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Target-state dependence of cross sections for reactions on statically deformed nuclei
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As part of an effort to understand how neutron-induced reactions on excited states in deformed nuclei differ
from those on ground states, we have carried out coupled-channels calculations of the angle-integrated cross
sections on the ground and excited states of several actinide nuclei with differing K values for the ground-state
band (233U, K = 5

2 ; 235U, K = 7
2 ; 238U, K = 0; and 239Pu, K = 1

2 ). Of particular interest is the compound-
nucleus formation cross section. We find that the ratio of the excited- to ground-state compound-formation cross
sections is very close to unity in all cases (within ≈ 0.1%) over the range studied (1 keV to 20 MeV). This result
requires that sufficient levels be coupled to ensure convergence (approximately 14 levels for odd-A nuclei). These
results are close to the predictions of the adiabatic model for scattering from statically deformed nuclei. This
model yields compound-formation cross sections, as well as total cross sections, that are independent of both the
K value of the band and the spin of the target state within the band. Our calculations show that the actual cross
sections are surprisingly close to the adiabatic limit, even at very low incident energies. We find similar results
for statically deformed rare-earth and s-d shell nuclei.
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I. INTRODUCTION

In many applications we want the cross sections for the
production of compound-nucleus (CN) states when neutrons
are incident on rotational nuclei. This cross section, also
known as the fusion or absorption cross section, is needed
for rotational nuclei which are particularly common in the
rare-earth and actinide regions. In some hot astrophysical
environments we also need the equivalent cross sections for
nuclei in initial excited states.

It is well known that coupled-channels calculations are
needed for these reactions, and the recent paper of Kawano
et al. [1] reported on such calculations where 5 levels of 169Tm
were included to calculate the CN cross section for neutrons
incident on both the ground and first-excited states. They also
studied the target-state dependence of the 239Pu fission cross
section. The results of that paper were an important stimulus
for the present work, in which we have made a systematic
study of the behavior of the excited-state vs ground-state cross
sections in statically deformed nuclei in three regions of the
periodic table, including an investigation of the dependence
of the cross sections on the number of states included in the
coupled-channels calculations.

In the course of the present research it became apparent that
the calculations converge surprisingly slowly as the number of
states included in the rotational band is increased and that
there are large variations in the intermediate unconverged
calculations. We have found that, for symmetric-rotor nuclei
with K �= 0 that have ground-state bands up to sufficiently
large angular momenta, calculation of the CN production cross
sections requires at least the inclusion of states Imax up to I �
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Igs + 14 to have converged results. This applies to both angle-
integrated cross sections and to elastic angular distributions,
although only the former are discussed in this paper.

When the rotational excitation energies are small (the case
of large moment of inertia, applicable to the actinide and
rare-earth nuclei), we show that the converged CN production
cross section is in fact very nearly independent of initial spin
I and independent of the bandhead spin projection K = Igs

on the symmetry axis. This is also true for the total cross
section, as well as for the sum of the elastic-channel cross
section and all inelastic-channel cross sections. The “very
near” independence refers to deviations of less than 1%,
and sometimes only 0.02%, that come from finite excitation
energies.

In the adiabatic limit of zero excitation energies, we provide
a rigorous proof that the angle-integrated cross sections
discussed herein are exactly independent of both the initial spin
I and the bandhead spin projection K . In the adiabatic limit,
these quantities are simply the cross sections calculated for a
fixed orientation of the deformed nucleus, averaged over all
possible orientations. We conclude that rare-earth and actinide
nuclei very nearly follow the adiabatic limit.

The independence of many important cross sections on K

and I suggests that cross sections for K > 0 nuclei and/or
cross sections for I > Igs may be most simply and efficiently
calculated by equivalent calculations with I = K = 0. This
revisits the discussion of Lagrange et al. [2], where we
conclude that the small difference they did find can be
almost entirely attributed to insufficient convergence of their
coupled-channels calculations.

We note several features that are relevant to applications of
the present work. All of the coupled-channels calculations
carried out in this paper are for reactions on the ground
and excited states of a single rotational band, assuming a
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rotational model and an optical potential that depends on
incident neutron energy but not on the spectroscopic properties
of the coupled states. The individual calculations directly
apply to cases such as the ground state vs the first-excited
state of 239Pu, because both states are members of the same
K = 1

2 band, but not to cases where the states belong to
different bands [such as the ground and first-excited (76.5 eV)
states of 235U]. The calculations certainly do not predict the
cross sections for transitions between bands, because this
requires excitation of the internal nuclear degrees of freedom
rather than just the rotational excitations. However, the K

independence predicted by the adiabatic model and found to
be a good approximation by the full calculations indicates that
the absorption and total cross sections are very close even for
states in different bands, as long as the optical potential is not
dependent on the band properties. As discussed in Sec. V, there
is very little experimental evidence for dependence on target
spin in optical-model observables such as total cross sections
and strength functions in low-energy neutron reactions. Some
caution is necessary in making this assumption for estimating
transmission coefficients for Hauser-Feshbach calculations of
neutron-induced deexcitation of very high spin isomeric states,
such as the 16+ 2.45-MeV isomer in 178Hf [3] or the 9− isomer
in 180Ta near 77 keV [3,4]. In such cases the optical potential,
particularly its imaginary part, may be altered because of the
reduced density of two-particle one-hole states that serve as
doorways for the development of a compound system.

One situation in which the conclusions of this paper do not
hold is the subbarrier absorption of charged particles. In this
case excitation or deexcitation of the internal modes of the
target by channel coupling can alter the effective height of the
Coulomb barrier, which can significantly affect the absorption
cross section. This effect has been explicitly studied for fusion
from an excited state by Kimura and Takigawa [5] and has
also been discussed in a general theory of heavy-ion fusion
by Hussein [6].

This article is organized as follows. Section II shows results
of the study we carried out of the convergence of the cross sec-
tions in actinide nuclei as a function of the number of coupled
states. It also shows that, when sufficient states are included in
the calculation, the cross sections calculated with a target in its
first-excited state are very close to those for the ground state.
These results provide the motivation for a re-examination of
the adiabatic approximation, which is described in Sec. III.
Tests of the accuracy of the cross sections calculated in the
adiabatic approximation and of its prediction that these cross
sections are independent of the I and K quantum numbers
are shown in Sec. IV for three regions of statically deformed
nuclei: actinides, deformed rare earths, and s-d shell nuclei.
The summary and conclusions are presented in Sec. V. Some
details of the formalism used in Sec. III and of the numerical
calculations are shown in Appendix A, and the optical potential
used in the rare-earth calculations is described in Appendix B.

II. CONVERGENCE OF COUPLED-CHANNELS
CALCULATIONS

In the early days of the development of coupled-channels
calculations, computations of neutron scattering on deformed

nuclei were carried out either in the adiabatic approximation or
with only a few coupled levels (see, for example, Refs. [7,8]).
In fact, until the past decade, calculations on rare-earth and
actinide nuclei carried out as input for Hauser-Feshbach
calculations typically coupled only 3 states in a ground-state
band of an even-even nucleus, for which K = 0, and 5 states
in odd-mass nuclei. In a more recent careful study of the
convergence of such calculations, Sukhovitskii et al. [9] found
that for scattering on 238U, it was necessary to extend the
coupling scheme to 5 levels to achieve a stable result (i.e., one
in which adding additional levels yields negligible changes in
important quantities such as the total and CN formation cross
sections σcmpd).

In the present work, in which a major goal is to establish
the connection between the values of σcmpd for reactions with
neutrons incident on the ground state of a nucleus and those for
an excited-state target, we have found it necessary to revisit the
question of convergence of the calculations as the number of
coupled states N is increased. We find that coupling a sufficient
number of states is crucial for getting an accurate result and
that for odd-mass nuclei in the actinide region as many as 14
states must be coupled.

In the calculations in this section we use the Flap 2.2 optical
potential [10], which had been tuned to reproduce neutron total
cross sections in the actinides with a minimal coupling scheme
(three levels for even-even targets). In view of our findings
that a much larger coupling scheme is necessary to generate
reliable cross sections on excited states, we intend to adjust
this potential so that it is consistent with the extended coupling
scheme.

A common set of deformation parameters was used
for all of the actinide calculations in the present work.
These parameters were adopted from the study of 238U
of Ref. [9], which used the values β2 = 0.219 and β4 =
0.053; the small value of β6 was ignored. These parameters
were converted to deformation lengths δ2 and δ4 by mul-
tiplying them by the 7.8183-fm radius of the real central
potential in Ref. [9], yielding δ2 = 1.7122 fm and δ4 =
0.4144 fm. For calculations on other actinides in the present
work we scale the deformation lengths by (A/238)1/3. These
values of δ2 and δ4 were used to deform the real and imaginary
central potentials; the spin-orbit potential was not deformed.
We found that it was sufficient to expand the deformed optical
potential up to a maximum Legendre-polynomial order of 6;
the calculations in the actinide and rare-earth regions were
carried out with a maximum order of either 6 or 8. The
calculations were carried out with the ECIS06 coupled-channels
code [11], and checked with both the FRESCO code [12,13] and
the COH3 code [14].

Unless stated otherwise, the level schemes for the target
states in the coupled-channels calculations were taken from
their experimental values as reported in the Evaluated Nuclear
Structure Data File (ENSDF) database [3]. For all calculations,
including those for reactions on excited states, the target states
included in the calculation begin with the bandhead I = K

and include N levels that are consecutive in their spin I .
In this paper we are concerned only with angle-integrated

cross sections. The compound-formation cross-section values
σcmpd were obtained by subtracting the sum of the inelastic
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FIG. 1. (Color online) Upper panel: Dependence of compound-
formation cross sections for neutrons on 238U on N , the number
of coupled states. Lower panel: Ratio of cross section for neutrons
incident on the first-excited state to that on the ground state. Note
that the excited- to ground-state ratio is very close to unity when a
sufficient number of levels is coupled.

cross sections σinel from the reaction cross section σreac, where
the latter is defined by the difference of the total and shape
elastic cross sections, σtot − σelas.

The upper portion of Fig. 1 shows the convergence of the
compound-formation cross section σcmpd for neutrons on the
K = 0 238U ground state as the number of coupled states N

increases. The lower portion shows the corresponding ratios
of the cross section for neutrons incident on the first-excited
state to that on the ground state. We see that for the chosen
potential and deformation parameters at least 6 states must be
coupled to yield stable results for σcmpd over the entire energy
range. For the excited- to ground-state ratio, 7 to 8 states must
be coupled, and the result is remarkably close to unity, with
deviations of only a few tenths of a percent. In this as well
as all other cases studied, the calculations for the various N

converge at high energies, which is consistent with the known
behavior of direct-interaction models for inelastic scattering
(e.g., adiabatic and Born approximations).

Figure 2 shows the same information for 239Pu, for which
the ground state has I = K = 1

2 and the 7.86-keV first-excited
state has I = 3

2 . The results are similar to those for 238U;
however, for bands with K �= 0, a much larger set of states
is necessary. In the case of 239Pu, 13 to 14 coupled states are
required for the cross section on the ground state, and 14 for
the excited- to ground-state ratio. Calculations with N = 15 to

FIG. 2. (Color online) Same as Fig. 1, but for 239Pu. As for
238U, the excited- to ground-state ratio is very close to unity when a
sufficient number of levels are coupled.

17 confirm that 14 states are sufficient. When fully converged,
the excited- to ground-state ratio is much closer to unity than
that for 238U; note the greatly expanded vertical scale in the
bottom part of the figure.

A curious feature of the approach to stability with increas-
ing N , evident in the lower portion of Fig. 2, is the odd-even
staggering of the ratios. That is, the calculations with even
N are systematically closer to the converged value than those
for the adjacent odd N . This is further illustrated in Fig. 3,
which shows the values of σcmpd as a function of N separately
for ground-state and first-excited-state targets, at a specific
incident energy (1 MeV). For even N , the two calculations are
in agreement, even when the common value is quite different
from the fully converged result. On the other hand, the two
values for odd N are significantly different, at least until
convergence is reached at high N . This behavior appears
consistent with the signature selection rule for quadrupole
matrix elements within rotational bands (see Eqs. (4-68a) and
(4-71) in Ref. [15]), which favors �I = 2. In the present case,
we see that the number of strong upward coupling matrix
elements is the same when N is even, but differs for odd values
of N . The same pattern is seen for 169Tm (see Sec. IV B),
which also is a K = 1

2 nucleus with a very low-lying I = 3
2

first-excited state. However, this simple odd-even effect was
not found in any of the other cases studied.

Figure 4 shows the fully converged first-excited- to ground-
state ratios of σcmpd for four actinide nuclei covering a range of

K values. The cases shown are 233U ( 5
2

+
), 235U ( 7

2
−

), 238U (0+),
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FIG. 3. (Color online) Calculated compound-formation cross
sections at 1 MeV incident energy for neutrons on the ground (solid
circles) and first-excited (open triangles) states of 239Pu, as a function
of the number of coupled states.

and 239Pu ( 1
2

+
). We find that N = 14 is sufficient to achieve

convergence for the odd-mass nuclei (for which K �= 0) and
have used this value in the calculations shown in the figure.
For 238U we have used N = 8. We see that all deviations
of the ratio from unity are small, not exceeding 0.3%. The
energy dependence of the deviation has a similar shape for all
four cases, and the deviations damp out quickly above 1 MeV.
There are no features of the energy dependence that are clearly
correlated with the opening of specific inelastic channels in the
various nuclei.

Most of the excited-state cross sections in the present work
refer to the first-excited state within a band. The very small
deviations of this ratio from unity raise the question of whether
the same result holds for targets in higher excited states.
We show an example of the excited state/ground state ratio
for neutrons incident on the second-excited state of 238U in
Fig. 5, along with the corresponding result for the first-excited
state that was shown in Fig. 4. We chose N = 10 for these
calculations to ensure convergence. We see that the deviations
from unity of the second-excited-state calculation are larger
than those for the first-excited state by an amount very roughly
consistent with the 10/3 ratio of excitation energies. The
deviations from unity are still small, remaining below 1%.

The near equality of cross sections on the ground and
excited states of a given nucleus that is uncovered when

FIG. 4. (Color online) Ratio of compound-formation cross sec-
tions on the first-excited and ground states for four nuclei with
different ground-state spins: 233U ( 5

2

+
), 235U ( 7

2

−
), 238U (0+), and

239Pu ( 1
2

+
). In these calculations sufficient levels are coupled to ensure

the reliability of these ratios, which are very close to unity. Note in
particular the highly expanded vertical scale for 239Pu.

sufficient levels of a rotational band are coupled has its origin
in the adiabatic approximation for scattering from deformed
nuclei. This approximation is discussed in the next section.

III. ADIABATIC MODEL

A. General expressions for the cross sections

Before dealing with the adiabatic model and other ap-
proximations, it is useful to exhibit general expressions that
relate the scattering wave functions and the coupled-channels
scattering potential to the cross sections of interest in this
paper. The total cross section may be written as the sum of two
terms. One of these is the compound-formation cross section,
and the other is the sum of the scattering cross sections to all
of the explicitly coupled channels, which we call the direct
cross section:

σtot = σcmpd + σ dir. (1)

The direct cross section may be further divided into the shape
elastic cross section σ dir

elas and the sum of cross sections to all
of the remaining directly coupled states, σ dir

inel:

σ dir = σ dir
elas + σ dir

inel. (2)

We choose a linear-momentum representation in which
the noninteracting states of a coupled-channels system are
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FIG. 5. (Color online) Solid curve: Ratio of compound cross
sections on the second-excited state of 238U to that on the ground
state. Dashed curve: Same, for the first-excited state. The deviation
of the ratio from unity scales roughly as the excitation energy.

represented by |ka〉, where h̄k is the relative momentum of the
projectile and the target, and a represents all intrinsic quantum
numbers of the projectile and the target required to specify
a given channel. We define a noninteracting Hamiltonian H0,
which includes the relative kinetic energy of the projectile and
the target, as well as the sum of their masses in a particular
channel a, including their internal excitation energies. The
Schrödinger equation for the noninteracting pair in channel a

is

(E − H0)|ka〉 = 0. (3)

For the noninteracting solutions, we use plane waves normal-
ized to unity in a large box of volume � with periodic boundary
conditions, so that the noninteracting wave functions in the
coordinate representation are

〈ra′|ka〉 = �−1/2 eik·r δa′a. (4)

We may also choose to add a constant offset to H0 so that the
energy E corresponds to the relative projectile-target kinetic
energy in a particular channel a of a coupled system.

To describe the full coupled-channels problem, we intro-
duce the interaction U = V + iW , which is not Hermitian
and can also couple channels distinguished by different
values for the parameters a. The components V and W are
separately Hermitian and are to be identified with the real
and the imaginary parts of a deformed optical potential.
The Schrödinger equation for the fully interacting state that
develops from an initial state |ka〉 when the interaction U is
turned on is

(E − H0 − U )|ψ (+)
ka 〉 = 0. (5)

The (+) superscript indicates the solution that contains a
plane wave in the incident channel a, together with outgoing
scattered waves in the incident channel as well as all other
channels coupled to it via U . Because of the coupling
represented by U , the state vector |ψ (+)

ka 〉 contains components

in all coupled channels, not just the incident channel; the
subscript ka and the superscript (+) simply indicate the
boundary conditions imposed on the solution of Eq. (5).
This can be made explicit by writing the wave function in
a coordinate representation,

〈ra′|ψ (+)
ka 〉 = ψ

(+)
a′;ka(r), (6)

which can be viewed as a column vector with channel indices
a′. Similarly, the interaction can be written (for a local
potential) as

〈ra|U |r′a′〉 = Uaa′ (r) δ(r − r′), (7)

which is a matrix in the channel indices a, a′. The usual set
of coupled differential equations is obtained by multiplying
Eq. (5) on the left by 〈ra′| and inserting a complete set
1 = ∑

a′′
∫

dr′′|r′′a′′〉〈r′′a′′| to the right of U . In numerical
calculations, a partial-wave expansion and a recoupling to
states of specific total angular momentum and parity is
normally made, but this is not necessary for our purposes.

We make use of the Lippman-Schwinger equation, which is
equivalent to the above Schrödinger equation with the specified
boundary conditions. It relates the fully interacting solution to
the noninteracting solution as

|ψ (+)
ka 〉 = |ka〉 + G

(+)
0 U |ψ (+)

ka 〉, (8)

in which G
(+)
0 , the outgoing-wave Green’s function for the

noninteracting system, is given by

G
(+)
0 = (E − H0 + iε)−1, (9)

where ε is a positive infinitesimal quantity. Note that G(+)
0 does

not couple different channels.
Using the above definitions, we can write the needed

expressions for σcmpd and σ dir. These expressions are derived
in Appendix A. The compound-formation cross section is

σcmpd = −�

k

2μa

h̄2 Im 〈ψ (+)
ka |U |ψ (+)

ka 〉 (10)

= −�

k

2μa

h̄2 〈ψ (+)
ka |W |ψ (+)

ka 〉, (11)

and the direct cross section is

σ dir = −�

k

2μa

h̄2 Im 〈ψ (+)
ka |U †G(+)

0 U |ψ (+)
ka 〉 (12)

= π�

k

2μa

h̄2 〈ψ (+)
ka |U †δ(E − H0)U |ψ (+)

ka 〉. (13)

Expressions similar to Eqs. (10) and (11) frequently occur in
scattering problems involving complex potentials. Examples
related to the present work include an early expression for
the s-wave neutron strength function by Porter [16], which
was further studied by Cugnon [17]. Schiff [18] obtained
the same expression in a study of the optical theorem in the
presence of a complex scattering potential. Further studies by
Hussein and collaborators [6,19,20] have considered complex
potentials and the effects of channel coupling on absorption.
The derivation in Appendix A yields results close to those
in Ref. [20], and our results are compared with that work in
Appendix A. The expressions above for σcmpd are also correct
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for charged incident particles, but those for σ dir are not, due to
the Coulomb divergence in the elastic cross section.

B. The adiabatic approximation for rigid rotors

We treat the situation in which the projectile interacts
with the target through an axially deformed, parity-conserving
complex interaction, U = V + iW , that does not depend on
the spin or other angular-momentum quantum numbers of the
target. With this assumption, the only dependence on these
quantum numbers appears in the symmetric-top rotational
wave functions [15]

〈ω|IMK〉 =
√

2I + 1

8π2
(−1)K−M DI

MK (ω), (14)

where I is the spin of the target state, and M and K are
its projections on the space-fixed z axis and the body-fixed
symmetry axis, respectively. We employ the definition of
Edmonds [21] for the rotation matrices DI

MK (ω), where
ω = (α, β, γ ) represents the set of Euler angles required to
rotate the space-fixed axes of the deformed target into the
body-fixed axes.1 Equation (14) also defines the coefficients
of a transformation between an angular (ω) and angular-
momentum (IMK) representation for states in the space of
target orientations. For an ideal axially symmetric rotor, the
excitation energy of an excited state of spin I above the
bandhead is

EI − EK = h̄2

2J [I (I + 1) − K(K + 1)], (15)

whereJ is the moment of inertia about an axis perpendicular to
the symmetry axis. For K = 1

2 , there is an additional term due
to Coriolis coupling [15], which is also inversely proportional
to J .

For the present case we replace the asymptotic quantum
numbers ka by kIMK , where we explicitly show the spin
quantum numbers of the target state, but suppress the projectile
quantum numbers. In this paper we are interested in the case
where the target is unpolarized; so we calculate the compound
cross section averaged over the target spin projections M:

〈σcmpd〉M = −�

k

2μa

h̄2

1

2I + 1

∑
M

〈ψ (+)
kIMK |W |ψ (+)

kIMK〉. (16)

We do not impose restrictions on the polarization state of
the projectile, and in principle appropriate averages should be
taken over the substates of the projectile. However, the main
conclusion that in the adiabatic approximation certain cross

1The angles (α, β, γ ) are identical to (φ, θ, ψ) as defined in
Ref. [22], p. 76. The present notation avoids possible confusion with
the scattering angles of the projectile. The phase of the symmetric-top
wave function of Eq. (14) is identical to that of Ref. [15], p. 6; the extra
factor (−1)K−M appears because the Bohr-Mottelson and Edmonds
definitions of the rotation matrices differ by this factor. We also define
a volume element for the Euler angles by dω ≡ dα sin β dβ dγ and
a δ function by δ(ω − ω′) ≡ δ(α − α′) δ(cos β − cos β ′) δ(γ − γ ′).
The Euler-angle eigenvectors |ω〉 form a complete orthonormal set;
that is, 〈ω|ω′〉 = δ(ω − ω′) and

∫
dω |ω〉〈ω| = 1.

sections are independent of the I and K quantum numbers of
the target is independent of the polarization of the projectile.

The adiabatic approximation was developed and applied
early in the history of coupled-channel problems [7,8,23,24],
presumably because it is computationally economical com-
pared to the exact solution. It appears to have fallen into disuse
with the development of computers with sufficient memory
and speed to carry out the full solutions easily. In reexamining
the adiabatic approximation for the present work, we have
found that it provides useful insights into the target-state
dependence of the total, direct, and compound formation cross
sections. We have also found that it can be more accurate than
conventional solutions, if too few levels are included in the
full-scale calculations to guarantee convergence of the results.

In the adiabatic approximation it is assumed that the
moment of inertia is so large that the nuclear rotational
motion can be considered frozen during the scattering, and
consequently all states within a band become degenerate
[see Eq. (15)]. Thus, for scattering of a projectile incident
on a target in a particular state |IMK〉, we replace the
Lippman-Schwinger equation for the exact solution,

|ψ (+)
kIMK〉 = |kIMK〉 + G

(+)
0 U |ψ (+)

kIMK〉, (17)

by its limit as J → ∞,

|φ(+)
kIMK〉 = |kIMK〉 + G

(+)
ad,0 U |φ(+)

kIMK〉, (18)

where |φ(+)
kIMK〉 is the adiabatic approximation to the scattering

state. The difference between G
(+)
0 and G

(+)
ad,0 is that in the latter

the kinetic energy terms in the Hamiltonian corresponding to
the target motion are absent, because they are proportional to
1/J . We can also construct solutions for scattering from a
target at fixed orientation ω in the adiabatic limit,

|φ(+)
kω 〉 = |kω〉 + G

(+)
ad,0 U |φ(+)

kω 〉. (19)

The desired solution, given by Eq. (18), can be expressed as
a linear combination of the solutions to Eq. (19). To see this, we
multiply Eq. (19) by the transformation coefficients 〈ω|IMK〉
relating the angle and angular-momentum representations, and
integrate over all values of ω,∫

dω |φ(+)
kω 〉〈ω|IMK〉 =

∫
dω |kω〉〈ω|IMK〉

+
∫

dω G
(+)
ad,0 U |φ(+)

kω 〉〈ω|IMK〉.
(20)

By using the completeness relation for the Euler-angle eigen-
states |ω〉 in the first term on the right-hand side of this
equation, and noting that in the second term the operator
G

(+)
ad,0 U may be taken outside the integral because it is

independent of ω, we obtain∫
dω |φ(+)

kω 〉〈ω|IMK〉 = |kIMK〉

+G
(+)
ad,0 U

∫
dω |φ(+)

kω 〉〈ω|IMK〉.
(21)
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We compare this with Eq. (18) to find the key result

|φ(+)
kIMK〉 =

∫
dω |φ(+)

kω 〉〈ω|IMK〉 (22)

=
∫

dω

√
2I + 1

8π2
(−1)K−M DI

MK (ω)|φ(+)
kω 〉. (23)

We use this result to evaluate the compound-formation cross
section of Eq. (16) in the adiabatic approximation. Substituting
Eq. (22) into the matrix element in Eq. (16) yields

〈φ(+)
kIMK |W |φ(+)

kIMK〉
=

∫
dω′

∫
dω〈IMK|ω′〉 〈ω|IMK〉 〈φ(+)

kω′ |W |φ(+)
kω 〉. (24)

Because the target orientation is fixed in |φ(+)
kω 〉, the operator W

cannot change it; consequently W is local in ω. Moreover, the
state vectors on either side of the matrix element are orthogonal
unless ω′ = ω. Thus the matrix element simplifies to2

〈φ(+)
kIMK |W |φ(+)

kIMK〉
=

∫
dω〈IMK|ω〉 〈ω|IMK〉 〈φ(+)

kω |W |φ(+)
kω 〉. (25)

The sum over the target spin projections M is easily carried
out using the properties of the rotation matrices [21],∑

M

〈IMK|ω〉〈ω|IMK〉

= 2I + 1

8π2

∑
M

DI∗
MK (ω)DI

MK (ω) = 2I + 1

8π2
. (26)

Combining Eqs. (16), (25), and (26), the final result is

〈σcmpd〉M = −�

k

2μa

h̄2

1

8π2

∫
dω 〈φ(+)

kω |W |φ(+)
kω 〉. (27)

This result for the M-averaged compound cross section in the
adiabatic limit is simply the compound formation cross section
for scattering from a target at fixed orientation, averaged
over all possible values of the Euler angles ω. There is no
dependence on either the target spin I or the K value of the
band. This feature follows from the assumed independence
of the optical potential U from these quantities, and from the
averaging over the magnetic substates M of the target.

The preceding derivation does not depend on specific
properties of W and can be carried out for any valid operator
in the adiabatic approximation (i.e., any operator that does not
change the target orientation). Thus we obtain the direct cross
section σ dir by the substitution [compare Eqs. (11) and (13)]

W −→ −π U † δ(E − Had,0) U, (28)

where the target rotational kinetic energy terms are absent
in Had,0, the free Hamiltonian in the adiabatic limit. As in

2Formally, we can represent W as |ω〉W (ω)〈ω| in the target sub-
space, and we note that the state vector |φ(+)

kω 〉 can be represented as a
product, |χ (+)

kω 〉|ω〉, of a scattering state in the projectile subspace and a
state at fixed orientation ω in the target subspace. These observations,
together with the orthogonality relation 〈ω′|ω〉 = δ(ω′ − ω), yield the
stated result.

the derivation for σcmpd, we use the adiabatic-model condition
that the above operator is diagonal in ω. Also as before, the
adiabatic result for the M-averaged direct cross section is the
average over all orientations of the cross section calculated for
fixed ω and is independent of I and K .

Because the total cross section σtot is the sum of σcmpd

and σ dir, its M-averaged value in the adiabatic limit will
share their properties. Specifically, all three cross sections
are independent of I and K of the target state. We note that
this result does not require a partial-wave expansion of the
coupled-channels problem or a specification of the polarization
state of the projectile. It requires only an average over the
magnetic substates of the target, which is assumed to be
unpolarized.

In Ref. [2], an approximation was investigated in which
the angular distributions for elastic and inelastic scattering
to states of the same band in an odd-mass nucleus were
expressed as linear combinations of the angular distributions
for scattering on an even-even (K = 0) nucleus. Although
not stated in Ref. [2], this relation also has its origin in the
adiabatic approximation and can be derived from the adiabatic-
approximation scattering amplitude in Ref. [7]. The accuracy
of this result should be studied further using adequately
converged coupled-channels calculations, but this topic is
beyond the scope of the present article, which is concerned
with angle-integrated cross sections.

There are two approaches to implementing the adiabatic
approximation. In one of these, the coupled equations are
solved in the body-fixed frame. This method is significantly
more efficient than the full (nonadiabatic) technique, which
is why it was implemented early in the development of
coupled-channels calculations (e.g., Refs. [7,8]). Alternatively,
a full coupled-channels calculations can be made with all
excitation energies set to the same value and with a sufficient
number of levels coupled to ensure convergence. This second
approach was employed in the adiabatic calculations shown in
this paper.

In the following section we test the accuracy of the
adiabatic-approximation prediction that the cross sections σtot,
σcmpd, and σ dir are independent of I and K when applied
to calculations using the full (nonadiabatic) coupled-channels
technique.

IV. CROSS-SECTION DEPENDENCE ON I AND K

In this section we further investigate the validity of the
adiabatic-approximation predictions in the actinide region.
We also show results for deformed rare-earth nuclei, which
should be expected to be similar to those in the actinides, but
for smaller values of the moment of inertia. We also show
calculations for a statically deformed nucleus in the s-d shell
region, 20Ne.

A. Actinide nuclei

To study the validity of the independence of certain cross
sections to the I and K quantum numbers, it is convenient
to carry out calculations on a fictitious system we refer to as

044611-7



F. S. DIETRICH, I. J. THOMPSON, AND T. KAWANO PHYSICAL REVIEW C 85, 044611 (2012)

“238U” that has level energies and quantum numbers chosen
to illustrate specific points, but otherwise employs the optical
potential and deformations for the actual 238U described in
Sec. II. We choose the excitation energy spectrum for a band of
given K to be that of the ideal rotor of Eq. (15). It is well known
that the moments of inertia are band dependent and that the
K = 0 ground-state bands of even-even nuclei have moments
of inertia that are significantly smaller than those for bands
with K �= 0. We choose the value of the inertial parameter
h̄2/2J to be 0.006 MeV, which is between the physical values
0.0074 MeV for 238U (K = 0) and 0.0052 MeV for 235U
(K = 7

2 ). Unless otherwise indicated, this intermediate value
of h̄2/2J is applied for all K values assumed for the fictitious
238U. Using this common value of the inertial parameter allows
us to study the K dependence of the adiabatic-approximation
predictions without the additional complication introduced by
the actual band dependence of the moment of inertia.

Figure 6 shows the ratio of full coupled-channels (i.e.,
nonadiabatic) calculations to adiabatic calculations for σcmpd,
σ dir, and σtot on the bandheads of assumed K = 0 and K = 7

2
bands in 238U. These are the three cross sections that are
independent of I and K in the adiabatic limit. The curves
are for K = 0, and the points are for K = 7

2 . The adiabatic
approximation is rather good for all three cross sections,

FIG. 6. (Color online) Ratio of nonadiabatic to adiabatic calcu-
lations for σcmpd, σ dir, and σtot on a pseudonucleus resembling 238U
except for the level structure (see text). The calculations assume
neutrons incident on a K = 0 bandhead (solid curves) and a K = 7

2
bandhead (points). The moment of inertia is the same for both cases,
and in consequence the cross sections are nearly independent of K .

FIG. 7. (Color online) Nonadiabatic calculations for the
pseudonucleus 238U, showing the ratio of compound cross sections
on the bandhead for a given K value to that for K = 0. These results
show that the deviation from the adiabatic model prediction of K

independence is very small; note the highly expanded vertical scale.
Calculations with half-integral K fit smoothly between the values
shown for integral K .

because in all cases it is within approximately 2% of the true
(nonadiabatic) result. The near equality of the results for K =
0 and K = 7

2 shows that the K-independence prediction of the
adiabatic approximation is well reflected in the nonadiabatic
calculations.

The accuracy of the K-independence prediction is exhibited
in more detail in Fig. 7, which shows the ratio of the compound
cross sections for various K values (up to K = 6) to that for
K = 0. The deviations from unity increase uniformly with
increasing K , but do not exceed 0.2%. Calculations carried
out for half-integral K fit smoothly between those for integral
K , but for clarity are not shown.

Finally, in Fig. 8 we show the dependence on the inertial
parameter h̄2/2J (labeled c in the figure) of the nonadia-
batic/adiabatic ratio for calculations on a K = 0 bandhead.
The deviations from unity are roughly linear, at least up to the
value 0.006 MeV we have adopted as a realistic average value
of the inertial parameter.

B. Rare-earth nuclei

Like the actinides, the heavy rare-earth nuclei are under-
stood to be rigidly deformed rotors, and thus it should be
expected that many of the results we have found for the
actinides should apply also to the deformed rare-earth nuclei.
The principal difference is that the moment of inertia is
significantly smaller in the rare earths, as indicated by the level
spacings in the ground-state band of even-even nuclei, which
are roughly twice those in the actinides. We should therefore
expect that the deviations from the adiabatic model should
be somewhat larger in the rare earths than in the actinides,
but should follow the same patterns. We show a small sample
of results for calculations on three nuclei spanning the same

044611-8



TARGET-STATE DEPENDENCE OF CROSS SECTIONS FOR . . . PHYSICAL REVIEW C 85, 044611 (2012)

FIG. 8. (Color online) Nonadiabatic/adiabatic ratio of the
compound-formation cross section for reactions on a K = 0 band-
head, for several values of the inertial parameter c ≡ h̄2/2J . The
values of c extend from 0, which is the adiabatic limit, up to 0.006,
which represents a rough average of physical values for actinide
nuclei. Note that these ratios are approximately linear in c, which
determines the excitation energy scale.

range of K as for the actinide nuclei, 165Ho ( 7
2

−
), 169Tm ( 1

2
+

),
and 170Yb (0+).

The optical potential used in these calculations is a regional
potential developed for data evaluations in the rare-earth
region [25]. The parametrization of this potential is described
in Appendix B. As for the potential used in the actinides, this
potential was used in calculations with N = 3 for even-even
nuclei and N = 5 otherwise; this potential should therefore
also be readjusted for calculations with an extended level
scheme.

The deformation lengths were taken from the deformations
measured for 166Er by α scattering in Ref. [26]. This experi-
ment, which studied a number of deformed rare-earth nuclei,
showed that the hexadecupole deformations in the region of
interest to be very small, and consequently we set δ4 to 0.
The quadrupole deformation lengths we adopt are given by
δ2 = 1.8202(A/166)1/3 fm, which incorporates a scaling as
A1/3, as was done in the actinide calculations.

The calculations in the rare-earth region were carried out
with experimentally determined level schemes, taken from
ENSDF [3]. Because the ENSDF compilation contains only
12 levels for the 169Tm ground-state band and we wish to carry
out calculations with up to 14 coupled levels, we have added
2 levels by extrapolation of the known levels; these levels are
at excitation energies 2.038 MeV (25/2)+ and 2.163 MeV
(27/2)+.

Using the above parameters, the calculations were carried
out exactly as for those in the actinides using the ECIS06 code,
expanding the potential to Legendre-polynomial order 8. We
do not show details of the convergence as a function of the
number of coupled states N , but the results are similar to those
in the actinides. As before, we find that N = 8 for K = 0

FIG. 9. (Color online) Ratio of compound-formation cross sec-
tions on the first-excited state to those on the ground state for three
deformed rare-earth nuclei, 165Ho ( 7

2

−
), 169Tm ( 1

2

+
), and 170Yb (0+).

bands and N = 14 for K �= 0 bands is sufficient to ensure
convergence of the excited- to ground-state ratios. Also, the
pronounced variations in the excited- to ground-state ratio for
even vs odd N observed for 239Pu and shown in Fig. 3 were
repeated for 169Tm.

The results for the compound-formation cross sections are
shown in Fig. 9 for the first-excited- to ground-state ratios, and
Fig. 10 for the ratio of nonadiabatic to adiabatic calculations
on the bandheads.

As seen in Fig. 9, the deviations of the excited- to ground-
state ratios from the adiabatic limit are small, but not as small
as for the actinides. The deviation is of the order of 1% at low
energies for 170Yb, but for the other two nuclei the deviations
are significantly smaller (approximately 0.1% or less). These
results indicate that the compound-formation cross sections
shown in Fig. 3 of Ref. [1] for the ground and first-excited states
should be closer together in a fully converged calculation. The
values for the nonadiabatic to adiabatic ratios of Fig. 10 show
deviations of a few percent from the adiabatic limit, as in the
actinides. However, we note that this deviation is as large as
6% for 165Ho at low energies.

C. s-d shell nuclei

A more severe test of the adiabatic approximation should
be provided by the deformed light nuclei in the s-d shell, such
as 20Ne. This isotope has a 2+ state at 1.63 MeV, defining a
good rotational band at least to the 8+ state at 15.8 MeV. These
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FIG. 10. (Color online) Same as for Fig. 9, but for the ratio of
nonadiabatic to adiabatic calculations for neutrons incident on the
ground state of each target.

energies indicate a much smaller moment of inertia than that
of the actinide and rare-earth nuclei discussed above, and so
we might expect much larger deviations of the nonadiabatic
calculations compared with the results in the adiabatic limit.
For our calculations, the neutron 20Ne optical potential used
was the global potential of Koning and Delaroche [27], in
conjunction with the deformation parameters of Ref. [28]. The
potential was evaluated at 5 MeV and used at all energies
up to 50 MeV with nonrelativistic kinematics; this treatment
should be sufficient to exhibit the state dependence of the cross
sections, but is not intended as a realistic calculation of their
absolute values.

Figure 11 shows results for coupled channels up to the 8+
state, in which the curves show the ratio of cross sections for
the first-excited state to those for the ground state. We see
that the compound nucleus cross sections agree within 3%,
and the direct and total cross sections agree to better than
approximately 2%. Convergence is in fact obtained once the
6+ state is included, but the final ratios are still surprisingly
close to unity. Figure 12 directly compares the nonadiabatic
and adiabatic cross sections for the ground state. As expected,
the ratio of these is further from unity than for the heavier
nuclei, but still within 4% over most of the energy range.

V. DISCUSSION AND CONCLUSIONS

Using standard coupled-channels calculations, we have
investigated the behavior of the total, compound-formation,

FIG. 11. (Color online) Ratio of the cross sections σcmpd, σ dir,
and σtot on the first-excited state to those on the ground state for the
deformed s-d shell nucleus 20Ne.

and direct (elastic plus summed inelastic) cross sections for
neutrons incident on the ground and first-excited states of
statically deformed nuclei in the actinides, the rare-earth
region, and s-d shell nuclei. In all of these regions, the ratio
of excited- to ground-state cross sections is very close to
unity. The deviations from unity extend from about 2% in the
s-d shell example (20Ne) to less than 0.1% in the heaviest
nuclei. It was essential to include sufficient levels in the
coupled-channels calculations to achieve stable results; in the
actinides and rare earths, we require 8 levels for K = 0 bands
and 14 levels for K �= 0 bands.

Our results are consistent with those of Sukhovitskii et al.
[9], who studied the convergence of neutron cross sections on
238U as the number of coupled target states was increased and
found that if too few states were included significant errors
could be incurred in important cross sections, such as the
compound-formation cross section (see Fig. 10 of Ref. [9]). In
particular, the common practice of calculating neutron cross
sections with 3 coupled levels in K = 0 bands was shown
to be inadequate. The present work shows that one can also
obtain poor results in bands with K �= 0 when only 5 levels
are coupled, which has also been common practice. Optical
potentials whose parameters were determined with a restricted
set of coupled states, including those used in the actinide and
rare-earth calculations here, will need to be readjusted when
an adequately large set of states is incorporated.

The nearly equal cross sections for ground- and excited-
state targets has led us to reexamine the adiabatic approxima-
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FIG. 12. (Color online) Same as for Fig. 11, but for the ratio of
nonadiabatic to adiabatic calculations on a ground-state target for
each of the cross sections.

tion for scattering on deformed nuclei. We have shown that in
this model the total, compound, and direct cross sections are
independent of the spin of the target state, I , as well as of the K

value of the band of which it is a member. We have tested the
accuracy of the adiabatic approximation by comparing it with
full coupled-channels calculations and find that in all cases it
is within a few percent of the exact results. In many cases this
is comparable to or better than the accuracy of experiments.
In the actinides and rare earths, the excited state/ground state
ratio is in significantly better agreement with the adiabatic
approximation than the ground-state cross sections.

Our conclusion that the adiabatic approximation is rather
accurate provides a connection between cross-section calcu-
lations in the spherical and deformed regions of the isotopic
table. In both cases the optical potentials normally employed
are independent of the target spin. This implies the assumption
that the projectile interacts with the nuclear density as a
whole and is essentially independent of the specific structural
properties of the valence particle (or particles) that account for
the spin (or K for deformed systems). In a spherical calculation
one assumes the target spin is 0. However, in coupled-channels
calculations for deformed nuclei it is necessary to include the
K value of the target band explicitly in the wave function,
even though it is not included in the potential. In the adiabatic
approximation the cross sections of interest in this paper are
independent of K; this provides the connection between the
spherical and deformed systems. This picture is supported

by experimental evidence from neutron total cross-section
measurements. For nuclei usually treated as spherical, such
measurements show little evidence for dependence on the spin
of the target; see, for instance, the extensive measurements
from LANSCE/WNR (Los Alamos Neutron Science Center,
Weapons Neutron Research Facility) [29,30]. The same is true
for measurements in the actinides [31]. In both cases, the
total cross sections for odd-mass nuclei are close (i.e., within
experimental uncertainties) to those for neighboring even-even
nuclei. Thus the target spin appears to act as an inert spectator
in both spherical and deformed cases, and this is confirmed in
the adiabatic approximation.

A frequently stated condition for the validity of the
adiabatic approximation is that the projectile energy be large
compared to the excitation energy of the most important target
excitations. Clearly this requirement is too stringent, because,
as is evident in the present work, the adiabatic approximation
gives good results even down to the lowest energies where
the condition is certainly not satisfied. A qualitative argument
for the validity of the approximation at low energies is that
most of the interaction of the projectile with the target,
and in particular the coupling to other target states, takes
place after the projectile has been sufficiently accelerated
by the attractive nuclear potential for the approximation
to be appropriate. A quantitative implementation of this
idea has been suggested by Bohr and Mottelson (Ref. [15],
Sec. 5A-2), in which an adiabatic treatment for the wave
function is carried out inside the nucleus and matched at the
nuclear boundary to wave functions in the external region that
are treated nonadiabatically (i.e., with physical values for the
target excitations). This approach has been used for estimating
s-wave strength functions in deformed nuclei [32].

We conclude with some comments on the implications
of the present work for practical calculations. The findings
in this paper apply to the transmission coefficients used in
Hauser-Feshbach calculations, because they are essentially a
decomposition of σcmpd into components with fixed total an-
gular momentum and parity. The same conclusions regarding
approximate independence of σcmpd from I and K apply to
the transmission coefficients as well. We do not advocate
using adiabatic calculations routinely, as long as the full
coupled-channels calculations are carried out with a sufficient
number of states. However, calculations on states with K �= 0
can be time-consuming, and the present work suggests that the
cross sections and transmission coefficients can be calculated
(at least in the deformed actinide and rare-earth nuclei) with a
fictitious even-even (i.e., K = 0) model for the target, in which
the moment of inertia is chosen the same as for the actual
target. This is the approximation that was studied by Lagrange
et al. [2]. While in some cases that work showed significant
differences between the actual calculations and the fictitious
even-even model at low energies (≈1 MeV), it appears that
coupling sufficient levels removes these discrepancies.

ACKNOWLEDGMENTS

This work was performed under the auspices of the
US Department of Energy by the Lawrence Livermore

044611-11



F. S. DIETRICH, I. J. THOMPSON, AND T. KAWANO PHYSICAL REVIEW C 85, 044611 (2012)

National Laboratory (LLNL) under Contract No. DE-AC52-
07NA27344, and by the Los Alamos National Laboratory
(LANL) under Contract No. DE-AC52-06NA25396. We are
grateful for the interest and support of Dr. Jason Burke at the
LLNL and Dr. Mark Chadwick at the LANL.

APPENDIX A: CALCULATION OF COMPOUND AND
DIRECT CROSS SECTIONS

In this Appendix we derive the expressions for the
compound-nuclear formation and direct cross sections,
Eqs. (10)–(13) of Sec. III, using the definitions introduced
in that section.

We begin by noting the relation between the total cross
section in the incident state ka and the forward scattering
amplitude given by the optical theorem,

σtot = 4π

k
Im fka,ka. (A1)

This is a very general result that applies to any wave scattering
problem whose amplitude at sufficiently large distances from
the scatterer (apart from an overall normalization) can be
written as

A(r) = eik·r + eikr

r
fk′,k, (A2)

where |k′| = |k| = k. Reference [33] summarizes a remark-
ably simple argument of van de Hulst’s [34] that derives the
optical theorem from Eq. (A2) by considering the depletion
of the intensity |A(r)|2 at forward angles due to interference
between the incident and scattered waves. The essential
features of a specific problem are contained in the calculation
of the scattering amplitude. In the present case these features
are the complex interaction U and the presence of multiple
channels coupled by this interaction.3

The T matrix for scattering from the state ka to the state
k′a′ is

Tk′a′, ka = 〈k′a′|U |ψ (+)
ka 〉, (A3)

which is related to the scattering amplitude fk′a′, ka by

fk′a′, ka = − �

4π

2μa′

h̄2 Tk′a′, ka, (A4)

where μa′ is the reduced mass in channel a′. The scattering
amplitude has been defined so that the differential cross section
is

dσk′a′, ka/dk̂′ = (v′/v) |fk′a′, ka|2, (A5)

where we denote the element of solid angle in the direction of
k′ by dk̂′. The relative velocities of the interacting particles in
the initial and final states are denoted by v and v′, respectively.

3Note that, because any open coupled channels are distinguishable
from the elastic channel, they will not contribute to the interference
between incident and scattered waves that leads to the optical theorem.
Thus Eq. (A1) is valid even in the presence of channel coupling.

Using the optical theorem, the total cross section for incident
channel ka can be related to the T -matrix element by

σtot = 4π

k
Im fka,ka = −�

k

2μa

h̄2 Im 〈ka|U |ψ (+)
ka 〉. (A6)

The T -matrix element in the last equation can be recast
by eliminating |ka〉 in favor of |ψ (+)

ka 〉 with the help of the
Lippman-Schwinger equation [Eq. (8)]:

〈ka|U |ψ (+)
ka 〉 = 〈ψ (+)

ka |U |ψ (+)
ka 〉 − 〈ψ (+)

ka |U †G(+)
0 U |ψ (+)

ka 〉∗.
(A7)

We take the imaginary part of this equation and insert it in
Eq. (A6), which yields the result

σtot = −�

k

2μa

h̄2 Im 〈ψ (+)
ka |U |ψ (+)

ka 〉

− �

k

2μa

h̄2 Im 〈ψ (+)
ka |U †G(+)

0 U |ψ (+)
ka 〉. (A8)

We will now show that the first term in this expression is
the compound-nuclear formation cross section, σcmpd, and the
second is the direct interaction cross section, σ dir.

We begin this demonstration by making an explicit cal-
culation of the direct cross section as the sum over all final
states coupled by the interaction U , including both elastic
and inelastic scattering. We use the Fermi golden rule for the
transition probability per unit time to a given final state,

wk′a′, ka = 2π

h̄
|Tk′a′, ka|2δ(Eka − Ek′a′). (A9)

The energies of the initial and final states are Eka and Ek′a′ ;
the δ function constrains these to a common value, which we
refer to below as E. We divide the transition probability by the
nonrelativistic incident flux, (1/�)(h̄k/μa), to yield the cross
section to get from state ka to k′a′,

σk′a′, ka = π
�

k

2μa

h̄2 〈ψ (+)
ka |U †|k′a′〉 δ(Eka − Ek′a′ )

×〈k′a′|U |ψ (+)
ka 〉. (A10)

The states |k′a′〉 form a complete set in the space of states
coupled by the interaction U , and so we can sum over the final
states and use closure to remove explicit reference to them.
We thus obtain the direct cross section,

σ dir =
∑
k′a′

σk′a′, ka = π
�

k

2μa

h̄2 〈ψ (+)
ka |

×U † δ(E − H0) U |ψ (+)
ka 〉, (A11)

which is the result shown in Eq. (13).
We now show that this expression is identical to the second

term in Eq. (A8), which is the same as in Eq. (12). To do
this we use the symbolic identity relating the outgoing-wave
and principal-value Green’s functions for the noninteracting
Hamiltonian,

G
(+)
0 = P

E − H0
− iπδ(E − H0), (A12)

where P indicates that the principal value is to be taken when
calculating integrals containing this Green’s function. The
operator P/(E − H0) is Hermitian, and thus its expectation
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value in any configuration is purely real. Therefore, if we
insert the above expression for G

(+)
0 in the second term of

Eq. (A8), the term containing the principal-value Green’s
function vanishes because its matrix element has no imaginary
part, and the surviving term that contains the δ function is
identical to Eq. (A11).

We can put the expression for σ dir of Eq. (A11) in the
more familiar form of a sum over angle-integrated partial cross
sections. By reinserting the complete set of final states |k′a′〉
and using the definitions of Eqs. (A3)–(A5), we obtain

σ dir =
∑
a′

∫
dk̂′ dσk′a′, ka

dk̂′ , (A13)

where the sum is over all open channels, both elastic (σelas)
and otherwise (σinel). In obtaining this result we have also used
the relation

∑
k′ = �/(2π )3

∫
dk′ to pass to the continuous

variable k′ from the discretized, box-normalized form.
Because the second term of Eq. (A8) has been identified

with σ dir, the first term must be σcmpd [see Eq. (1)], which is
the expression shown in Eq. (10). If we write U = V + iW and
again use the fact that the Hermitian part V does not contribute
because the matrix element is real, we get the second form,
Eq. (11).

The expressions for absorption, Eqs. (10) and (11), are
formally the same as those for scattering in a single-channel
problem. For multiple channels, these expressions include
absorption from all of the coupled channels, as well as in the
coupling between channels. To make this explicit, we define
projection operators Pa that project onto a specific channel a

such that
∑

a Pa = 1 and introduce the abbreviations

Pb|ψ (+)
ka 〉 = |ψ (+)

b;ka〉 and (A14)

PcWPb = Wcb (A15)

for the projections of the state vector incident in channel a

and the absorptive interaction, respectively. Thus the matrix
element in Eq. (11) describing compound formation from
incident channel a can be written as

〈ψ (+)
ka |W |ψ (+)

ka 〉 =
∑
cb

〈ψ (+)
c;ka|Wcb|ψ (+)

b;ka〉. (A16)

There is no distinction between open and closed coupled
channels, and absorption may occur from both classes. The
diagonal terms b = c give absorption within a channel, while
the off-diagonal terms correspond to absorption during the
transitions between channels. The absorption cross section
obtained from this expression, supplemented by the direct
interaction contribution, is nearly equivalent to the result
of Hussein et al. in Eq. (A.11) of Ref. [20]. However,
their expression lacks the off-diagonal terms, because they

TABLE I. Neutron optical model parameters for calculations on
rare-earth nuclei in Sec. IV B. The asymmetry parameter η is (N −
Z)/A, where N , Z, A are the neutron, proton, and mass numbers of
the target. Energies are in MeV, and lengths in fm. E is the laboratory-
system incident neutron energy.

Real volume
VV 50.125 − 0.2331E − (20.050 − 0.0933E)η
rV 1.25
aV 0.65

Imaginary volume

WV

{
0, E � 8
−1.357 + 0.1696E − (−0.543 + 0.0678E)η, E > 8

rV 1.25
aV 0.65

Imaginary surface

WD

{
3.743 + 0.334E − (1.497 + 0.134E)η, E � 8
6.974 − 0.0697E − (2.790 − 0.0279E)η, E > 8

rD 1.25
aD 0.58

Real spin orbit
VSO 8.427
rSO 1.25
aSO 0.65

assumed that the channel-coupling part of the interaction was
Hermitian.

The derivations of σcmpd and σ dir refer to specific projections
of the projectile and target spins (which are contained in
the incident channel index a), and in an application these
cross sections must be appropriately summed and averaged
over the projections. Charged particles may be treated by the
artifice of including a large shielding radius R. In this case, the
expressions for σcmpd are valid as R → ∞, but those for σ dir

are not, because they contain the divergent elastic scattering.

APPENDIX B: RARE-EARTH OPTICAL POTENTIAL

In this Appendix we describe the optical potential used
in the calculations for the deformed rare-earth nuclei in
Sec. IV B. This potential was developed for an evaluation
of neutron and charged-particle cross sections in the region
of samarium, europium, and gadolinium nuclei and was
determined principally from fits to neutron strength functions
and total cross sections in that region [25]. The parameters are
shown in Table I. The parametrization of the optical potential
employed here is defined in Ref. [27], Eqs. (2)–(4). The range
of applicability of this potential is 0–30 MeV. Relativistic
kinematics was used in the present calculations.
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