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New Geiger-Nuttall law for α decay of heavy nuclei
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Recent α-decay data of heavy nuclei are collected and systematic analysis shows that there is a sudden change
between the logarithm of decay half-life and the reciprocal of the square root of decay energy across the N = 126
shell closure. In order to reproduce this sudden change, the new Geiger-Nuttall law is proposed where the effects
of the quantum numbers of α-core relative motion are naturally embedded in the law. The remedy achieved
by a very simple parametrization of these effects is remarkable. By adding terms to the Geiger-Nuttall law, the
parameters in the formula of decay half-lives need not be changed, except for some odd nuclei. This is an important
development to the original Geiger-Nuttall law, which is valid for the ground-state transitions of even-even nuclei
with N � 128. The law is generalized to the favored and hindered transitions of the N � 128 nuclei and of
high-spin isomers. The results of this article point to the simplicity of the underlying mechanism of the decay.
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I. INTRODUCTION

The Geiger-Nuttall law is a famous formula written in
many textbooks of modern physics and nuclear physics. It
states that there is a linear relationship between the logarithm
of α-decay half-lives and the reciprocal of the square root
of decay energies for ground-state transitions of even-even
nuclei with N � 128 [1,2]. Although it was proposed a century
ago, it is still widely used to systematize the data of α decay
and to predict the half-lives of unknown nuclei. Based on
the Geiger-Nuttall law and quantum tunneling theory, various
formulas [3–8] and models [9–23] have been developed to
calculate the decay half-lives and they are useful for current
researches of α decay of heavy and superheavy nuclei [24,25].
One of the authors of this article and his collaborators have
produced an extension of the original Geiger-Nuttall law to
cluster decay other than α decay [26]. With the α-decay
data of ground-state and high-spin isomers accumulating,
it is interesting to see whether the relationship between
half-lives and decay energies deviates systematically from
the original Geiger-Nuttall law. By analyzing the behavior of
systematic deviation, some quantum-mechanical effects can
be observed. By including some quantum-number effects,
it is also important to investigate whether this law can be
generalized to hindered α decays with the change of parity
between parent nuclei and daughter nuclei and to the α decays
from high-spin isomers. These are the purposes of this article.

II. NUMERICAL RESULTS AND DISCUSSIONS

We start from a unified three-parameter formula between
half-lives and decay energies of α decay and cluster radioac-
tivity [8],

lg T1/2 = a
√

μ ZcZd/
√

Q + b
√

μ
√

ZcZd + c. (1)

Here the values of three parameters are a = 0.39961, b =
−1.31008, and ce-e = −17.00698 for even-even (e-e) nuclei
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[8]. T1/2(s) is the half-life of α decay and Q(MeV) is the cor-
responding decay energy. Zc and Zd are the charge numbers of
the cluster and daughter nucleus. μ = Ac Ad/(Ac + Ad ) is the
reduced mass and Ac, Ad are the mass numbers of the cluster
and daughter nucleus, respectively. For α decay, Zc = 2 and
Ac = 4. The three parameters, a, b, c, are obtained by fitting
the data of even-even nuclei with Z � 84 and N � 128 [8].

This three-parameter formula is a natural realization of
both the Geiger-Nuttall law and the famous Viola-Seaborg
formula [3] toward the unified description of α decay and
cluster radioactivity. When this formula is used to calculate
the half-lives of ground-state transitions of even-even nuclei
with N stepping over the N = 126 shell closure, a strong effect
is observed. A dramatic deviation occurs between calculated
half-lives and experimental ones for N � 126 nuclei on the
isotopic chains of Z = 84–92. For even-even Po nuclei, it is
plotted in Fig. 1 and the points denoted with original law
correspond to the deviation between the experimental value
and the value calculated with Eq. (1). The points denoted
with new law are our results and will be explained later. In
Fig. 1, the x axis is the mass number of parent nuclei and
the y axis is the logarithm of the ratio between experimental
half-lives and calculated values. It is seen from Fig. 1 that
the values calculated with Eq. (1) (denoted by original law)
agree well with the data of N � 128 but the agreement is
very bad for N � 126 because the ratio between experimental
value and the value calculated with the original law is beyond
a factor of ten for some Po nuclei (lg10 = 1). These are also
the common case for Z = 86, 88, 90, 92 isotopic chains and a
similar figure for even-even Rn isotopes is drawn in Fig. 2.
From Fig. 2, a similar deviation is observed between the
results calculated with Eq. (1) (denoted by original law) and
experimental half-lives. Therefore the abnormal deviation is
systematic behavior for isotopic chains Z = 84–92. Why does
this phenomenon happen when N passes across N = 126?
What is the underlying physics behind it? At first we will
make a general analysis based on quantum theory.

It is well known that α decay is a quantum tunneling phe-
nomenon and there is no correspondence to this phenomenon
in classical mechanics. Therefore the process of α decay can
be described by quantum theory. The quantum motion of an α

044608-10556-2813/2012/85(4)/044608(6) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevC.85.044608


YUEJIAO REN AND ZHONGZHOU REN PHYSICAL REVIEW C 85, 044608 (2012)

FIG. 1. (Color online) Logarithms of the ratios between experi-
mental α-decay half-lives and theoretical ones for even-even Po nuclei
with the original law [Eq. (1)] and with the new law [Eq. (3)]. The
original law and new law go together in the range of N � 128.

cluster in nuclei is determined by a wave function that is the so-
lution of the Schrödinger equation for a quasibound state [22].
However, a review of Eq. (1) clearly shows that the information
of the wave function is not included in the original Geiger-
Nuttall law or Eq. (1). This is not strange because the Geiger-
Nuttall law was proposed before the quantum theory was
founded. Although the complete information of the wave func-
tion can not be included in a simple formula such as Eq. (1),
some basic observables such as quantum numbers can be ab-
sorbed in the formula for a better description of α-decay data.

Some important quantum numbers of an α cluster in
spherical potentials are the global quantum numbers G, the
radial quantum number n, the angular momentum l, and parity.
Usually G = 2n + l [9,11,20–22] is used for the motion of
an α cluster in many models of α-decay half-lives where a

FIG. 2. (Color online) Logarithms of the ratios between exper-
imental α-decay half-lives and theoretical ones for even-even Rn
nuclei with the original law [Eq. (1)] and with the new law [Eq. (3)].
The original law and new law go together in the range of N � 128.

parent nucleus is considered to be a quantum two-body system
consisting of an α cluster and a daughter nucleus (a core). The
meaning of the radial quantum number is the number of radial
nodes of wave functions of the α cluster.

For ground-state transitions of even-even nuclei, the
ground-state spin and parity of parent and daughter nuclei
are both 0+. In this case, the angular momentum and parity
carrying by an α particle is also 0+, and the radial quantum
number n (or equivalently the global quantum number G)
affects the decay half-lives. When the neutron number N

goes across the shell closure at N = 126 (from N � 126 to
N � 128 for even-even nuclei), it is expected that the change
of the global quantum number is �G = 2 [9,11,20–22] and it
corresponds to �n = 1. Therefore we introduce a quantum
number S = −�G/2 = −�n to mock up their effect on
α-decay half-lives. We define the value of S for ground-state
transitions of even-even nuclei: S = 0 for N � 128 and
S = 1 for N � 126. This is consistent with the fact that the
parameters in Eq. (1) are based on the fitting of the data with
N � 128 even-even nuclei.

As a result, for the ground-state transitions of even-even
nuclei, a new version of Eq. (1) or the Geiger-Nuttall law is

lgT1/2 = a
√

μZcZd/
√

Q + b
√

μ
√

ZcZd + c + S . (2)

By including the possible effect of angular momentum and
parity of α particle on half-lives of various nuclei, a general
expression derived from quantum tunneling theory can be
approximately written in the following way:

lgT1/2 = a
√

μ ZcZd/
√

Q + b
√

μ
√

ZcZd

+ c + S + P l(l + 1), (3)

S = 0 for N � 127 and S = 1 for N � 126. We call this
formula [Eq. (3)] the new Geiger-Nuttall law. The last term
l(l + 1) can be approximately derived based on the quantum
tunneling theory when the centrifugal potential is taken into
account and this is similar to the derivation of Eq. (1) [8,23,27].
Here a, b, c have the same values as before [Eqs. (1) and (2)].
The value of P can be parity dependent. When the parity of
the α-core relative motion is odd, the value of P will be larger,
which will be discussed later.

With Eq. (3), we first calculate the half-lives of the ground
state of even-even nuclei with 84 � Z � 92 isotopic chains
[in this case, Eq. (3) is naturally back to Eq. (2) as l = 0]. The
numerical results of Z = 84–92 isotopic chains are listed in
Table I and the deviations of the logarithm of half-lives for Po
and Rn are drawn in Figs. 1 and 2, which are denoted as new
law. It is seen from Fig. 1 that the systematic deviation between
experimental half-lives and calculated ones decreases rapidly
for N � 126 nuclei. Figures 1 and 2 show the same effect. This
clearly shows that the introduction of S based on the quantum
theory eliminates the discrepancy. The remedy achieved by
a very simple parametrization of these effects is remarkable.
A lot of numerical calculations with different potentials also
show that the change of the global number �G = 2 can lead
to a change of lgT1/2 with �lgT1/2 = 1 [20–22]. They provide
further support for the introduction S in Eqs. (2) and (3).

In Table I, the first column denotes the parent nucleus
and the second column represents the α-decay energy of the
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TABLE I. The logarithm of α-decay half lives of even-even Z = 84 − 92 isotopes calculated with new Geiger-Nuttall law (lgTtheo) and the
corresponding experimental ones (lgTexpt). The experimental decay energies of nuclei [Q (MeV)] are also listed in the table.

Nuclei Q (MeV) lgT expt(s) lgTtheo(s) Nuclei Q (MeV) lgT expt(s) lgT theo(s)

218Po 6.115 2.27 2.27 218Ra 8.546 –4.59 –4.46
216Po 6.906 –0.84 –0.84 216Ra 9.526 –6.74 –6.93
214Po 7.833 –3.78 –3.86 214Ra 7.273 0.39 0.45
212Po 8.954 –6.52 –6.86 206Ra 7.415 –0.62 –0.05
210Po 5.407 7.08 6.59 204Ra 7.636 –1.22 –0.78
208Po 5.215 7.96 7.60 202Ra 8.020 –2.58 –1.97
206Po 5.327 7.14 7.00 232Th 4.082 17.65 17.56
204Po 5.485 6.28 6.18 230Th 4.770 12.38 12.38
202Po 5.701 5.15 5.12 228Th 5.520 7.78 7.88
200Po 5.981 3.79 3.83 226Th 6.451 3.26 3.43
198Po 6.309 2.27 2.43 224Th 7.298 0.02 0.15
196Po 6.657 0.77 1.06 222Th 8.127 –2.69 –2.56
194Po 6.987 –0.41 –0.14 220Th 8.953 –5.01 –4.87
190Po 7.693 –2.61 –2.45 218Th 9.849 –6.96 –7.04
222Rn 5.590 5.52 5.61 216Th 8.071 –1.57 –1.39
220Rn 6.405 1.75 1.91 214Th 7.826 –1.00 –0.63
218Rn 7.263 –1.46 –1.29 212Th 7.952 –1.44 –1.03
216Rn 8.200 –4.35 –4.20 238U 4.270 17.15 17.17
214Rn 9.208 –6.57 –6.82 236U 4.573 14.87 14.84
212Rn 6.385 3.16 2.99 234U 4.858 12.89 12.85
210Rn 6.159 3.95 3.94 232U 5.414 9.34 9.44
208Rn 6.261 3.37 3.50 230U 5.993 6.25 6.40
206Rn 6.384 2.74 2.99 228U 6.803 2.74 2.82
204Rn 6.546 2.01 2.33 226U 7.701 –0.57 –0.47
226Ra 4.871 10.70 10.67 224U 8.620 –3.03 –3.29
224Ra 5.789 5.50 5.56 222U 9.500 –5.85 –5.59
222Ra 6.679 1.58 1.65 218U 8.786 –2.22 –2.75
220Ra 7.592 –1.75 –1.62

nucleus. The third column and the fourth column represent
the logarithm of experimental half-life and the logarithm of
theoretical half-life, respectively. The experimental data are
from the nuclear mass table by Audi et al. [28,29]. In the
table, some nuclei are missing on an isotopic chain because
there are no α-decay data on them or some data are uncertain
by a symbol (?) when Audi and his collaborators edit the
table of nuclear properties [28,29]. Columns 5–8 have similar
meanings as those of columns 1–4.

For many even-even nuclei on Z = 84–92 chains, the
calculated values agree with the experimental data within a
factor of 2, which corresponds to a deviation of the logarithm
of half-life with a value 0.3 (lg2 ≈ 0.3). Only for a few nuclei
such as 210Po and 218U, the ratio between the experimental
half-life and the theoretical one is approximately a factor of
3 (lg3.2 ≈ 0.5). This shows again the reliability of the new
Geiger-Nuttall law [Eq. (3)] for half-lives of α decay.

When we extend the calculations with Eq. (3) to ground-
state transitions of even-even nuclei of other mass region such
as Z = 60–74, we find that the calculated half-lives are in
good agreement with the experimental data. The numerical
results of some isotopes (Z = 60–74) are listed in Table II. It
confirms again that the introduction of S in Eq. (2) or Eq. (3)
brings the expected result. We would like to mention that the
introduction of the terms to the Geiger-Nuttall law is not only

valid for Eq. (3), but also useful for other similar formulas
of α-decay half-lives such as the Viola-Seaborg formula. By
adding terms to the law, the parameters need not be changed,
except for some odd nuclei.

After we successfully reproduce the ground-state half-lives
of even-even nuclei by the new Geiger-Nuttall law, it is
interesting to investigate the case of odd-A nuclei and the case
of isomers. It is well known that the situations of odd-A and
odd-odd nuclei are very complicated. Usually the half-lives
of odd nuclei can be calculated with a similar formula with
that of even-even nuclei but the parameter c in Eq. (1) will
be different from that of even-even nuclei [8]. For example,
ce-o = −16.40484 is used for even-Z and odd-A nuclei [8].
But if the changes of quantum numbers are disregarded in the
calculations for odd nuclei, the deviation between calculated
and experimental half-lives can be as large as a factor of
10–1000 in some cases. In this article, we try to treat the
transitions of odd nuclei in different ways. For the favored
ground-state transitions of odd-A nuclei, we calculate their
half-lives in exactly the same way as even-even nuclei because
there is no change of spin and parity when parent nuclei and
daughter nuclei have same spin and parity (this is a dominant
branch in α decay). For the transitions of unfavored ones, the
change of spin and parity between parent and daughter nuclei
can be included by the last term of Eq. (3) and the last term will
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TABLE II. The logarithm of α-decay half-lives of even-even
Z = 60–74 isotopes calculated with new Geiger-Nuttall law (lgTtheo)
and the corresponding experimental ones (lgTexpt). The experimental
decay energies of nuclei [Q (MeV)] are also listed in the table.

Nuclei Q (MeV) lgT expt(s) lgT theo(s)

168W 4.506 6.20 6.50
166W 4.856 4.74 4.53
164W 5.2785 2.22 2.41
162W 5.6773 0.48 0.64
160W 6.065 –0.99 –0.91
158W 6.613 –2.86 –2.86
162Hf 4.417 5.69 5.95
160Hf 4.9024 3.29 3.28
158Hf 5.4047 0.80 0.90
156Hf 6.028 –1.62 –1.62
158Yb 4.172 6.63 6.36
156Yb 4.811 2.42 2.75
154Yb 5.4742 –0.35 –0.31
156Er 3.487 9.84 10.04
154Er 4.2799 4.68 4.61
152Er 4.9344 1.06 1.15
154Dy 2.946 13.98 13.56
152Dy 3.726 6.93 7.04
150Dy 4.3513 3.08 3.13
152Gd 2.203 21.53 21.09
150Gd 2.808 13.75 13.56
148Gd 3.27121 9.37 9.26
148Sm 1.9861 23.34 22.81
146Sm 2.5284 15.51 15.17
144Nd 1.9052 22.86 22.40

be smaller when the change of angular momentum is smaller
such as the cases of l = 1, 2. The last term will be important
for some hindered transitions from high-spin isomers and for
the transition with large change of spin and with the change
of parity. These ideas are based on the experimental facts and
quantum theory.

In Fig. 3, we draw the deviation between calculated ones and
experimental data for favored transitions of odd-A Po isotopes
where the meaning of Fig. 3 is similar to those of Figs. 1 and 2.
In Fig. 3, the points denoted with original law correspond to the
calculations with Eq. (1) and the points denoted by new law are
those calculated with Eq. (2). A phenomenon similar to Figs. 1
and 2 is observed and this supports our idea to treat favored
transitions of odd-nuclei in exactly the same way as even-even
nuclei. The numerical results of half-lives of odd-A Po nuclei
with the new law [Eq. (2) or Eq. (3)] are listed in column 4 of
Table III and we also list the numerical results by the original
formula of Ref. [8] in column 5 for comparison. It is seen
that the results with the new law agree with experimental data
better. This shows again that the treatment in this article is an
improvement over the traditional way. Finally, it is mentioned
that the data of 211Po is not included in Fig. 3 because it is a
hindered transition and it will be studied together with other
hindered transitions as follows.

Hindered transitions are very complicated, but we show
that they can also be treated by our simple parametrization.
The examples to be shown are very illuminating. They contain

FIG. 3. (Color online) Logarithms of the ratios between experi-
mental α-decay half-lives and theoretical ones for odd-A Po nuclei
with the original law and with the new law. The original law and new
law go together in the range of N � 129.

isomeric transitions from an 18+ state and from an 8+ state
of the same nucleus, 212Po, which are reproduced just as the
transition from the 0+ ground state [28–30]. The examples
include the isotonic sequence N = 127 with l = 5 and odd
parity [28–30]. The original formula, Eq. (1), fails for the
complicated cases, but, with the l(l + 1) term, the new formula
proves to be successful. The numerical results of half-lives with
the new law [Eq. (3)] are listed in Table IV where the angular
momentum and parity of parent nuclei and daughter nuclei and
the angular momentum of the α-particle are also listed in the
Table. For the calculations of the isomers of 212Po, the value of
P in Eq. (3) is 0.04143. For the N = 127 isotones, the value of
P in Eq. (3) is 0.0840 and this value is large because there is a
change of parity. Table IV shows that the calculated half-lives
agree with experiment within a factor of two.

TABLE III. The logarithm of α-decay half-lives of odd-A Po
isotopes calculated with new Geiger-Nuttall law (lgTtheo1)(column
4) and the original formula in Ref. [8] (lgTtheo2) (column 5)
where favored transitions (δl = 0) are assumed. The corresponding
experimental values (lgTexpt) and decay energies of nuclei [Q (MeV)]
are also listed in the table.

Nuclei Q (MeV) lgT expt(s) lgT theo1(s) lgT theo2(s)

217Po 6.660 0.17 0.07 0.82
215Po 7.526 –2.75 –2.92 –2.17
213Po 8.536 –5.38 –5.81 –5.06
209Po 4.979 9.51 8.94 8.68
207Po 5.216 8.00 7.60 7.35
205Po 5.324 7.17 7.02 6.76
203Po 5.496 6.30 6.13 5.87
201Po 5.799 4.76 4.66 4.41
199Po 6.074 3.64 3.54 3.17
197Po 6.412 2.09 2.02 1.76
195Po 6.746 0.79 0.73 0.48
191Po 7.501 –1.66 –1.85 –2.11
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TABLE IV. The α-decay half-lives of two kinds of hindered transitions with new law: the decays from the high-spin isomers of 212Pom1,m2

and those from N = 127 isotones. The spin and parity of parent nuclei (initial state) and daughter nuclei (final state) and the angular momentum
of α particle are also listed in this table. In the calculation, P = 0.04143 is used for decays from isomers (without a change of parity) and
P = 0.0840 is used for decays from N = 127 isotones (with a change of parity).

AZ AZ Ii If Lα Qα (MeV) Texpt(s) Ttheo(s)

212Pom2 208Pb 18+ 0+ 18 11.884 45.13 38.60
212Pom1 208Pb 8+ 0+ 8 10.431 4.07 × 10−8 8.69 × 10−8

211Po 207Pb 9/2+ 1/2− 5 7.595 0.516 0.243
213Rn 209Po 9/2+ 1/2− 5 8.243 0.0195 0.0157
215Ra 211Rn 9/2+ 1/2− 5 8.864 1.55 × 10−3 1.63 × 10−3

217Th 213Ra 9/2+ 1/2− 5 9.433 2.40 × 10−4 2.81 × 10−4

219U 215Th 9/2+ 1/2− 5 9.860 5.5 × 10−5 11.9 × 10−5

III. SUMMARY

In summary, the new Geiger-Nuttall law for the calculations
of α-decay half-lives is proposed where the effects of quantum
numbers are naturally taken into account. This approach
includes the change of the node number of the wave function
of the α-core relative motion in the Geiger-Nuttall law. By
including the change of quantum numbers, the available data
of α-decay half-lives of ground-state transitions in even-even
nuclei both N � 126 and N � 128 are well reproduced. The
inclusion of the term depending on the parity and angular
momentum leads to a reliable description of the hindered
decays from N = 127 odd-A isotones and from the high-spin
(high-j ) isomers of 212Po where the value of j can be as high
as 18 for 212Pom2. The existence of these terms is based on the
quantum theory for the microscopic description of the α-core
relative motion. By adding terms to the Geiger-Nuttall law,
the parameters in the formula of decay half-lives need not
be changed, except for some odd nuclei. The terms are also
useful for better description of α-decay half-lives with other
similar formulas. Therefore the new Geiger-Nuttall law is an
important development to the original Geiger-Nuttall law or

the Viola-Seaborg formula based on quantum theory and it is
an extension of the original Geiger-Nuttall law to α decay of
a broader range of nuclei and transitions. It is expected that
the extension is useful for similar decay processes such as
cluster radioactivity and proton emissions. It can be helpful
to systematize experimental data of α decay and to extract
information of angular momentum and parity of nuclei from
experimental data. The results of this article point to the
simplicity of the underlying mechanism of the decay.
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