)–(20) in Eq. (22) we find that this formula
is consistent with the definition θ = ∂μUμ.

The shear tensor σμν is defined by the formula

σμν = θμν − 1
3�μνθ. (23)

With the help of the decompositions (13) and (17) we may
write

σμν = σXXμXν + σY YμY ν + σZZμZν, (24)

where

σX = θ

3
+ θX = cosh θ⊥

3τ
+ sinh θ⊥

3r

− 2

3

∂θ⊥
∂τ

sinh θ⊥ − 2

3

∂θ⊥
∂r

cosh θ⊥, (25)

σY = θ

3
+ θY = cosh θ⊥

3τ
− 2 sinh θ⊥

3r

+ 1

3

∂θ⊥
∂τ

sinh θ⊥ + 1

3

∂θ⊥
∂r

cosh θ⊥, (26)
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and

σZ = θ

3
+ θZ = −2 cosh θ⊥

3τ
+ sinh θ⊥

3r

+ 1

3

∂θ⊥
∂τ

sinh θ⊥ + 1

3

∂θ⊥
∂r

cosh θ⊥. (27)

In agreement with general requirements we find that

σX + σY + σZ = 0. (28)

In the case where the radial flow is absent, σX = σY = 1/(3τ )
and σZ = −2/(3τ ), which agree with earlier findings [22].

IV. ENERGY-MOMENTUM TENSOR

The energy-momentum tensors of the systems considered
below in this paper have the following structure

T μν = εUμUν + PXXμXν + PY YμY ν + PZZμZν. (29)

The quantity ε is the energy density, while PX, PY , and PZ

are three different pressure components.4 In LRF the energy-
momentum tensor has the diagonal structure

T μν =

⎛
⎜⎜⎜⎝

ε 0 0 0

0 PX 0 0

0 0 PY 0

0 0 0 PZ

⎞
⎟⎟⎟⎠ . (30)

Since we consider boost-invariant and cylindrically symmetric
systems, ε, PX, PY , and PZ may depend only on τ and r .

The hydrodynamic equations include the energy-
momentum conservation law

∂μT μν = 0. (31)

Using the form of the energy-momentum tensor (29) in
Eq. (31) and projecting the result on Uν , Zν , Xν , and Yν ,
one gets the four equations

ε̇ + ε∂μUμ + PZUνZ
μ∂μZν

+ PXUνX
μ∂μXν + PY UνY

μ∂μY ν = 0, (32)

εZνU̇
ν − Zμ∂μPZ − PZ∂μZμ

+PXZνX
μ∂μXν + PY ZνY

μ∂μY ν = 0, (33)

εXνU̇
ν − Xμ∂μPX − PX∂μXμ

+PY XνY
μ∂μY ν + PZXνZ

μ∂μZν = 0, (34)

εYνU̇
ν − Yμ∂μPY − PY ∂μYμ

+PXYνX
μ∂μXν + PZYνZ

μ∂μZν = 0. (35)

One may use Eqs. (15) to check that Eqs. (33) and (35) are
automatically fulfilled. In this way, we are left with only two

4We use the name pressure for diagonal components of the energy-
momentum tensor in LRF. Such pressures may have different physical
contributions, as shown in our discussion of the Israel-Stewart theory
given in the next section.

independent equations:(
cosh θ⊥

∂

∂τ
+ sinh θ⊥

∂

∂r

)
ε

+ ε

[
cosh θ⊥

(
1

τ
+ ∂θ⊥

∂r

)
+ sinh θ⊥

(
1

r
+ ∂θ⊥

∂τ

)]

+PX

(
cosh θ⊥

∂θ⊥
∂r

+ sinh θ⊥
∂θ⊥
∂τ

)

PY

sinh θ⊥
r

+ PZ

cosh θ⊥
τ

= 0 (36)

and (
sinh θ⊥

∂

∂τ
+ cosh θ⊥

∂

∂r

)
PX

+ ε

(
sinh θ⊥

∂θ⊥
∂r

+ cosh θ⊥
∂θ⊥
∂τ

)

+PX

[
sinh θ⊥

(
1

τ
+ ∂θ⊥

∂r

)
+ cosh θ⊥

(
1

r
+ ∂θ⊥

∂τ

)]

−PY

cosh θ⊥
r

− PZ

sinh θ⊥
τ

= 0. (37)

V. ISRAEL-STEWART THEORY

In this section we consider the Israel-Stewart theory [21,22],
restricting ourselves to the case without heat transport and
neglecting the baryon chemical potential. In this case, Uμ

should be treated as the fluid four-velocity corresponding to
the Landau definition.

A. Stress tensor

In the Israel-Stewart theory, the crucial role is played by the
stress tensor πμν that satisfies the differential equation [21,22]

τπ�α
μ�β

ν π̇αβ + πμν = 2ησμν + Fηπμν. (38)

Here τπ is the relaxation time, η is the shear viscosity, and Fη

is our abbreviation for the scalar quantity

Fη = −ηT ∂λ

(
α1

T
Uλ

)
, (39)

where T is the temperature and α1 is one of the kinetic
coefficients appearing in the Israel-Stewart theory.

The structure of the shear tensor, Eq. (24), suggests that we
may seek the solutions of Eq. (38) in the form analogous to
Eqs. (17) and (24), namely,

πμν = πXXμXν + πY YμY ν + πZZμZν. (40)

The condition �μνπμν = 0 leads to the constraint

πX + πY + πZ = 0. (41)

The time derivative of πμν generates nine terms. Since
Xμ, Yμ, and Zμ are the eigenvectors of the projection operator
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�μν , see Eq. (14), we find

�α
μ�β

ν π̇αβ = π̇XXμXν + πX�α
μẊαXν + πXXμ�β

ν Ẋβ

+ π̇Y YμYν + πY �α
μẎαYν + πY Yμ�β

ν Ẏβ

+ π̇ZZμZν + πZ�α
μŻαZν + πZZμ�β

ν Żβ.

(42)

For boost-invariant and cylindrically symmetric systems, the
explicit calculations show that the terms �α

μẊα , �α
μẎα , and

�α
μŻα vanish. Therefore, the decomposition (40) is indeed

appropriate, and Eq. (38) splits into three scalar equations:

τπ π̇X + πX = 2ησX + FηπX, τπ π̇Y + πY = 2ησY + FηπY ,

τπ π̇Z + πZ = 2ησZ + FηπZ. (43)

Due to the constraints of Eqs. (28) and (41), only two equations
in Eqs. (43) are independent.

B. Bulk viscosity

The isotropic correction to pressure, �, satisfies the
equation

τ��̇ + � = −ζθ + Fζ�, (44)

where τ� is the relaxation time for �, ζ is the bulk viscosity,
and

Fζ = −1

2
ζT ∂λ

(
α0

T
Uλ

)
, (45)

where α0 is another kinetic coefficient appearing in the Israel-
Stewart theory.

C. Energy-momentum tensor and hydrodynamic equations

In the Israel-Stewart theory, the energy momentum tensor
has the form

T μν = εUμUν − Peq�
μν + πμν − ��μν, (46)

where Peq is the equilibrium pressure connected with the
energy density by the equation of state, Peq = Peq(ε), and �

is the isotropic correction to pressure. A simple comparison of
Eqs. (46) and (29) leads to the identifications

PX = Peq + � + πX, PY = Peq + � + πY ,
(47)

PZ = Peq + � + πZ = Peq + � − πX − πY .

Substituting Eqs. (47) into Eqs. (36) and (37) we obtain two
equations for five unknown functions: ε, θ⊥, �, πX, and πY .
The two first equations in Eqs. (43) as well as Eq. (44) should
be included as the three extra equations needed to close this
system.

VI. ADHYDRO MODEL

The Israel-Stewart theory describes the system that is close
to local equilibrium. Formally, this means that the corrections
to pressure (the quantities �, πX, and πY ) should be small
compared to Peq. This condition cannot be fulfilled at the very

early stages of heavy-ion collisions. In the limit τ → 0 the
components of the shear tensor, see Eqs. (25)–(27), diverge and
induce very large changes of πX, πY , and πZ through Eqs. (43).
This leads to strong deviations from local equilibrium.

In this situation, one tries to construct phenomenological
models of the very early stages which grasp the essential
features of the produced matter and may describe effectively
the early dynamics. On the basis of microscopic models
of heavy-ion collisions, we expect that the system formed
at the very early stages of heavy-ion collisions is highly
anisotropic—the two transverse pressures are equal and much
larger than the longitudinal pressure.

Such anisotropic systems are described most often by the
anisotropic distribution functions which have the form of the
squeezed or stretched Boltzmann equilibrium distributions for
weakly interacting, massless partons (this is often called the
Romatschke-Strickland ansatz [27])

f = g exp

[
− 1

λ⊥

√
(p · U )2 + (x − 1)(p · Z)2

]
. (48)

Here p is the particle’s four-momentum, g denotes the number
of the internal degrees of freedom, λ⊥ may be interpreted as
the temperature of the transverse degrees of freedom, and x

is the anisotropy parameter. The energy-momentum tensor of
the system described by the distribution function (48) has the
form [15–18]5

T μν = (ε + P⊥)UμUν − P⊥ gμν − (P⊥ − P‖)ZμZν. (49)

This form agrees with Eq. (29) if we set

PX = PY = P⊥, PZ = P‖. (50)

In the case described by the distribution function (48), the
energy density and the two pressures may be expressed as
functions of the nonequilibrium entropy density σ and the
anisotropy parameter x [18],

ε(σ, x) = εeq(σ )r(x), (51)

P⊥(σ, x) = Peq(σ )[r(x) + 3xr ′(x)], (52)

P‖(σ, x) = Peq(σ )[r(x) − 6xr ′(x)]. (53)

We emphasize that εeq(σ ) and Peq(σ ) are equilibrium expres-
sions for the energy density and pressure [1] but the argument
is a nonequilibrium value of the entropy density

εeq(σ ) = 3Peq(σ ) = 3g

π2

(
π2σ

4g

)4/3

. (54)

The function r(x) has the form

r(x) = x− 1
3

2

[
1 + x arctan

√
x − 1√

x − 1

]
. (55)

Substituting Eqs. (50)–(55) into Eqs. (36) and (37) (which
follow directly from the energy-momentum conservation law)
we obtain two equations for three unknown functions: σ , x,
and θ⊥. The third equation follows from the ansatz describing
the entropy production in the system,

∂μσμ ≡ ∂μ(σUμ) = �(σ, x). (56)

5In the original papers the four-vector Zμ is denoted as V μ.
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The entropy source � is taken in the form

�(σ, x) = (1 − √
x)2

√
x

σ

τeq
. (57)

The quantity τeq is a time-scale parameter. The form (57)
guarantees that � � 0 and �(σ, x = 1) = 0. We stress that
ADHYDRO accepts other reasonable definitions of the en-
tropy source. In particular, it would be interesting in this
context to use the forms motivated by the anti–de Sitter and
conformal field theory correspondence [28].

VII. MATCHING CONDITIONS BETWEEN ADHYDRO
MODEL AND ISRAEL-STEWART THEORY

In this section, we show how the initial evolution of
the system described by the ADHYDRO model may be
matched to a later nonequilibrium evolution governed by the
Israel-Stewart theory. We propose to do the matching at the
transition proper time τtr when the anisotropy parameter x

becomes close to unity in the whole space, i.e., when the
condition |x(τ = τtr, r) − 1| � 1 is satisfied for all values
of r . Our earlier calculations done within the ADHYDRO
framework [18] show that if the initial value of x is independent
of r , the later values of x depend weakly on r , hence, it
makes sense to use the value of the transition time that is to
a large extent independent of r . Certainly, one should always
check the sensitivity of the obtained results with respect to the
chosen value of τtr. The acceptable results should exhibit weak
dependence on τtr.

We emphasize that the proposed matching procedure differs
from our previous strategy where the ADHYDRO model
was used to describe the whole evolution of the system,
from a highly anisotropic initial stage to hadronic freeze-out
[15–18]. The use of the ADHYDRO model alone implies
a smooth switching from a highly anisotropic phase (where
x 	 1 or x � 1) to the phase described by the perfect-fluid
hydrodynamics (where x ≈ 1). Moreover, as has been shown
in Refs. [15,19], for purely longitudinal and boost-invariant ex-
pansion of matter, ADHYDRO agrees with the Israel-Stewart
framework in the intermediate region where |x − 1| � 1. On
the other hand, if the transverse expansion is included, the
presence of non-negligible shear viscosity triggers differences
between the two components of the transverse pressure, PX

and PY . This effect is not included in the ADHYDRO model.
Therefore, in the approaches that include transverse expansion
and noticeable effects of viscosity, the matching proposed
below is in our opinion more appropriate than the use of
ADHYDRO alone. However, the use of the ADHYDRO model
is reasonable for the situations where the effects of viscosity
at the later stages of the collisions may be neglected.

A. Energy-momentum matching

To connect the solutions of the ADHYDRO model with
the solutions of the Israel-Stewart theory, we demand that
all thermodynamics- and hydrodynamics-like quantities are
continuous across the transition boundary fixed at the transition
time τtr, as follows:

(i) The energy density ε is the same on both sides of the
transition and identified with the equilibrium energy
density in the Israel-Stewart theory, ε = εeq,

(ii) The transverse flow, quantified by the value of θ⊥, is
the same at the end of the ADHYDRO stage and at the
beginning of the Israel-Stewart stage.

(iii) The three components of pressure are the same, namely,

Peq + � + πX = P⊥, Peq + � + πY = P⊥,
(58)

Peq + � + πZ = P‖.

Here the values on the right-hand side are obtained at the
end of the ADHYDRO evolution, at τ = τtr, and treated
as the input for the stage described by the Israel-Stewart
equations for τ � τtr. From Eqs. (58) we find first that
πY = πX and πZ = −2πX. In the next step we find that

πX = P⊥ − P‖
3

= εeq(σ )xr ′(x) ≈ εeq(σeq)
4(x − 1)

45
(59)

and

Peq + � = 2P⊥ + P‖
3

= ε

3
= εeq

3
. (60)

For the weakly interacting, massless particles consid-
ered here, Peq = εeq/3, which implies � = 0.

(iv) Finally, we demand that the entropy density is the same
before and after the transition. This is discussed in more
detail in the next section.

B. Entropy matching

It is interesting to see in more detail how the last condition
is realized in practice. First, we start with the ADHYDRO
formulation. If the energy density ε corresponds to the equi-
librium energy density, see condition (i), the corresponding
equilibrium entropy density may be obtained with the help
of the inverse function to the function εeq(σ ). In this way,
expanding the function r(x) at x = 1, we find

σeq = ε−1
eq [εeq(σ )r(x)] ≈ ε−1

eq

[
εeq(σ ) + εeq(σ )

2(x − 1)2

45

]

≈ σ +
[
dεeq(σ )

dσ

]−1

εeq(σ )
2(x − 1)2

45
. (61)

In the leading order in deviations from the equilibrium, we
may replace σ by σeq in the second term in the last line of
Eq. (61). Using the thermodynamic identity for the system of
weakly interacting, massless particles we find

[
dεeq(σeq)

dσeq

]−1

εeq(σeq) = εeq(σeq)

T
= 3

4
σeq. (62)

Combining the last two results we find

σ = σeq

(
1 − (x − 1)2

30

)
. (63)

Now we calculate the connection between the equilibrium
and nonequilibrium entropy density using the Israel-Stewart
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theory. The basic relation in this context has the form [22]

σ = σeq − β0
�2

2T
− β2

πλνπ
λν

2T
. (64)

In our case we have β0 = τ�/ζ , β2 = τπ/(2η), and πλνπ
λν =

6π2
X. We also use the result

τπ = 5η

T σeq
, (65)

which has been derived in Ref. [13]. Following Ref. [13]
we note that expansion of anisotropic distributions around
the equilibrium backgrounds does not lead to the situation
described by the 14 Grad’s ansatz, hence Eq. (65) differs from
the standard result by a factor of 6/5.

The relations listed above allow us to write

σ = σeq

(
1 − 135 π2

X

32 ε2
eq

)
− τ��2

2ζT
. (66)

Using Eq. (59) in this equation we find

σ = σeq

(
1 − (x − 1)2

30

)
− τ��2

2ζT
. (67)

Thus, we conclude that matching between ADHYDRO and
the Israel-Stewart theory is continuous if condition (65) is
fulfilled and � = 0 at the transition time [in agreement with
our remarks following Eq. (60)].

We note that the condition (65) guarantees that the entropy
production in ADHYDRO has the same form as in the Israel-

Stewart theory, which has been already shown in Refs. [15,19].
We also note that for τ � τtr, the two transverse pressures start
to differ from each other, since their dynamics is governed by
different components of the shear tensor.

VIII. CONCLUSIONS

In this paper we have introduced a basis of projection
operators which allows the simple analysis of dissipative
fluid dynamics of boost-invariant and cylindrically symmetric
systems. We have used this basis to analyze the equations
of the Israel-Stewart theory and the ADHYDRO model. We
have shown how the very early evolution of matter produced
in heavy-ion collisions may be described by the ADHYDRO
equations combined with a later Israel-Stewart dynamics.

The presented matching works well for weakly interacting
particles described in equilibrium by the equation of state ε =
3P . In the future, it would be interesting to consider anisotropic
distributions of massive particles and other equations of state,
and to elaborate a similar smooth matching.
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