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Cross sections of electron excitation of atomic nuclei in plasma
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Within the frameworks of the nonrelativistic plane wave Born approximation (PWBA), the analytical formulas
for cross sections of E1–E3 and M1–M2 excitation of nuclei to the low-energy isomeric state as a result of
inelastic scattering of nonrelativistic electrons are derived in the present work. The PWBA cross section of E1
excitation of isomer 181Tam (9/2−, 6.237 keV) by electrons appeared to be two orders less than that one used
in a number of works for calculation of isomeric nuclei yield under exposure of 181Ta-target hot dense laser
plasma. To test the PWBA method we have calculated excitation cross sections of the nuclei 181Ta, 110Ag, 169Tm,
and 201Hg in a relativistic version of the Hartree-Fock-Slater method. It was established that the PWBA method
overestimates E1 cross sections and underestimates E2 and M1 cross sections.
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I. INTRODUCTION

Studies of atomic nuclei excitation in plasma reached
the experimental phase [1–7]. In this relation, the issues of
theoretical interpretation of the obtained results are of primary
importance.

A series of theoretical works is dedicated to the study of
mechanisms for the excitation of nuclei in plasma: photoexci-
tation of nuclei by plasma photons [8], inelastic scattering
of plasma electrons from nuclei [9], nuclear excitation by
electron transition in atomic shell (NEET) [10], inverse
internal electron conversion [11], many-photon excitation
of nuclei [12], inverse electronic bridge [13], and so on.
Systematics of these mechanisms within the framework of the
perturbation theory for quantum electrodynamics was given in
Ref. [14]. In recent years, some of most effective mechanisms
such as photoexcitation, inelastic electron scattering, inverse
internal electron conversion, and the NEET were used for
theoretical studies and numerical simulations of the processes
of the nuclei excitation and deexcitation in plasmas and in
isolated atoms or ions (see, for example, the works [6,15–19]
and references therein).

In the present work, data of numerical calculations [6] on
excitation of the low-energy isomeric state 9/2−(6.237 keV,
6.05 μs) of the 181Ta nuclei in hot dense laser plasma are
analyzed. Two processes were used in Ref. [6] for calculation
of number of formed 181Tam isomers: photoexcitation of 181Ta
nuclei by thermal radiation of plasma and inelastic scattering
of plasma electrons by 181Ta. The key parameter, namely,
the cross section of the process 181Ta(e, e′) 181Tam, was taken
from [20]: σ � 10−31 cm2. The numerical analysis led to
the conclusion on dominating (on the average, by two orders
of magnitude) character of the nuclei excitation by inelastic
electron scattering within the entire studied range of plasma
temperatures.
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It will be shown in Sec. II that the cross section of
181Tam isomer excitation by electrons given in Ref. [20] and,
accordingly, in Ref. [6] appeared to be highly overestimated.
In turn, using the real value of cross section of the process
181Ta(e, e′)181Tam essentially changes the idea of the role of
various mechanisms of nuclei excitation in hot dense laser
plasma.

We shall give also the practical equations to calculate the
cross sections of electron scattering by nuclei with magnetic
transitions.

In addition, in Sec. III we shall present results of calculation
of excitation cross sections of the nuclei 181Ta, 110Ag, 169Tm,
and 201Hg in a relativistic version of the Hartree-Fock-Slater
(RHFS) method [9,21], and compare these cross sections with
the cross sections obtained in Ref. [18] in the framework
of the distorted wave Born approximation (DWBA) method
and the Wentzel-Kramers-Brillouin (WKB) approximation.

In the present work, we use the following system of units:
h̄ = c = k = 1.

II. CROSS SECTIONS OF INELASTIC SCATTERING
OF ELECTRONS BY NUCLEI

A. General expressions for cross sections

The cross section of inelastic scattering of nonpolarized
electrons by nonpolarized nuclei is calculated using the general
equation [22]:

σ = 1

2II + 1

∑
MI ,MF

∫
Wf i

j0

d3pf

(2π )3
, (1)

where pi(f ) is the initial (final) momentum of electron, II (F )

and MI (F ) are nuclear spin and its projection in the initial (final)
state, j0 is the flux density of scattered electrons, and Wf i is
probability of transition of the interacting system “nucleus +
electron” from the initial to the final state. Probability Wf i is
usually represented as follows [22]:

Wf i = 2πe4δ(ωN − (Ei − Ef ))|Hint|2, (2)
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where ωN is the energy of transition from the initial (this can
be, e.g., the ground state of the nucleus) to the final state (for
example, isomeric state), Ei(f ) is the initial (final) electron
energy (E2

i(f ) = p2
i(f ) + m2, m is the mass of electron), and

Hint is the Hamiltonian of interaction of the electron jμ(r) =
−eψ̄f (r)γ̂μψi(r) and nuclear Jν(R) = e
+

F (R)Ĵν
I (R) cur-
rents in the second order of the perturbation theory for quantum
electrodynamics:

Hint =
∫

d3r d3R jμ(r)Dμν(ωN, r − R)Jν(R). (3)

In Eq. (3) Dμν is the photon propagator in
frequency-coordinate representation [22]: Dμν(ωN, r − R) =
gμν exp(iωN |r − R|)/|r − R|. (We assume that the electron
interacts with each of Z nuclear protons. Rp is the proton’s
coordinate. However, to simplify the text and the equations,
we omit the sign of summation by nuclear protons

∑Z
p=1 and

the corresponding index “p” at the R coordinate.)
Our task is to obtain the simple equations for the qualitative

assessment of the cross-section value. Thus we shall use
the plane waves as the wave functions (WF) of electron
[22] ψ(r) = (u/

√
2E) exp(ipr). We are limited ourselves to

the excitation of nuclei with lower (approximately up to
10 keV) isomeric state by electrons with energies up to tens
kiloelectronvolts. This allows for the use of the nonrelativistic
approximation. At low velocities, when the condition u∗u =
2m is valid for the spin part, the electron WF are the following:
ψ(r) = exp(ipr). Such WF give the following flux density:
j0 = pi/m in Eq. (1).

B. Excitations of electric type

To describe the Coulomb excitation of nuclei we shall use
the well-known multipole expansion for D00(ωN, r − R) [23]:

exp(iωN |r − R|)
|r − R|

= 4πiωN

∑
L,M

h
(1)
L (ωNr)YLM (�r )jL(ωNR)Y ∗

LM (�R), (4)

where h
(1)
L (x) and jL(x) are spherical Hankel functions of the

first kind and spherical Bessel functions [24], correspondingly,
YLM (�), are spherical functions.

Hamiltonian of interaction
∫

d3r d3Rj 0(r)D00(ωN,

r − R)J 0(R) in nonrelativistic approximation, taking into
account expansion of h

(1)
L (ωNr) and jL(ωNR) at the low

values of argument (see [24]), is the following:

Hint =
∑
L,M

4π

2L + 1
〈IF MF |RLY ∗

LM (�R)|IIMI 〉

×
∫

d3r eiqr YLM (�r )

rL+1
, (5)

where q = pi − pf is the momentum transfer, and
〈IF MF |RLY ∗

LM (�R)|IIMI 〉 is nuclear matrix element, re-
lated to the experimentally measured reduced probability
B(EL; II → IF ) of nuclear electric-type transition with

multipolarity L under the following law [25]:

B(EL; II → IF ) =
∑

MF ,M

|〈IF MF |eRLY ∗
LM (�R)|IIMI 〉|2. (6)

After calculation of the electron coordinate integral in Eq. (5)
and substitution of the obtained expression into (2), taking (6)
into account, one can obtain the following equations for cross
sections of electric-type excitation of nucleus for three main
multipoles:

σE1 = 16π2

9
e2 m

Ei

ln

√
Ei + √

Ef√
E i − √

Ef

B(E1; II → IF ), (7)

σE2 = 64π2

225
e2m2

√
Ef

Ei

B(E2; II → IF ), (8)

σE3 = 128π2

11025
e2m3(Ei + Ef )

√
Ef

Ei

B(E3; II → IF ), (9)

where Ei = p2
i /2m is the kinetic energy of the scattering

electron in nonrelativistic approximation, Ef = Ei − ωN .
The reduced probability of nuclear transition is usually

represented as follows:

B(EL, II → IF ) = B(W ; EL)BW.u.(EL, II → IF ),

where B(W ; EL) is the reduced probability in Weisskopf
model for EL transition in a nucleus with atomic number
A and radius R0 = 1.2A1/3 fm [25]:

B(W ; EL) = e2

4π

(
3

3 + L

)2

R2L
0 ,

and BW.u. is the so-called reduced probability in Weisskopf
units, the parameter, which takes into account the features of
particular nuclear transition. Functions BW.u. are tabulated in
Nuclear Data Sheets as characteristics of nuclear transition
intensities.

Usually the tables contain the values of BW.u.(L, Iis → Igr)
for the transitions from the isomeric level (is) to the ground
state (gr). To calculate the excitation cross sections, it is
necessary to take the value of BW.u.(L, Igr → Iis) associated
with BW.u.(L, Iis → Igr) by the relation

BW.u.(L, Igr → Iis) = (2Iis + 1)

(2Igr + 1)
BW.u.(L, Iis → Igr).

C. Excitations of magnetic type

Let us proceed to the formulas for cross sections of magnetic
type. To calculate the excitation of nuclei with magnetic
transition, the known magnetic multipole expansion [23] of
integration element in the Hamiltonian of interaction (3) is to
be used:

jα(r)Dαβ(ωN, r − R)J β(R)

= 4πiωN

∑
L,M

j(r) · BM
LM (ωN, r)AM

LM (ωN, R) · J(R),

where α, β = 1–3. Magnetic multipoles are defined by equa-
tions: AM

LM (ωN, R) = jL(ωNR)YLL;M (�R), BM
LM (ωN, r) =

h
(1)
L (ωNr)YLL;M (�r ), where YLJ ;M (�) are vector spherical
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harmonics: YLJ ;M (�) = ∑
m,κ CJM

Lm1κYLm(�)ξκ , CJM
Lm1κ are the

Clebsch-Gordan coefficients, and ξκ is the standard spherical
basis set [23]: ξ±1 = ∓(ex ± iey)/

√
2, ξ0 = ez.

The reduced probability of nuclear magnetic transition
is defined similar to the probability of electric type tran-
sition by substituting: EL → ML and RLY ∗

LM (�R) → Ĵ ·
AM

LM (ωN, R) in Eq. (6). The reduced probability in the
Weisskopf model B(W ; ML) is calculated in accord with the
following relation:

B(W ; ML) = B(W ; EL) × 10/(MNR0)2,

where MN is the mass of nucleon.
Simple calculations, which are similar to those presented

above for the electric type transitions, lead to expressions for
cross sections of excitation in the case of magnetic multipoles
M1 and M2:

σM1 = 16π2

9
e2 Ei + Ef

Ei

ln

√
Ei + √

Ef√
E i − √

Ef

×B(M1; II → IF ), (10)

σM2 = 8π2

25
e2m(Ei + Ef )

√
Ef

Ei

B(M2; II → IF )

×
[

1 − 1

6

(Ei − Ef )2√
EiEf (Ei + Ef )

ln

√
Ei + √

Ef√
E i − √

Ef

]
. (11)

The second term in the square brackets in the expression for
σM2 is small in comparison with unity at ωN 
 Ei . However,
near the reaction threshold, when ωN ≈ Ei , this correction
reaches the value −1/3.

It is clear that the required relation between cross sections
of electric and magnetic types is valid in nonrelativistic
approximation (Ei 
 m) and at small values of imparted
energy (ωN 
 Ei):

σML

σEL

≈ v2
i

B(ML, II → IF )

B(EL, II → IF )
,

where vi = √
2Ei/m is the electron velocity.

III. RESULTS

In this section we consider some numerical examples and
compare the plane wave Born approximation cross sections of
(7),(8), and (10) with excitation cross sections obtained in the
framework of other models.

The nucleus 181Ta. We begin our consideration from the
nucleus 181Ta. This nucleus has the value BW.u.(E1, 9/2− →
7/2+) = 2.01 × 10−6 for the transition 9/2−(6.237 keV) →
7/2+(0.0) with the energy 6.237 keV from isomeric to the
ground state in 181Ta [26]. This value indicates that the E1
transition is considerably hindered in comparison with its
assessment made using the Weisskopf single-particle model.

Dependence of the cross section of nuclei 181Ta excitation
to the isomeric state 9/2−(6.237 keV) is shown in Fig. 1.
One can see that the maximum value of plane wave Born
approximation (PWBA) cross section is 3.5 × 10−33 cm2.
This is approximately 100 times less than the value given

FIG. 1. (Color online) Cross sections for isomer 181Tam(9/2−,
6.237 keV) excitation by electrons in the framework of the PWBA
and RHFS methods.

in Ref. [20] and used in Ref. [6] for numerical modeling
and planning of the future experiment. Moreover, the cross
section calculated in the framework of RHFS method is even
less—about 3–4 times (see in Fig. 1) for both the atom and the
ion with the degree of ionization Z = +33. (In RHFS method
[9,21], the atomic shell is calculated in a relativistic version
of the Hartree-Fock-Slater method and the wave functions of
the scattering electron in the initial and final states are taken
in relativistic form as a solution of the Dirac equation in a
self-consistent potential of the nucleus and the electron shell.)

The corresponding correction of data shown in Fig. 8 of
the work in Ref. [6] for the expected yield of the excited
nuclei 181Tam as a function of laser radiation intensity showed
that the conclusion of the authors of the paper [6] about the
total domination of the inelastic electron scattering process
at excitation of nuclear isomer 181Tam in plasma seems to
be premature. The calculation with the correct value of cross
section of the 181Ta(e, e′) 181Tam process testifies that, in a wide
range of the intensities of laser radiation, which creates plasma,
the processes of photoexcitation and Coulomb excitation by
electrons will give approximately identical contributions to the
generation of isomeric nuclei 181Tam.

The nucleus 169Tm. In Fig. 2 we present the E2 and M1
excitation cross sections of the nucleus 169Tm in the framework
of PWBA and RHFS methods. In the calculations we used the
tabular values of the reduced probabilities for the isomeric
nuclear transition 3/2+(8.41 keV) → 1/2+(0.0) from [27]:

FIG. 2. (Color online) Cross sections for excitation of the isomer
169Tmm(3/2+, 8.41 keV).
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FIG. 3. (Color online) Cross sections for excitation of the isomer
201Hgm(1/2−, 1.5648 keV).

BW.u.(M1; 3/2+ → 1/2+) = 0.0342 and BW.u.(E2; 3/2+ →
1/2+) = 241. (This transition occurs within the rotational
band Kπ [NnZ�] = 1/2+[411] [27]. This explains the high
intensity of the E2 component and the cross section as a
whole.) The E2 PWBA cross section coincides with the
corresponding PWBA cross section from the work in [20].
On the other hand, the graphs show clearly that PWBA cross
sections and cross sections obtained by RHFS method have
little in common.

It is interesting to compare RHFS cross sections and cross
sections obtained in the framework of the distorted wave Born
approximation method and the Wentzel-Kramers-Brillouin
approximation (see [18]). In Figs. 3 and 4 we show PWBA
and RHFS cross sections of inelastic electron scattering from
the 201Hg and 110Ag nuclei.

The nucleus 201Hg. In the calculations we used
the following parameters of the isomeric nuclear
transition 1/2−(1.5648 keV) → 3/2−(0.0) in 201Hg:
BW.u.(M1; 1/2− → 3/2−) = 0.00151 and BW.u.(E2; 1/2− →
3/2−) = 25 [28]. Our E2 RHFS cross section, σE2, is well
consistent with the E2 cross sections in DWBA and WKB
approximation in Fig. 4 of the work in [18] (see graphs in
Fig. 3). The small difference between the results is explained
by different values for the reduced probability of the nuclear
transition. The similar difference between PWBA graphs
clearly indicates this. At the same time our M1 RHFS

FIG. 4. (Color online) Cross sections for excitation of the isomer
110Agm(2−, 1.113 keV).

cross section, σM1, is one order of magnitude greater than
corresponding DWBA and WKB cross sections in Fig. 4
in [18]. The authors [18] do not give the cross section σM1 in
the framework of PWBA; therefore, we cannot identify the
causes of this discrepancy.

The nucleus 110Ag. Isomeric transition from the first excited
state in the nucleus 110Ag is not well studied [29]. First, the
internal conversion coefficient, α, is unknown. Secondly, we
are not sure that we know all decay channels of the level.
That is why to evaluate the cross sections for excitation of
the level 2−(E = 1.113 keV, T1/2 = 660 ns) in 110Ag we must
accept some assumptions. According to our calculation, the
internal conversion coefficient for the E1(1.113 keV) isomeric
transition 2− → 1+ in 110Ag is α = 1.1 × 103. Using the
known half-life of the isomeric level, T1/2, we can compute
the reduced probability of the isomeric transition. The result
is: BW.u.(E1; 2− → 1+) = 2.9 × 10−4. [We assume that the
isomeric transition to the ground state is the sole (or dominant)
decay channel of the level 2−(1.113 keV).]

The excitation cross sections of the process
110Ag(e, e′)110mAg as functions of electron energy in the
range 1–12 keV are shown in Fig. 4. Our PWBA cross section
is approximately two times greater than the corresponding
PWBA cross section in Fig. 2 of the work in Ref. [18].
Apparently the authors [18] used other values for the internal
conversion coefficient α, and for the reduced probability of
nuclear isomeric transition BW.u.(E1; 2− → 1+). As concerns
the RHFS E1 cross section, it lies systematically below the
PWBA cross section in contrast to WKB and DWBA cross
sections (see in Fig. 4 and in Ref. [18], where the PWBA,
WKB, and DWBA methods exhibit the same behavior for
the wide energy range excluding only the neighborhood of
threshold).

Thus the results of our calculations show that the use of the
Born approximation to estimate the excitation cross sections
of atomic nuclei by electrons can lead to significant errors.
This is especially true for E2 and M1 cross sections whose
behavior has nothing to do with the cross sections obtained
in the framework of RHFS or DWBA, and WKB methods
(see [18]). E1 cross section may be used to estimate the
number of excited nuclei in a hot dense plasma with some
caution. The reaction rate averaged over the spectrum of
plasma electrons 〈σvi〉 is not very sensitive to the behavior
of the cross section near the reaction threshold. In this sense,
the difference near the reaction threshold in the behavior of the
E1 cross section calculated in the framework of the PWBA
and all other methods is not critical for determining the number
of excited nuclei. As for the systematic differences between
the PWBA and RHFS cross sections throughout the energy
range, it can affect more strongly the result of calculation of
the number of excited nuclei. Therefore, the use of the PWBA
requires caution, even for the case of E1 nuclear transition.

At the end of this section, let us note also that numerical
calculations in the framework of relativistic plane wave Born
approximation [formulas (II E.41)–(II E.46) in Ref. [30]] give
the same values for the σE1 and σE2 near the threshold as the
PWBA method. In the energy range near 100 keV the rela-
tivistic PWBA cross sections σE1 and σE2 are approximately
two times bigger than corresponding PWBA cross sections.
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IV. CONCLUSION

In conclusion, the results of the work can be summarized
as follows. (1) The simple analytical formulas were obtained
for calculation of cross sections of inelastic scattering of
electrons by nuclei in nonrelativistic Born approximation for
multipoles E1–E3 [Eqs. (7)–(9)] and M1–M2 [Eqs. (10) and
(11)]. (2) The excitation cross sections of the nuclei 181Ta,
110Ag, 169Tm, and 201Hg were calculated in the framework

of PWBA and relativistic version of the Hartree-Fock-Slater
method. It was shown that PWBA systematically overestimates
the E1 cross section and underestimates the E2 and M1
cross sections. (3) Using the experimental spectra of photons
and electrons in high-temperature laser plasma [6], it was
established that inelastic scattering of electrons by 181Ta nuclei
and photoexcitation of 181Ta by thermal plasma radiation
resulted in approximately the same number of 181Tam (9/2−,
6.237 keV) isomers.
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