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Microscopic study of Ca + Ca fusion
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We investigate the fusion barriers for reactions involving Ca isotopes 40Ca + 40Ca, 40Ca + 48Ca, and 48Ca +
48Ca using the microscopic time-dependent Hartree-Fock (TDHF) theory coupled with a density constraint. In
this formalism the fusion barriers are directly obtained from TDHF dynamics. We also study the excitation of
the preequilibrium GDR for the 40Ca + 48Ca system and the associated γ -ray emission spectrum. Fusion cross
sections are calculated using the incoming-wave boundary condition approach. We examine the dependence of
fusion barriers on collision energy as well as on the different parametrizations of the Skyrme interaction.
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I. INTRODUCTION

The microscopic study of nuclear many-body problem and
the understanding of the nuclear interactions that reproduce the
observed structure and reaction properties are the underlying
challenges of low-energy nuclear physics. In this context,
detailed investigations of the fusion process will lead to a better
understanding of the interplay among the strong, Coulomb, and
weak interactions as well as the enhanced correlations present
in these many-body systems.

Recently, particular experimental attention has been given
to fusion reactions involving Ca isotopes [1–4]. These new
experiments supplemented the older fusion data [5] and
extended it to lower sub-barrier energies. Comparison of the
sub-barrier cross sections with those calculated using standard
coupled-channel calculations suggested a hindrance of the
fusion crosssections at deep sub-barrier energies [1–3]. One
of the underlying reasons for the failure of the standard
coupled-channel approach is the use of frozen densities in the
calculation of double-folding potentials, resulting in potentials
that behave in a completely unphysical manner for deep
sub-barrier energies. While the outer part of the barrier is
largely determined by the early entrance channel properties of
the collision, the inner part of the potential barrier is strongly
sensitive to dynamical effects such as particle transfer and
neck formation. This has been remedied in part by extensions
of the coupled-channel approach to include a repulsive core
[6] or the incorporation of neck degrees of freedom [7,8].
More recent calculations [4,9,10] using the coupled-channel
approach with a repulsive core have provided much improved
fits to the data. A detailed microscopic study of the fusion
process for Ca-based reactions 40Ca + 40Ca, 40Ca + 48Ca, and
48Ca + 48Ca could provide further insight into the reaction
dynamics as well as a good testing ground for the theory, since
these isotopes are commonly used in fitting the parameters of
the effective nuclear interactions, such as the Skyrme force.

During the past several years, we have developed a
microscopic approach for calculating heavy-ion interaction
potentials that incorporates all of the dynamical entrance
channel effects included in the time-dependent Hartree-Fock
(TDHF) description of the collision process [11,12]. The
method is based on the TDHF evolution of the nuclear system
coupled with density-constrained Hartree-Fock calculations

(DC-TDHF) to obtain the ion-ion interaction potential. The
formalism was applied to study fusion cross sections for the
systems 132Sn + 64Ni [13], 64Ni + 64Ni [14], 16O + 208Pb [15],
and 132,124Sn + 96Zr [16], as well as to the study of the entrance
channel dynamics of hot and cold fusion reactions leading to
superheavy element Z = 112 [17], and dynamical excitation
energies [18]. In all cases, we have found good agreement
between the measured fusion cross sections and the DC-TDHF
results. This is rather remarkable given the fact that the only
input in DC-TDHF is the Skyrme effective N-N interaction,
and there are no adjustable parameters.

In Sect. II we outline the main features of our microscopic
approach, the DC-TDHF method. In Sec. II we also discuss
the calculation of ion-ion separation distance, coordinate-
dependent mass, calculation of fusion cross sections, and giant
dipole resonance (GDR) formalism. In Sec. III we present
interesting aspects of the reaction dynamics and compare our
results with experiment and other calculations. In Sec. V we
summarize our conclusions.

II. FORMALISM

A. DC-TDHF method

In the DC-TDHF approach [11] the TDHF time-evolution
takes place with no restrictions. At certain times during the
evolution the instantaneous density is used to perform a static
Hartree-Fock minimization while holding the neutron and pro-
ton densities constrained to be the corresponding instantaneous
TDHF densities [19,20]. In essence, this provides us with the
TDHF dynamical path in relation to the multidimensional
static energy surface of the combined nuclear system. The
advantages of this method in comparison to other mean-field
based microscopic methods such as the constrained Hartree-
Fock (CHF) method are obvious. First, there is no need to
introduce artificial constraining operators which assume that
the collective motion is confined to the constrained phase
space: second, the static adiabatic approximation is replaced by
the dynamical analog, where the most energetically favorable
state is obtained by including sudden rearrangements, and
the dynamical system does not have to move along the
valley of the potential energy surface. In short, we have a
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self-organizing system which selects its evolutionary path
by itself following the microscopic dynamics. All of the
dynamical features included in TDHF are naturally included
in the DC-TDHF calculations. These effects include neck
formation, mass exchange, internal excitations, deformation
effects to all order, as well as the effect of nuclear alignment
for deformed systems. In the DC-TDHF method the ion-ion
interaction potential is given by

V (R) = EDC(R) − EA1 − EA2 , (1)

where EDC is the density-constrained energy at the instan-
taneous separation R(t), while EA1 and EA2 are the binding
energies of the two nuclei obtained with the same effective
interaction. In writing Eq. (1) we have introduced the concept
of an adiabatic reference state for a given TDHF state. The
difference between these two energies represents the internal
energy. The adiabatic reference state is the one obtained via the
density constraint calculation, which is the Slater determinant
with lowest energy for the given density with vanishing
current and approximates the collective potential energy [19].
We would like to emphasize again that this procedure does
not affect the TDHF time evolution, and contains no free
parameters or normalization.

In addition to the ion-ion potential it is also possible
to obtain coordinate dependent mass parameters. One can
compute the “effective mass” M(R) using the conservation
of energy

M(R) = 2[Ec.m. − V (R)]

Ṙ2
, (2)

where the collective velocity Ṙ is directly obtained from the
TDHF evolution and the potential V (R) from the density
constraint calculations. In calculating fusion cross sections,
this coordinate-dependent mass is used to obtain a transformed
ion-ion potential as described below.

B. Excitation energy

The calculation of the excitation energy is achieved by
dividing the TDHF motion into a collective and intrinsic part.
The major assumption in achieving this goal is to assume that
the collective part is primarily determined by the density ρ(r, t)
and the current j(r, t). Consequently, the excitation energy can
be formally written as [18]

E∗(t) = ETDHF − Ecoll(ρ(t), j(t)) , (3)

where ETDHF is the total energy of the dynamical system,
which is a conserved quantity, and Ecoll represents the
collective energy of the system. In the next step we break
up the collective energy into two parts,

Ecoll (t) = Ekin(ρ(t), j(t)) + EDC(ρ(t)), (4)

where Ekin represents the kinetic part and is given by

Ekin(ρ(t), j(t)) = m

2

∫
d3r j2(t)/ρ(t), (5)

which is asymptotically equivalent to the kinetic energy of the
relative motion, 1

2μṘ2, where μ is the reduced mass and R(t)
is the ion-ion separation distance. The dynamics of the ion-ion

separation R(t) is provided by an unrestricted TDHF run, thus
allowing us to deduce the excitation energy as a function of
the distance parameter, E∗(R).

C. Calculation of R

In practice, TDHF runs are initialized with energies
above the Coulomb barrier at some large but finite separation.
The two ions are boosted with velocities obtained by assuming
that the two nuclei arrive at this initial separation on a Coulomb
trajectory. Initially the nuclei are placed such that the point
x = 0 in the x-z plane is the center of mass. During the
TDHF dynamics the ion-ion separation distance is obtained
by constructing a dividing plane between the two centers and
calculating the center of the densities on the left and right
halves of this dividing plane. The coordinate R is the difference
between the two centers. The dividing plane is determined by
finding the point at which the tails of the two densities intersect
each other along the x axis. Since the actual mesh used in the
TDHF calculations is relatively coarse, we use a cubic-spline
interpolation to interpolate the profile in the x direction and
search for a more precise intersection value. This procedure
has been recently described in Ref. [21] in great detail.

The standard procedure for calculating R as described
above starts to fail after a substantial overlap is reached (for R

values smaller than the ones studied in this manuscript). We
instead define the ion-ion separation as R = R0

√|Q20|, where
Q20 is the mass quadrupole moment for the entire system,
calculated by using the collision axis as the symmetry axis,
and R0 is a scale factor determined to give the correct initial
separation distance at the start of the calculations. Calculating
R this way yields almost identical results to the previous
procedure until that procedure begins to fail, and continues
smoothly after that point. Of course the minimum value of
R calculated this way is never zero but is determined by the
quadrupole moment of the composite system.

D. Fusion cross section

We now outline the calculation of the total fusion cross
section using an arbitrary coordinate-dependent mass M(R).
Starting from the classical Lagrange function

L(R, Ṙ) = 1
2M(R)Ṙ2 − V (R), (6)

we obtain the corresponding Hamilton function

H (R,P ) = P 2

2M(R)
+ V (R), (7)

where the canonical momentum is given by P = M(R)Ṙ.
Following the standard quantization procedure for the kinetic
energy in curvilinear coordinates [22]

T = −h̄2

2

[
g− 1

2
∂

∂qμ
g

1
2 gμν ∂

∂qν

]
, (8)

where gμν(q) denotes the metric tensor and gμν(q) the
reciprocal tensor, one obtains the quantized Hamiltonian

H (R, P̂ ) = 1
2

[
M(R)−

1
2 P̂M(R)−

1
2 P̂

] + V (R). (9)
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with the momentum operator P̂ = −ih̄d/dR. The total fusion
cross section

σf = π

k2

∞∑
L=0

(2L + 1)TL, (10)

can be obtained by calculating the potential barrier penetrabil-
ities TL from the Schrödinger equation for the relative motion
coordinate R, using the Hamiltonian (9) with an additional
centrifugal potential

[
H (R, P̂ ) + h̄2L(L + 1)

2M(R)R2
− Ec.m.

]
ψL(R) = 0. (11)

Alternatively, instead of solving the Schrödinger equation
with coordinate dependent mass parameter M(R) for the
heavy-ion potential V (R), we can instead use the constant
reduced mass μ and transfer the coordinate dependence of
the mass to a scaled potential U (R̄) using the well known
coordinate scale transformation [23]

dR̄ =
(

M(R)

μ

) 1
2

dR. (12)

Integration of Eq. (12) yields

R̄ = f (R) ⇐⇒ R = f −1(R̄). (13)

As a result of this point transformation, both the classical
Hamilton function, Eq. (7), and the corresponding quantum
mechanical Hamiltonian, Eq. (9), now assume the form

H (R̄, P̄ ) = P̄ 2

2μ
+ U (R̄), (14)

and the scaled heavy-ion potential is given by the expression

U (R̄) = V (R) = V (f −1(R̄)). (15)

The fusion barrier penetrabilities TL(Ec.m.) are obtained by
numerical integration of the two-body Schrödinger equation

[−h̄2

2μ

d2

dR̄2
+ L(L + 1)h̄2

2μR̄2
+ U (R̄) − E

]
ψ = 0 , (16)

using the incoming wave boundary condition (IWBC) method
[24]. IWBC assumes that once the minimum of the potential is
reached fusion will occur. In practice, the Schrödinger equation
is integrated from the potential minimum Rmin, where only an
incoming wave is assumed, to a large asymptotic distance,
where it is matched to incoming and outgoing Coulomb wave
functions. The barrier penetration factor TL(Ec.m.) is the ratio
of the incoming flux at Rmin to the incoming Coulomb flux
at large distance. Here, we implement the IWBC method
exactly as it is formulated for the coupled-channel code
CCFULL described in Ref. [25]. This gives us a consistent way
of calculating cross sections at above and below the barrier
energies.

E. GDR excitation

Let us now consider a central collision in the x direction
and introduce the quantity

D(t) = NZ

A

⎡
⎣ 1

Z

Z∑
p=1

〈xp(t)〉 − 1

N

N∑
n=1

〈xn(t)〉
⎤
⎦ , (17)

which represents the expectation value of the x component of
the dipole operator dx/e taken with the time-dependent TDHF
Slater determinant |	(t)〉. Following the bremsstrahlung ap-
proach developed by Baran et al. [26,27], we define the dipole
acceleration

D′′(t) = d2D(t)

dt2
(18)

and introduce its Fourier transform

D′′(ω) =
∫ tmax

tmin

D′′(t)eiωtdt. (19)

Alternatively, for nearly harmonic vibrations one can use the
expression

∣∣D′′(ω)
∣∣2 = ω4 |D(ω)|2, with

D(ω) =
∫ tmax

tmin

D(t)eiωt sin4

(
π

t − tmin

tmax − tmin

)
dt. (20)

The time-filtering sin4 is used to smooth out peaks coming
from finite integration time. The “power spectrum” of the
electric dipole radiation is given by [26]

dP

dEγ

= 2α

3πEγ

∣∣∣∣1

c
D′′(ω)

∣∣∣∣
2

, (21)

where α = e2/(h̄c) ≈ 1/137 denotes the fine-structure con-
stant. Recently, preequilibrium GDR excitation has also been
studied in the context of TDHF [28].

III. RESULTS

Calculations were done in three-dimansional (3D) geom-
etry and using the full Skyrme interaction, including all of
the time-odd terms in the mean-field Hamiltonian [29]. The
primary Skyrme parametrization used was SLy4 [30], but we
have also tested the new UNEDF0 [31] and UNEDF1 [32]
parametrizations. For the reactions studied here, the lattice
spans 48 fm along the collision axis and 15 fm in the other two
directions. Derivative operators on the lattice are represented
by the basis-spline collocation method. One of the major
advantages of this method is that we may use a relatively large
grid spacing of 1.0 fm and nevertheless achieve high numerical
accuracy. The initial separation of the two nuclei is 18 fm for
central collisions. The time propagation is carried out using
a Taylor series expansion (up to orders 10–12) of the unitary
mean-field propagator, with a time step �t = 0.4 fm/c. We
have performed density constraint calculations every 10–20
time steps. The accuracy of the density constraint calculations
is commensurate with the accuracy of the static calculations.
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FIG. 1. (Color online) Potential barriers V (R) for the 40Ca + 40Ca
system obtained from density constrained TDHF calculations using
Eq. (1) at three different energies, ETDHF = 55 MeV (black solid
curve), ETDHF = 60 MeV (red solid curve), and ETDHF = 65 MeV
(blue solid curve). The three dashed curves correspond to the
transformed potential in Eq. (15) using the coordinate-dependent
masses. Also shown is the point Coulomb potential.

A. 40Ca + 40Ca system

In this subsection we will present our results for the
40Ca + 40Ca system. Most of our general discussions will be
provided here as they would be the same for other systems.
Specific points about individual systems and comparison of
results for the three systems will be taken up in the subsequent
sections.

In Fig. 1 we show the microscopic ion-ion potential
barriers obtained using Eq. (1) calculated at three different
collision energies, ETDHF = 55 MeV (black solid curve),
ETDHF = 60 MeV (red solid curve), and ETDHF = 65 MeV
(blue solid curve). We observe a relatively small dependence
on the collision energy. At lower energies the system has
more time available for rearrangements to take place through
the formation of a neck, whereas this is less and less the case
at higher energies, and the potential barrier approaches the
frozen-density limit [21]. This produces the observed trend
in Fig. 1, where the lowest barrier peak corresponds to the
lowest energy, and the barrier height increases with increasing
collision energy. The barrier heights are 53.02, 53.43, and
53.57 MeV, respectively. Similar energy dependence was
also observed in the DD-TDHF calculations of Ref. [21],
and becomes more prevalent for heavier systems. Similarly,
the position of the barrier peak moves toward smaller R

values, albeit very slowly in this case, with increasing
energy. Corresponding R values for the barrier maximum
are 10.41, 10.32, and 10.23 fm. What is also shown in
Fig. 1 is the Coulomb potential, assuming the two nuclei to
be point particles with Z = 20. During the approach phase
the microscopically calculated DC-TDHF potential traces the
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M
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40Ca + 40Ca

ETDHF = 55 MeV
ETDHF = 60 MeV
ETDHF = 65 MeV

FIG. 2. (Color online) Coordinate dependent mass M(R) scaled
by the constant reduced mass μ, obtained from Eq. (2), at three
different TDHF energies.

point Coulomb potential, differing by less than 150 keV, which
provides a test for the numerical accuracy.

The energy dependence of potential barriers can also be
understood if we examine the coordinatedependent mass
of Eq. (2) shown in Fig. 2 for three different energies,
ETDHF = 55 MeV (black solid curve), ETDHF = 60 MeV
(red solid curve), and ETDHF = 65 MeV (blue solid curve).
The R dependence of this mass at lower energies is very
similar to the one found in CHF calculations [23]. On the
other hand, at higher energies the coordinate-dependent mass
essentially becomes flat, which is again a sign that most
dynamical effects are contained at lower energies. The peak
at small R values is due to the fact that the center-of-mass
energy is above the barrier, and the denominator of Eq. (2)
becomes small due to the slowdown of the ions. We have
used the coordinate dependent masses shown in Fig. 2 to
obtain the scaled potentials U (R̄) of Eq. (15). These potentials
are shown as the dashed curves in Fig. 1. As we see, the
coordinate-dependent mass only changes the inner parts of the
barriers for all energies. Furthermore, the effect is largest for
the lowest energy collision and diminishes as we increase the
collision energy.

We have obtained the fusion cross sections by numerical
integration of Eq. (16). The resulting cross sections are shown
in Fig. 3. We observe that all of the scaled barriers give a very
good description of the experimental fusion cross sections.
The high-energy part of the fusion cross sections are primarily
determined by the barrier properties in the vicinity of the
barrier peak. On the other hand sub-barrier cross sections
are influenced by what happens in the inner part of the
barrier, and here the dynamics and consequently the coordinate
dependent mass becomes very important. As we observe in
Fig. 3 we get a very good agreement with experiment for
the barriers obtained at the lowest two collision energies,
whereas the Ec.m. = 65 MeV curve slightly underestimates the
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FIG. 3. (Color online) Total fusion cross section as a function of
Ec.m.. Three separate theoretical cross section calculations are shown,
based on the energy-dependent DC-TDHF heavy-ion potentials V (R)
at energies ETDHF = 55, 60, and 65 MeV. The experimental data (filled
circles) are taken from Ref. [4].

cross section at lower energies. Although not shown in Fig. 3,
the cross sections obtained using the the unscaled potentials
V (R) and a constant reduced mass μ also agree well with the
data at higher energies, but either significantly overestimate or
underestimate the cross section at lower energies due to the
absence of the coordinate-dependent mass. In summary, the
calculated fusion cross sections for the 40Ca + 40Ca system
reproduce the experimental cross sections reasonably well,
which is a testament that TDHF with Skyrme force provides a
good description for this collision.

B. 48Ca + 48Ca system

In Fig. 4 we show the microscopic ion-ion potential
barriers for the stable neutron-rich 48Ca + 48Ca system cal-
culated at three different collision energies, ETDHF = 55 MeV
(black solid curve), ETDHF = 65 MeV (red solid curve), and
ETDHF = 70 MeV (blue solid curve). The barrier heights, for
increasing collision energy, are 50.98, 51.37, and 51.52 MeV,
respectively, with corresponding R values of 10.80, 10.63, and
10.52 fm. The comparison of these barriers with those of the
40Ca + 40Ca system shows that the barrier heights are reduced
by about 2 MeV, and the location of the barrier maximum is at a
slightly larger R value. This is due to the fact that two two 48Ca
nuclei are larger than the corresponding 40Ca nuclei, and thus
their outer skins come into contact at a larger R value. After
this point the nuclear interaction sets in, causing the trajectory
to deviate from the point-Coulomb one, and producing a peak
at a lower energy value.

Figure 5 shows the fusion cross sections for the 48Ca + 48Ca
system calculated using the barriers of Fig. 4. While the overall
quality of the agreement with the experimental fusion cross
sections is good, specially for the last two collision energies,

4 6 8 10 12 14 16 18 20
R, R (fm)

20

30

40

50

60

V
(R

), 
U

(R
) (

M
eV

)

Point Coulomb48Ca +48Ca

ETDHF = 55 MeV
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ETDHF = 65 MeV

FIG. 4. (Color online) Potential barriers V (R) for the 48Ca + 48Ca
system obtained from density-constrained TDHF calculations using
Eq. (1) at three different energies, ETDHF = 55 MeV (black solid
curve), ETDHF = 65 MeV (red solid curve), and ETDHF = 70 MeV
(blue solid curve). The dashed curves correspond to the transformed
potential in Eq. (15) using the coordinate dependent masses. Also
shown is the point Coulomb potential.

the curve corresponding to the lowest collision energy of
55 MeV overestimates the experiment for lower Ec.m. values.
This illustrates the sensitivity of the results to the height of the
potential barrier, the difference in this case between the two
barriers being around 0.4 MeV.
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FIG. 5. (Color online) Fusion cross sections for the 48Ca + 48Ca
system as a function of Ec.m.. Three separate theoretical cross-section
calculations are shown, based on the energy-dependent DC-TDHF
heavy-ion potentials V (R) at energies ETDHF = 55, 65, and 70 MeV.
The experimental data (filled circles) are taken from Ref. [4].
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FIG. 6. (Color online) Total fusion cross section as a function of
Ec.m. for two different parametrizations of the Skyrme force, SLy4 and
UNEDF1, at the collision energy of ETDHF = 55. The experimental
data (filled circles) are taken from Ref. [4].

While the quality of the DC-TDHF results for the
48Ca + 48Ca system is very good for a parameterfree micro-
scopic approach, we have decided to investigate this further.
One of the problems is that the Skyrme fits do badly in
reproducing the single-particle properties [33], particularly
the neutron single-particle states. For example, with SLy4
parametrization the neutron levels 1d5/2, 2s1/2, and 1d3/2

in 48Ca nucleus are about 7–3 MeV lower in energy than
the corresponding experimental values [31]. In one of the
parametrizations of the nuclear density functional, UNEDF0,
these single-particle energies are raised to values closer to
experimental ones. However, in this case the magic gap
at N = 28 vanishes [31]. Recently, a new parametrization,
UNEDF1, was introduced with a better incorporation of
large deformations among other improvements [32]. Another
possible advantage of the UNEDF1 parametrization for TDHF
calculations is that no center-of-mass correction term was used
in the functional, which is also the case in TDHF. We have
tried this parametrization in our DC-TDHF calculation for the
48Ca + 48Ca system at Ec.m. = 55 MeV. In practice, we had to
reduce our time step from �t = 0.4 fm/c to �t = 0.1 fm/c,
and our density-constraint convergence parameters by a factor
of 10 or more. This is probably due to the larger power of
the density in the t3 term of the Skyrme interaction. The peak
of the fusion barrier is slightly broader, and higher in energy
by 187 keV for UNEDF1. The use of UNEDF1 results in an
improvement of the fusion cross sections as shown in Fig. 6.
We have also tried using the parametrization SLy5, but this
resulted in no appreciable difference from the SLy4 case.

C. 40Ca + 48Ca system

In this section we will examine the fusion of the asymmetric
40Ca + 48Ca system. For highlighting the differences among all
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FIG. 7. (Color online) Experimental fusion cross sections as a
function of Ec.m. for the three systems studied. The experimental data
are taken from Ref. [4].

three systems we have plotted only the experimental fusion
cross sections in Fig. 7. Relative to the 40Ca + 40Ca and
48Ca + 48Ca systems the 40Ca + 48Ca fusion cross sections
show a different systematic behavior. At higher bombard-
ing energies the 40Ca + 48Ca cross sections fall below the
40Ca + 40Ca data points, whereas at sub-barrier energies they
rise above the 48Ca + 48Ca data. Historically, the theoretical
description of the fusion cross sections for the 40Ca + 48Ca
system have been complicated by the couplings to various
transfer channels with positive Q values [34,35]. A strong
enhancement of fusion cross sections at lower energies seen in
Fig. 7 was attributed to this effect [9].

In Fig. 8 we show the microscopic ion-ion potential
barriers for the 40Ca + 48Ca system calculated at three different
collision energies, ETDHF = 55 MeV (black solid curve),
ETDHF = 60 MeV (red solid curve), and ETDHF = 70 MeV
(blue solid curve). The barrier heights, for increasing collision
energy, are 51.11, 51.45, and 51.81 MeV, respectively, with
corresponding R values of 10.75, 10.65, and 10.51 fm.
We have used the coordinate-dependent masses to obtain
the scaled potentials U (R̄) of Eq. (15). These potentials are
also shown as the dashed curves in Fig. 8. As before, the
coordinate-dependent mass only changes the inner parts of
the barriers for all energies, and the effect diminishes as we
increase the collision energy.

Figure 9 shows the fusion cross sections for the 40Ca + 48Ca
system calculated using the barriers of Fig. 8. The observed
trend for sub-barrier energies is typical for DC-TDHF calcu-
lations when the underlying microscopic interaction gives a
good representation of the participating nuclei. Namely, the
potential barrier corresponding to the lowest collision energy
gives the best fit to the sub-barrier cross sections, since this
is the one that allows for more rearrangements to take place
and grows the inner part of the barrier. Considering the fact
that historically the low-energy sub-barrier cross sections of
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FIG. 8. (Color online) Potential barriers for the 40Ca + 48Ca
system obtained from density-constrained TDHF calculations at three
different energies, ETDHF = 55 MeV (black solid curve), ETDHF =
60 MeV (red solid curve), and ETDHF = 70 MeV (blue solid curve).
The three dashed curves correspond to the transformed potential in
Eq. (15) using the coordinate-dependent masses. Also shown is the
point Coulomb potential.

the 40Ca + 48Ca system have been the ones not reproduced
well by the standard models, the DC-TDHF results are quite
satisfactory, indicating that the dynamical evolution of the
nuclear density in TDHF gives a good overall description of
the collision process. The shift of the cross-section curve with
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FIG. 9. (Color online) Fusion cross sections for the 40Ca + 48Ca
system as a function of Ec.m.. Three separate theoretical cross section
calculations are shown, based on the energy-dependent DC-TDHF
heavy-ion potentials V (R) at energies ETDHF = 55, 60, and 70 MeV.
The experimental data (filled circles) are taken from Ref. [4].

increasing collision energy is typical. In principle one could
perform a DC-TDHF calculation at each energy above the
barrier and use that cross section for that energy. However,
this would make the computations extremely time consuming
and may not provide much more insight.

The trend at higher energies is atypical. The calculated
cross sections are larger than the experimental ones by
about a factor of 2. Such lowering of fusion cross sections
with increasing collision energy is commonly seen in lighter
systems where various inelastic channels, clustering, and
molecular formations are believed to be the contributing
factors [36]. In the recent coupled-channel approach this is
solved by the addition of a small imaginary potential near
the minimum of the repulsive core [37]. Such an imaginary
part was found not to be necessary for the 40Ca + 40Ca and
48Ca + 48Ca systems [9,10]. At this time we do not have access
to coupled-channel results for the 40Ca + 48Ca system. We
have repeated our DC-TDHF calculations using the UNEDF1
interaction, which resulted in a small improvement, reducing
the difference with the experimental values to a factor of about
1.5. This issue will be discussed further in the next section,
where we examine the excitation properties obtained from
TDHF calculations.

IV. EXCITATIONS

Excitations are believed to have a significant impact on
the outcome of the fusion reactions. The excitations can
range from the entrance channel quantal excitations of the
projectile and target, as in the coupled-channel approach,
to collective excitations of the preequilibrium system, to
compound nucleus excitations. These can be further influenced
by particle transfer, preequilibrium emissions, evaporation,
and other events. Theoretically such effects are commonly
introduced by hand into various reaction models. However, the
influence of excitations on nuclear reaction dynamics remains
a difficult and unresolved problem, as it combines both nuclear
structure and dynamics under nonequilibrium conditions.

In Sec. II B we have outlined the calculation of the
dynamical excitation energy within the DC-TDHF formalism.
This approach was used to calculate excitation energies for
various systems, including the excitation energy of the heavy
systems leading to superheavy formations [17]. Here, we have
shown that what is also important is the excitation of the
system at the point of capture, which is a deciding factor
for forming a composite system or fusion-fission. This is
different from excitation of the compound nucleus, which
determines the survival of the system from quasifission. The
dynamical excitation energies calculated from DC-TDHF are
relative to an unequilibrated composite system rather than a
true compound nucleus.

The systems studied in this manuscript present interesting
target-projectile combinations for studying excitations. For
example, the nonsymmetric 40Ca + 48Ca system will have a
pre-equilibrium GDR excitation in comparison to the other two
symmetric systems, as well as particle transfer. Naturally, some
of these effects are included in the fusion barriers obtained
via the DC-TDHF method, as they influence the change in
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FIG. 10. (Color online) Neutron and proton transfer as a function
of ion-ion separation distance R for the 40Ca + 48Ca system. Solid
lines denote the particles originally belonging to the 48Ca nucleus
and dashed lines to the 40Ca nucleus. The dotted vertical line shows
the location of the potential barrier peak, RB .

the TDHF density used in the density-constraint calculation.
The quantity E∗(R(t)) calculated via TDHF and DC-TDHF
represents the average of dynamical excitations present in
the mean-field theory, with the exception of excitations not
determined by the nuclear density and current (such as the spin
currents). Another point to consider is the pairing interaction.
It has been a general consensus that during a heavy-ion
collision the effects of pairing are washed away due to the
high excitations. In this particular case paring effects are
minimal for the initial Ca nuclei studied. However, even if the
pairing can be ignored during the collision process, in many
cases it plays an important role for obtaining good initial HF
states, as well as obtaining realistic density constraint solutions
when a single composite is formed. Fortunately, the latter
case corresponds to the region of barrier minimum and not
the region around the barrier peak, where most fusion cross
sections are measured. This may in some way explain the
success of the DC-TDHF barriers for fusion.

In Fig. 10 we plot the average number of neutrons and
protons transferred during the early stages of the TDHF
collision of the 40Ca + 48Ca system at ETDHF = 60 MeV. The
solid lines denote the neutrons and protons asymptotically
belonging to the 48Ca nucleus, and dashed lines denote those
belonging to the 40Ca nucleus. A number of interesting things
can be observed from the plot. The first is the fact that most
of the transfer seems to start after we pass the potential barrier
peak. This indicates that particle transfer primarily modifies
the inner part of the barrier and not so much the barrier height.
The other observation is that on average about three neutrons
are transferred from 48Ca to 40Ca, but there is also a small
amount of proton transfer in the opposite direction.

Figure 11 shows the excitation energy E∗(R) for the three
systems studied here. The excitation energy was calculated for
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FIG. 11. (Color online) Excitation energy E∗(R) as a function of
the ion-ion separation distance R for the three systems studied here.

the same value of ε = Ec.m./μ = 2.75 MeV for all systems,
which corresponds to collision energies of 55, 60, and 66 MeV,
respectively. All curves initially behave in a similar manner: at
large distances the excitation is zero, and as the nuclei approach
the barrier peak the excitations start and monotonically rise
for larger overlaps. The interesting observation is that the
excitations for the intermediary 40Ca + 48Ca system start at
a slightly earlier time and rise above the other two systems.
This may be largely due to the fact that an asymmetric system
has some additional modes of excitation in comparison to the
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FIG. 12. (Color online) Time evolution of isoscalar deformation
parameter β2 for the head-on collision of all three systems at a
collision energy of ETDHF = 55 MeV (top panel), and the time
evolution of the isovector dipole amplitude D(t) for the 40Ca + 48Ca
system (bottom panel).

044606-8



MICROSCOPIC STUDY OF Ca + Ca FUSION PHYSICAL REVIEW C 85, 044606 (2012)

5 6 7 8 9 10 11 12 13 14 15
Eγ  (MeV)

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

dP
/d

E γ (M
eV

-1
)

10×
5×

260 - 7200 fm/c
3000 - 7200 fm/c
260 - 3000 fm/c
260 - 1000 fm/c

FIG. 13. (Color online) Power spectrum of the isovector dipole
amplitude D(t) for the 40Ca + 48Ca system is shown for various time-
intervals.

other two symmetric systems. It may be plausible to consider
the direct influence of the excitation energy E∗(R) on the
fusion barriers by making an analogy with the coupled-channel
approach, and constructing a new potential V ∗(R) = V (R) +
E∗(R), which has all the excitations added to the ion-ion
potential V (R) that should be calculated at higher energies
to minimize the nuclear rearrangements (frozen-density limit).
The resulting potentials somewhat resemble the repulsive-core
coupled-channel potentials of Ref. [9]. This approach does lead
to improvements in cases where most of the excitation energy
is in the form of collective excitations rather than irreversible
stochastic dissipation (true especially for lighter systems).
For the cases studied here we do see a small improvement
for the fusion cross sections of the 40Ca + 48Ca system. The
viability of this approach requires further examination and will
be studied in the future.

One of the excitation modes for the 40Ca + 48Ca system,
namely the particle transfer, was already discussed above. The
others are various isovector modes such as the preequilibrium
GDR excitation. In Fig. 12 we show the time development
of the isoscalar deformation parameter β2 = 4π

5 〈r2Y20〉/Arrms

(top panel) and the isovector dipole amplitude D(t) of
Eq. (17) (bottom panel). The isovector amplitudes for the two
symmetric systems would appear as a zero-line on this plot.
We have left out the initial approach phase of the collision

(about 260 fm/c) from these plots. The time evolution of the
deformation β2 is very similar for all three systems, except
at larger times the 40Ca + 48Ca system moves toward smaller
deformation in comparison to the other two systems. This
is again most likely due to increased excitations that drive
the system toward a more compact shape. The evolution of
the dipole operator D(t) shows little damping over a long
time interval. The power spectrum associated with this time
evolution is shown in Fig. 13. We have evaluated the spectrum
for different time intervals. The broadest curve corresponds to
a very early stage of the collision, 260–1000 fm/c, but has the
lowest amplitude (multiplied by 10 in Fig. 13). In the second
interval, 260–3000 fm/c, we see the development of various
peaks and an increase in amplitude. The spectrum for the entire
time interval, 260–7200 fm/c, is dominated by a sharp peak
around 11 MeV primarily originating from the later stages
of the collision, which is evident if one compares it to the
spectrum from the interval 3000–7200 fm/c.

V. SUMMARY

In this article we have provided a microscopic study of Ca +
Ca fusion using the DC-TDHF approach. These reactions have
recently been of considerable interest for the fusion commu-
nity, with a flurry of phenomenological analyses of the fusion
data. Here, we have provided a microscopic alternative to
these analyses. We have shown that microscopically obtained
ion-ion potentials do give a reasonably good description of the
fusion cross sections.

The fully microscopic TDHF theory has shown itself to
be rich in nuclear phenomena and continues to stimulate
our understanding of nuclear dynamics. The time-dependent
mean-field studies seem to show that the dynamic evolution
builds up correlations that are not present in the static
theory. While modern Skyrme forces provide a much better
description of static nuclear properties in comparison to the
earlier parametrizations, there is a need to obtain even better
parametrizations that incorporate deformation and reaction
data into the fit process.
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