
PHYSICAL REVIEW C 85, 044315 (2012)

Low-lying spectroscopy of a few even-even silicon isotopes investigated with the
multiparticle-multihole Gogny energy density functional
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A multiconfiguration microscopic method has been applied with the Gogny effective interaction to the
calculation of low-lying positive-parity states in even-even 26−32Si isotopes. The aim of the study is to compare the
results of this approach with those of a standard method of generator coordinate method (GCM) type and to get
insight into the predictive power of multiconfiguration methods employed with effective nucleon-nucleon force
tailored to mean-field calculations. It is found that the multiconfiguration approach leads to an excellent description
of the low-lying spectroscopy of 26Si, 28Si, and 32Si, but gives a systematic energy shift in 30Si. A careful analysis
of this phenomenon shows that this discrepancy originates from too large proton-neutron matrix elements supplied
by the Gogny interaction at the level of the approximate resolution of the multiparticle-multihole configuration
mixing method done in the present study. These proton-neutron matrix elements enter in the definition of both
single-particle orbital energies and coupling matrix elements. Finally, a statistical analysis of highly excited
configurations in 28Si is performed, revealing exponential convergence in agreement with previous work in the
context of the shell model approach. This latter result provides strong arguments toward an implicit treatment of
highly excited configurations.
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I. INTRODUCTION

Mean-field approaches provide a reliable foundation for
an approximate solution of the nuclear many-body problem.
Nowadays, a lot of effort is applied to move beyond the mean-
field approximation and account for missing correlations.
Special attention is paid to the restoration of symmetries
broken in mean-field approaches [1–9], for example using
projection techniques. An alternative way is to develop a
theory in which the trial wave functions preserve certain
symmetries. In particular, this can be achieved by multiconfig-
uration methods widely used in various applications, including
atomic, molecular, and condensed matter physics. When the
interaction is known, this kind of approach provides a very
accurate description of a system. In a previous work [10], we
proposed in the nuclear physics context a variational approach
based on multiparticle-multihole (mp-mh) proton and neutron
configuration mixings that uses the two-body finite-range
density-dependent Gogny interaction in a fully microscopic
way. As a first step, the method was applied in a particular
case: pairing correlations (proton-proton and neutron-neutron)
were investigated for the ground states of several even-even tin
isotopes. A pioneering work using the Skyrme SIII interaction
for the mean-field part and a schematic contact interaction for
the residual part has been directed to the description of K

isomers in the 178Hf mass region [11].
The main objective of the present study is twofold: first,

to test the ability of mp-mh multiconfiguration approach to
describe low-lying nuclear states and second, to discuss the
statistical features of highly excited configurations in nuclei.
With this aim in view, a few silicon isotopes have been chosen
and their excited states calculated with the mp-mh approach.
Concerning highly excited configurations, the leading idea

is to investigate whether exponential convergence behavior,
revealed in the standard shell model (SM) approach [12–16],
also emerges from variational (mp-mh) configuration mixing
methods [10] in which single particle excitations are not
restricted to a single major shell.

As practical calculations inevitably require some truncation
of the orbital space and order of excitation, the mp-mh method
proposes a promising scheme that allows one to predict the
energies of low-lying states in a very accurate way. The
possible use of statistical properties of highly excited states,
which display generic signatures of quantum chaos close to
random matrix theory, drastically reduces the sizes of the
explicit diagonalizations. In the literature, one finds other
approaches proposing different algorithms as, for example, the
density matrix renormalization group [17–21] or Monte Carlo
techniques [22], selecting the most relevant configurations for
the description of many-body states.

The paper is organized as follows. The main characteristics
of the mp-mh multiconfiguration approach applied in this study
are presented in Sec. II. In Sec. III, the results obtained with the
mp-mh approach for low-lying states in 26−32Si are presented
and compared with those derived from a five-dimensional
approximate generator coordinate method (GCM) approach
(Secs. III A and III B). Differences between theoretical and
experimental results are discussed. In particular, the sys-
tematic energy shift found in 30Si is analyzed in terms of
proton-neutron matrix elements. Section III C highlights the
crucial role played by the residual interaction between protons
and neutrons. Section IV is devoted to the analysis of the
statistical properties of highly excited configurations, taking
28Si as an example. Conclusions and perspectives are given in
Sec. V.
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II. MULTIPARTICLE-MULTIHOLE CONFIGURATION
MIXING APPROACH

In this part, we discuss a few characteristics of the mp-
mh configuration mixing approach. A general derivation of
the corresponding formalism in nuclear physics, with two-
body density-dependent interactions, has been introduced in
Ref. [10]. It is worth to recall here the basics of the method
not only to fix notations but also to provide an alternative
formulation of equations in terms of a “core + valence space”
description.

In the mp-mh configuration mixing method, the effective
Hamiltonian is defined as a functional

Ĥ (ρ) = K̂ + V̂ (ρ) (1)

of the single-particle density matrix ρ. In Eq. (1), the Hamilto-
nian contains a kinetic term K̂ (which includes the one-body
center-of-mass corrections) and a two-body density-dependent
potential term V̂ (ρ) (which includes the Coulomb potential for
protons as well as the two-body center-of-mass corrections).
In our study, the D1S Gogny interaction [23] is adopted.

The trial wave functions |�〉 that describe nuclear stationary
states are expressed as linear combinations

|�〉 =
∑
απ αν

Aαπ αν

∣∣φαπ
φαν

〉
(2)

of direct products∣∣φαπ
φαν

〉 = ∣∣φαπ

〉 ⊗ ∣∣φαν

〉
(3)

of proton and neutron Slater determinants, |φαπ
〉 and |φαν

〉
respectively, containing a priori any multiple p-h excitations
that respect conserved quantum numbers.

Equation (2) contains two sets of unknown parameters,
the mixing coefficients Aαπ αν

and the single-particle orbitals.
Both are determined by applying a variational principle to a
functional F(ρ) related to the total energy of the system,

F(ρ) = 〈�|Ĥ (ρ)|�〉 − λ〈�|�〉 −
∑

i

λiQi, (4)

where λ and λi are Lagrange multipliers and Qi possible
additional constraints that we will leave out in the following.
One assumes that the one-body density ρ entering the effective
Hamiltonian Ĥ (ρ) is the correlated one: ρ = 〈�|ρ̂|�〉.

The minimization of F(ρ) with respect to the Aαπ αν

leads to a nonlinear secular equation that is equivalent to a
diagonalization problem in the multiconfigurational space of
a Hamiltonian matrix H,∑

α′
π α′

ν

Hαπ αν ,α′
π α′

ν
Aα′

π α′
ν
= λAαπ αν

. (5)

In Eq. (5), the matrix H contains contributions of the
Hamiltonian Ĥ (ρ) and of rearrangement terms that come from
the density dependence of the interaction,

Hαπ αν,α′
π α′

ν
= 〈

φαπ
φαν

∣∣Ĥ (ρ) +
∑
mnτ

Rτ
mna

+
τmaτn

∣∣φα′
π
φα′

ν

〉
, (6)

where the summation over τ specifies the proton and neutron
contributions to the generalized rearrangement terms with
coefficients Rτ

mn. It is the presence of the rearrangement terms

that transforms Eq. (5) into a nonlinear eigenvalue problem.
As can be seen from Eq. (A5), the rearrangement terms contain
contributions associated with the one-body density ρ and the
two-body correlation matrix σ defined by

σij,kl = 〈�|a+
i a+

k alaj |�〉 − ρjiρlk + ρjkρli . (7)

In the Appendix, we express Eqs. (5) and (6) in a “core +
valence space” scheme, a form which is explicitly used in the
present study.

The minimization ofF(ρ) with respect to the single-particle
orbitals leads to inhomogeneous Hartree-Fock (HF) equations
which depend on the amount of correlations contained in |�〉
[10],

[h(ρ, σ ), ρ] = G(σ ), (8)

where

Gkl(σ ) = 1

2

∑
imn

〈im|V (ρ)|kn〉σil,mn

− 1

2

∑
imn

〈ml|V (ρ)|ñi〉σki,mn. (9)

In Eq. (8), h(ρ, σ ) is the one-body mean-field Hamiltonian
built with the one-body density ρ and the two-body correlation
matrix σ :

hij (ρ, σ ) = 〈i|K|j 〉 + �ij (ρ) + ∂�ij (ρ) + ∂�ij (σ ). (10)

Explicit expressions for the fields �ij (ρ), ∂�ij (ρ), and ∂�ij (σ )
are given in Ref. [10]. The basis that diagonalizes h(ρ, σ )
provides proton and neutron single-particle orbitals with
energies ετ

i . The diagonal part of Eq. (6), that is the one
obtained by taking α ≡ α′, can be easily written in terms of
the ετ

i . In the limit where the mixing reduces to the sole HF
configuration, one recovers the standard HF expression for ετ

i ,

ετ
i = 〈iτ |K|iτ 〉 +

∑
τ ′

Nτ ′∑
h=1

〈iτ hτ ′ |V (ρ)|iτ hτ ′ 〉

+ 1

2

∑
τ ′τ ′′

Nτ ′∑
h′=1

Nτ ′′∑
h′′=1

〈h′
τ h

′′
τ ′′ |∂V (ρ)

∂ρiτ iτ

|h′
τ ′h

′′
τ ′′ 〉. (11)

In Eq. (11), summations over h, h′, and h′′ run over the hole
states.

As discussed in Ref. [10], a fully self-consistent solution of
the multiconfiguration approach consists of solving simultane-
ously both Eqs. (5) and (8). It is important to notice that, in our
approach, the mean field and beyond mean-field descriptions
are obtained in a consistent way since they both follow from
variations of the same functional. A standard way to solve
both equations is to use an iterative procedure. Starting from
a HF solution (characterized by ρ = ρHF and σ = 0) that
provides an initial set of single particle orbitals, one builds the
multiconfiguration basis and solves the configuration mixing
Eq. (5). Then, from the mixing coefficients obtained from
Eq. (5), one calculates ρ and σ and solves Eq. (8). With the
new set of single particle orbitals, one redoes the procedure
until convergence of ρ and σ . In this way, the single-particle
orbitals contain effects coming not only from the mean field
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built with the one-body density matrix ρ but also from the
correlations contained in the matrix σ .

In general, the actual solution of Eq. (8) is a very difficult
task. In a previous study dedicated to the particular case of
pairing-type correlations in the ground states of even-even tin
isotopes [10], one has solved Eq. (8) in an approximate way, by
neglecting σ . In the present study of even-even silicon isotopes,
as a first step, we have solved only the configuration interaction
(CI) part [Eq. (5)] of the multiconfiguration approach.

As already pointed out in the Introduction, multiconfig-
uration methods are able to preserve certain symmetries.
Concerning particle numbers, the correlated wave function
(2) is a superposition of Slater determinants that conserves
exactly the numbers of protons and neutrons. As to angular
momentum, the multiconfiguration equations have been solved
in the present study only for spherical nuclear configurations,
with valence spaces comprising complete spherical subshells.
As a consequence, nuclear states have a good total angular mo-
mentum J . Actually, since our formalism has been developed
in axial symmetry in order to be able to introduce quadrupole
deformation explicitly, the only conserved quantum numbers
we have are the projection K of the total angular momentum
and the parity. The conserved quantum number J is then
obtained in the usual manner by performing calculations for
successive values K = 0, 1, 2, . . . and identifying degenerate
multiplets. Let us note that the finite axial harmonic oscillator
bases used for expanding single-particle states (see below) are
defined with a spherical truncation.

III. LOW-LYING STATES IN 26−32SI

This section is devoted to the description of the low-lying
spectroscopy of 26−32Si using the mp-mh configuration mixing
approach. In the first part of this analysis, we investigate
the mean-field properties of the ground states provided by
the Hartree-Fock-Bogoliubov (HFB) approach using the same
D1S Gogny interaction and compare them with the results of
a five-dimensional approximate GCM approach.

Technically, the single-particle states introduced in the
different approaches (HF, HFB, mp-mh) are expanded onto the
harmonic oscillator (HO) bases. In the present work, N0 = 11
major spherical shells have been taken. This basis size has been
found sufficient to ensure the convergence of all the results
obtained in this work in the three approaches mentioned above.
For instance, the convergence of low-lying state energies in
the mp-mh configuration mixing approach has been achieved
within an accuracy better than 0.1 keV.

A. Ground state deformation properties

In order to investigate the properties of the ground states
of 26−32Si, we start with triaxial HFB calculations constrained
according to the dimensionless deformation parameters β and
γ ,

β =
√

5π

√
q2

0 + 3q2
2

3A5/3r2
0

and γ = tan−1

(√
3

q2

q0

)
. (12)

In Eq. (12), q0 = 〈Q̂0〉 = 〈2z2 − x2 − y2〉, q2 = 〈Q̂2〉 =
〈x2 − y2〉 and r0 = 1.2 fm.

Figure 1 displays the triaxial HFB potential energy surfaces
(PES) of 26−32Si in the β and γ degrees of freedom. Isolines
associated with total energy are indicated with a numbering
corresponding to the height of the potential (in MeV) relative
to the minimum of the HFB potential (dark blue online) for
each nucleus. The βHFB and γHFB values for the HFB solution
of lowest energy are indicated in the second and the third
columns of Table I.

From Table I, one sees that the HFB ground states of 26Si
and 28Si are similarly characterized by a large value of βHFB �
0.35 and γHFB = 60◦. The HFB minima are found to be well
deformed on the oblate side. 30Si and 32Si exhibit different
characteristics. βHFB is equal to zero for 30Si and very close to
zero for 32Si. The values of γHFB are very different, γHFB = 0◦
for 30Si and γHFB = 34◦ for 32Si. They can be considered as
spherical and nearly spherical nuclei, respectively.

Investigating the PESs of Fig. 1, one can deduce that, even
though βHFB and γHFB may be quite different in the four nuclei,
the common feature of the four PESs is their softness in both
the β and γ degrees of freedom. In relative, the 26Si PES
appears to be more γ soft than the one of 28Si. The PESs of
30Si displays similar features as the one of 32Si. This proposes
an important role of triaxiality. This softness is quantitatively
evidenced by the mean values 〈β〉5DCH and 〈γ 〉5DCH displayed
in Table I. These values have been obtained from a five-
dimensional collective Hamiltonian (5DCH) describing both
β − γ and rotation modes with the use of the approach
developed in Refs. [9,24]. Let us recall that such an approach
is based on the completely microscopic generator coordinate
method (GCM) [1] and allows one to find collective excitations
of pure rotational-vibrational character from the only data of
the nucleon-nucleon effective force. The 5DCH calculations
predict strong dynamical β deformations for the ground states
of all four silicon isotopes together with significant triaxiality.
One observes that the 5DCH collective dynamics introduces
considerable changes with respect to HFB in the β − γ ground
state deformations.

To detail the information provided by 〈β〉5DCH and 〈γ 〉5DCH

mean values, Fig. 2 shows the 5DCH collective wave functions
of 26−32Si ground states [panels (a), (b), (c), and (d), respec-
tively]. Even though the 28Si collective wave function is partly
suppressed for γ between 45 and 60 degrees, the spreading
of collective wave functions in β − γ plane is evident. The
spreading in β goes up to ∼0.8 for 26Si and 28Si and ∼0.6 for
30Si and 32Si.

In Table II we report the energies ετ
i of the spherical orbitals

for 26−32Si, for protons (π1d5/2, π2s1/2, π1d3/2) and neutrons
(ν1p1/2, ν1d5/2, ν2s1/2, ν1d3/2, ν1f7/2). These energies slowly
evolve from one isotope to the other. We notice a slight
increase of the neutron gap between ν2s1/2 and ν1d3/2 orbitals
in 30Si, which reaches a maximum value of �4.56 MeV.
A previous study of N = 16 isotones with the D1S Gogny
interaction have suggested that all Z = 10–18 isotones show
strong deformations, limiting the understanding of N = 16 as
a magic number to the sole oxygen neutron drip line [25].

The evolution of proton and neutron single-particle or-
bitals obtained within the HFB approximation with axial
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FIG. 1. (Color online) Triaxial HFB potential energy surfaces for 26−32Si [(a), (b), (c), and (d), respectively] obtained with the D1S Gogny
interaction.

deformation β (γ = 0◦) is displayed in Fig. 3. To discuss
the general characteristics of single-particle orbitals when
spherical symmetry is broken, we have arbitrarily selected
the isotopes 28Si (for protons) and 32Si (for neutrons). Open
circles (black online), squares (red online), stars (green online),
and triangles (blue online) stand for the projections of the
angular momentum on the symmetry axis with values jz =
1/2, 3/2, 5/2, and 7/2, respectively. Solid (dashed) lines cor-
respond to positive (negative) parity orbitals. The chemical po-
tential is indicated with filled black circles and is denoted by λ.

For protons (upper panel), starting from the oblate side
and up to the spherical shape, the Fermi level corresponds

TABLE I. β and γ deformation properties of the 26−32Si ground
states from the HFB and 5DCH approaches and the D1S Gogny
interaction.

Nucleus βHFB γHFB 〈β〉5DCH 〈γ 〉5DCH

26Si 0.32 60.0◦ 0.41 28◦
28Si 0.37 60.0◦ 0.40 27◦
30Si 0.00 0.0◦ 0.39 29◦
32Si 0.01 34.0◦ 0.37 28◦

to the jz = 1/2 deformed orbital originating from the 1d5/2

shell. From sphericity up to a prolate deformation β � 0.5,
the Fermi level is located on the jz = 5/2 deformed orbital
and then migrates to the jz = 1/2 orbital coming from the
2s1/2 shell; finally, for a very large value of β, it follows
the jz = 1/2 deformed orbital coming from the 1f7/2 shell.
The jz = 1/2 and jz = 3/2 deformed orbitals from the 1d5/2

shell for small oblate deformations fall down instead of going
up. Investigating this plot in more detail, one sees that similar
trends are encountered for deformed orbitals originated from
the 2s1/2 and 1d3/2 shells. One is led to the conclusion that these
orbitals are strongly mixed through deformation as confirmed
by the presence of avoided level crossings in single-particle
spectra. The natural continuity of the oblate jz = 1/2 from the
1d5/2 shell is the prolate jz = 1/2 from the 1d3/2 shell. Other
examples are the oblate jz = 1/2 from the 2s1/2 shell and the
prolate jz = 1/2 from the 1d5/2 shell, the oblate jz = 1/2 level
from the 1d3/2 shell and the prolate jz = 1/2 from the 2s1/2

shell, or the oblate/prolate jz = 3/2 from the 1d5/2 shell and
the prolate/oblate jz = 3/2 from the 1d3/2 shell. From this kind
of analysis, one expects that the proton excitations contributing
to low-lying states will mainly arise from the sd shell, while
the influence of the jz = 1/2 level from the 1f7/2 shell will
appear only at quite large β deformation. It is important to note
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FIG. 2. (Color online) Ground state 5DCH collective wave functions for 26−32Si [(a), (b), (c), and (d), respectively].

that these mixings and repulsions of deformed orbitals are not
necessarily synonymous with inversions of orbitals.

The behavior of the neutron orbitals is similar. As in the
present paper we study isotopes where the 2s1/2 and 1d3/2

neutron subshells are filled or partially filled, it is important to
look at higher shells. Here we only mention that the same game
as for protons is played between deformed neutron orbitals
originating from 1f7/2, 2p3/2, and 2p1/2 with low jz values,
see Fig. 3(b), and that upper shells of negative parity play a
role at small deformations only for the heavier isotopes.

B. Low-lying spectroscopy

In this subsection we discuss the low-lying states in
the even-even 26−32Si isotopes as predicted by the mp-mh
configuration mixing approach and compare them with the
ones obtained with the 5DCH method. Only positive parity

TABLE II. Energies (in MeV) of spherical proton and neutron
HFB single-particle states in 26−32Si.

πd5/2 πs1/2 πd3/2 νp1/2 νd5/2 νs1/2 νd3/2 νf7/2

26Si −7.07 −2.61 0.88 −27.73 −15.96 −10.73 −7.33 −1.37
28Si −10.05 −5.16 −1.69 −28.39 −15.95 −10.91 −7.34 −1.18
30Si −12.60 −7.32 −4.11 −26.75 −16.21 −11.56 −7.29 −1.41
32Si −15.09 −10.08 −7.51 −26.44 −16.28 −11.40 −7.80 −2.01

states are investigated in this work. Experimentally, these
nuclei are challenging as they exhibit a large variety of states
at low energy, and strong changes arise from one isotope
to another (for example, in the 2+

2 state). For this reason,
from the theoretical viewpoint, they can be considered as
benchmarks for both the many-body method employed and the
properties of the effective nucleon-nucleon interaction used.
The comparison with the 5DCH approach, a method that has
proved its pertinence through a global survey [9], is interesting
in the sense that, as the same D1S Gogny interaction is used,
it enables one to specify the role of rotational and quadrupole
correlations in the spectroscopy of the positive parity states in
silicon isotopes.

All the mp-mh results we present below correspond to
mixing within the sd shell. We have checked the influence
on the low-lying states of our interest when including the 1p

and 1f subshells. In particular, the adding of 1p1/2 and 1p3/2

had essentially no effect on the spectroscopy of 26Si, 28Si, 30Si,
and 32Si. For the selected spectroscopy of 26Si, the effect of
the 1f7/2 shell was very small. For 28Si, only small variations
were observed and they concerned only the highest states.
The largest differences (∼500 keV) due to the 1f7/2 and 2p3/2

orbitals have been encountered in 30Si and 32Si. Concerning the
5DCH approach, only theoretical results with energies lower
than �12 MeV are presented. This choice is not fully arbitrary
as it is motivated by the relative maximum height of PESs
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FIG. 3. (Color online) Evolution of proton and neutron single-
particle orbitals obtained within the HFB approximation with the
axial deformation β (γ = 0◦) in 28Si (a) and 32Si (b).

(� 28 MeV above the HFB minimum in the present case, see
Fig. 1) used to perform the GCM configuration mixing of
nuclear shapes.

For the four isotopes, 3− is the lowest negative parity state.
Its experimental energy is 6.789 MeV in 26Si, 6.879 MeV in
28Si, 5.487 MeV in 30Si, and 5.288 MeV in 32Si. The decrease
of its value gives a flavor of the increasing importance of
negative parity orbitals at low energy in 30Si and 32Si. However,
for the description of positive parity states, negative parity
orbitals should play a role at energies higher than for the
description of negative parity states as one has to introduce
at least 2p-2h excitations to produce a positive parity state.

Excitation energies calculated with the mp-mh and 5DCH
methods for 26−32Si are compared to experimental values
in Tables III–VI (the energies are expressed in MeV). In
Table V, a sixth column named mp-mhs has been added,
showing mp-mh results shifted by 2.5 MeV. Positive parity
has been assumed for the states in 26Si whose spins are not
assigned experimentally, based on the plausible hypothesis

TABLE III. Excitation energies (in MeV) of positive parity low-
lying states in 26Si from experiments (second column), and calculated
with the variational mp-mh configuration mixing method using the
D1S Gogny force (third column). In the fourth column a few energies
derived from the 5DCH approach [9] are displayed. The asterisk
means that the spin of the state is not experimentally assigned. The
question mark indicates a state which is not seen experimentally.

Nucleus States Experiment mp-mh 5DCH

26Si
2+

1 1.795 1.502 2.426
2+

2 2.783 2.567 5.124
0+

2 3.332 3.740 8.146
3+

∗ 3.756 3.233 9.126
4+

∗ 3.842 3.293 6.119
3+

∗ 4.093 3.779
2+

3 4.138 3.915
4+

∗ 4.183 4.758 9.254
2+

∗ 4.446 4.783
0+

3 4.806 4.959
4+

∗ 5.229 4.931
4+

1 5.330 5.741
2+

∗ 5.562 5.577
3+

? ? 5.755
0+

4 5.940 6.690
2+

4 6.350 6.823

that the lowest negative parity state is the observed 3− one.
The question mark means that the state is not observed
experimentally. For 28Si, the asterisk indicates that both spin
and parity have not been measured experimentally; again,
making the assumption of positive parity, the spin is given
by our model. For 32Si, because of the energy of the lowest
observed 3− state, positive parity is assumed for the fourth
state at 5.220 MeV. Experimentally, the spin is expected to be
in the range from 1 to 4; our model predicts spin 3. Concerning
the 4+

∗ state, the experimental assignment is either 4+ or 5−.
Theoretical results are provided for ∼20 states in each

isotope, except for 32Si where the spin and parity of some states
with excitation energies larger than ∼5.5 MeV have not been
firmly assigned experimentally. All excited configurations
from the sd shell have been introduced in the mp-mh wave
functions, up to 6p-6h on the proton side and 2p-2h, 4p-4h,
6p-6h on the neutron side depending on the isotopes. Then,
the presented results contained up to 10p-10h configurations
in 26Si and 30Si, 12p-12h configurations in 28Si, and 8p-8h
configurations in 32Si.

In the case of 26Si, one sees that there is a very good
agreement between experimental and mp-mh configuration
mixing energies, whatever the spin and the excitation energy.
Concerning the 5DCH approach, the energy of the 2+

1 state
is found too high by ∼700 keV and the energies of the
other excited states are also strongly overestimated (by several
MeV). In the case of 28Si, despite the inversion between the
4+

1 and 0+
2 levels, quite good agreement with experiment is

obtained by the mp-mh approach. Again, the 5DCH approach
tends to overestimate excitation energies. However, we note
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TABLE IV. Same as Table III for 28Si; The asterisk means that
spin-parity quantum numbers are not assigned experimentally.

Nucleus States Experiment mp-mh 5DCH

28Si
2+

1 1.779 1.993 2.469
4+

1 4.618 5.372 6.446
0+

2 4.980 4.409 10.591
3+

1 6.276 6.365
0+

3 6.690 8.760
4+

2 6.888 7.769
2+

2 7.381 7.280 7.395
2+

3 7.416 8.353
3+

2 7.799 8.124
2+

4 7.933 8.551
2+

5 8.259 9.025
1+

1 8.328 8.943
6+

1 8.544 9.531 11.876
3+

3 8.589 8.459
0+

∗ 8.819 9.345
5+

1 8.945 9.424
0+

∗ 8.953 9.845
4+

3 9.164 10.120
3+

4 9.315 9.894
2+

6 9.381 9.883
4+

4 9.417 10.719
2+

7 9.479 9.952
1+

2 9.496 9.756

that both theoretical approaches describe the 2+
1 state within

the same accuracy as in 26Si and that the energy of the 2+
2 state

is particularly well reproduced.
In 30Si, as seen from Table V, the energy of the 2+

1 is
overestimated by ∼2.5 MeV with the mp-mh configuration

TABLE V. Same as Table III for 30Si.

Nucleus States Experiment mp-mh 5DCH mp-mhs

30Si
2+

1 2.235 4.609 2.222 2.109
2+

2 3.498 5.704 4.729 3.208
1+

1 3.769 6.338 3.838
0+

2 3.788 7.732 7.610 5.238
2+

3 4.810 8.230 11.832 5.730
3+

1 4.831 6.709 8.056 4.209
3+

2 5.231 7.904 5.404
4+

1 5.279 7.539 5.691 5.039
0+

3 5.372 8.950 8.585 6.450
2+

4 5.614 9.262 6.762
4+

2 5.950 8.911 8.714 6.441
2+

5 6.538 10.186 7.686
0+

4 6.642 9.030 6.530
3+

3 6.865 8.831 6.331
2+

6 6.914 10.594 8.094
5+

1 6.998 10.926 8.426

TABLE VI. Same as Table III for 32Si. The asterisk indicates that
spin and/or parity are/is not assigned experimentally.

Nucleus States Experiment mp-mh 5DCH

32Si
2+

1 1.941 1.959 2.215
2+

2 4.230 4.871 5.014
0+

2 4.984 6.810 5.318
3+

∗ 5.220 6.004
2+

3 5.412 6.758 9.335
4+

∗ 5.502 6.567 5.470

mixing. What is even more surprising is that all states appear
to be shifted upward. Actually, reduction of all the excitation
energies by ∼2.5 MeV gives a much better agreement with
experiment. This can be seen from the last column “mp-mhs”
of Table V that gives the values provided by the mp-mh
configuration mixing approach minus 2.5 MeV. Then, the
discrepancy with experiment is reduced to ∼0.69 MeV (on av-
erage), and the theoretical level sequence becomes very similar
to the experimental one. We have checked that this global shift
cannot be removed by adding the 1f7/2 shell to the valence
space. Its origin will be discussed later in this subsection.

On the other hand, the energies of several states in this
nucleus are well reproduced by the 5DCH approach, in
particular those of the 2+

1 and 4+
1 states. Let us note in this

respect that the 5DCH method does not explicitly make use of
the matrix elements of the residual interaction between excited
configurations, exploiting instead the quadrupole deformation
properties of the mean field. As seen and discussed in relation
to Fig. 3, following the chemical potential, the deformation
is able to catch part of the correlation information coming
from upper spherical shells directly or through the mixing of
deformed orbitals (see discussion in Sec. III A on the evolution
of single-particle orbitals). In the case of 32Si, both theoretical
methods provide a good description of the selected experi-
mental states (except for the 0+

2 with the mp-mh configuration
mixing method and the 2+

3 with the 5DCH approach).
The results obtained with the mp-mh configuration mixing

indicate that this approach is capable of reproducing quite
well the low-energy spectroscopy of 26Si and 28Si and to a
lesser extent, the one of 32Si. The mean deviations between
theory (mp-mh) energies and experimental ones are found to
be ∼369 keV in 26Si, ∼653 keV in 28Si and ∼946 keV in
32Si. The increase of the deviation between 26Si and 28Si can
be attributed to the systematic overestimation obtained in the
calculation of 28Si highest levels. The same phenomenon holds
for 32Si. As pointed out previously, this effect can be partly
ascribed to the absence of the 1f7/2 shell, and, to a smaller
extent, of the 2p3/2 shell in the present calculations. Nonethe-
less, the agreement with experiment of mp-mh energies can be
considered as rather encouraging, considering the fact that the
D1S Gogny interaction has not been devised to describe the
kind of general correlations introduced in a multiconfiguration
approach. In particular, the proton-neutron matrix elements
between excited configurations given by this interaction have
not been constrained.
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The following discussion is dedicated to the understanding
of the origin of the shift obtained with the mp-mh configuration
mixing method for excited states in 30Si. In a schematic way,
both energy gaps between single-particle orbitals and coupling
matrix elements (ME) between configurations are the key
quantities that drive the low-lying spectroscopy. One can infer
that a downward shift can be obtained either by decreasing gaps
(an effect similar to the monopole shifts pointed out in the shell
model approach [26–28]), and/or by varying coupling matrix
elements. Proton-neutron matrix elements are suspected to
be mainly responsible for the energy shift encountered in
30Si. In fact, by changing “by hand” the values of selected
proton-neutron ME implying the spin-orbit partners 1d3/2

and 1d5/2 and using them in realistic mp-mh configuration
mixing calculations (which produces a modification of the
energy of the 1d3/2 shell), one can derive excited states in 30Si
which are in reasonably good agreement with experiment, with
deviations similar to the ones found in 28Si. It is important to
note that such changes in matrix elements essentially effect
only the 30Si spectrum. In particular no significant modification
of 28Si spectrum is observed. In addition, as we will see
in Sec. IV where the chaotic behavior of highly excited
Slater determinants is studied, too strong couplings are found
essentially in K = 0 cases, where common proton-neutron
matrix elements are involved.

At this stage of our analysis, one has to recall that the general
formalism of the mp-mh configuration mixing method exposed
in Sec. II implies that not only the secular equation (5) has to
be solved but also Eq. (8). These two equations in principle
provide the “best” single-particle representation, i.e., the one
that minimizes the total energy consistent with correlations.
Clearly, the solution of Eq. (8) may introduce modifications
on both single-particle energies and coupling ME. However,
discussing the kind of renormalization produced by Eq. (8)
is far beyond the scope of the present paper, and it will be
left to a dedicated study. Let us simply mention here that,
in the context of the present work, introducing a tensor term
in the effective interaction we would probably reproduce the
right energy evolution of spin-orbit partners [29]. In addition,
a crude comparison between sd-shell ME calculated from the
D1S Gogny interaction and from the USD interaction used in
the shell model [30] displays large discrepancies essentially
in the T = 0 channel, where the renormalization effects are
expected to be the largest. The average difference is equal
to ∼0.3 MeV in T = 1 channel and ∼1.5 MeV in T = 0
one. The large difference found in T = 0 channel is attributed
essentially to two ME and comes from the lack of tensor
term by comparing the different contributions to ME (central,
spin-orbit and tensor).

In conclusion of this part, one can say that, in the four silicon
isotopes, most states contain more complex correlations than
the usual collective quadrupole/rotational ones. In order to
identify the nature of the ground state band, we have calculated
the energy ratio (4+

1 /2+
1 ) whose value is a standard indicator of

the vibrational, rotational, or γ -soft nature of nuclei. Results
for experiment, mp-mh configuration mixing and 5DCH
methods are displayed in Fig. 4. Numerical values are reported
in Table VII for experiment, mp-mh configuration mixing, and
5DCH methods. From experiment, one observes that 26Si is

24 26 28 30 32 34 36
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Rotor

-soft
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FIG. 4. (Color online) Experimental and calculated (mp-mh
and 5DCH) E(4+

1 )/E(2+
1 ) ratios. For 30Si, the shifted for mp-mh

configuration mixing energies have been used (see text).

close to the vibrational limit [(4+
1 /2+

1 )vib = 2], while 28Si and
30Si are more γ -soft nuclei [(4+

1 /2+
1 )γ = 2.5]. In 32Si, this

ratio increases toward the rotor limit [(4+
1 /2+

1 )rot = 3.3]. The
results obtained with the mp-mh configuration mixing show
that data in 26Si and 28Si are well reproduced and display
the experimental trend. For 30Si, the shifted values for the
mp-mh configuration mixing approach have been used. The
significant overestimation in 32Si, where the 2+

1 energy is well
reproduced, comes from the fact that the 4+

1 energy is slightly
overestimated.

C. Role of the proton-neutron residual interaction

This part discusses the role of the proton-neutron residual
interaction and the importance of using an effective nucleon-
nucleon interaction that manifests good properties in the T = 0
channel when using mp-mh configuration mixing methods. As
a benchmark nucleus, we have chosen 28Si. Table VIII lists
the first seven excited states of 28Si. The experimental values
of excitation energies and the theoretical ones (mp-mh) are
given in columns 2 and 3. Columns 4 and 5 display the results
obtained within the mp-mh configuration mixing approach
when the residual proton-neutron interaction is turned off.
As the Hamiltonian in use is not exactly isospin-invariant (a
Coulomb term is included), this symmetry breaking leads to a
small difference (less than ∼300 keV) for proton and neutron
solutions, noted mp-mhπ and mp-mhν , respectively.

TABLE VII. Numerical values of experimental and calculated
(mp-mh and 5DCH) E(4+

1 )/E(2+
1 ) ratios. The superscript “s” for

mp-mh ratios in 30Si means that the energies shifted by 2.5 MeV have
been used, see text.

Nucleus
E(4+

1 )

E(2+
1 ) exp.

E(4+
1 )

E(2+
1 ) mp-mh

E(4+
1 )

E(2+
1 ) 5DCH

26Si 2.140 2.190 2.520
28Si 2.595 2.695 2.611
30Si 2.362 2.389s 2.561
32Si 2.834 3.350 2.469

044315-8



LOW-LYING SPECTROSCOPY OF A FEW EVEN-EVEN . . . PHYSICAL REVIEW C 85, 044315 (2012)

TABLE VIII. Excitation energies (in MeV) of low-lying states
in 28Si calculated with the variational mp-mh configuration mixing
method with and without residual proton-neutron interaction (see
text).

States Experiment mp-mh mp-mhπ mp-mhν

2+
1 1.779 1.993 5.733 5.831

4+
1 4.618 5.372 6.553 6.712

0+
2 4.980 4.409 9.588 9.651

3+
1 6.276 6.365 9.732 ?

0+
3 6.690 8.759 9.873 9.893

4+
2 6.888 7.769 ? ?

2+
2 7.380 7.280 10.283 10.415

The sensitivity of the excitation energies to the proton-
neutron residual interaction depends on the nature of states.
For example, this interaction brings the energy of the 2+

1 state
from ∼6 MeV to ∼2 MeV; its importance for the structure of
correlated wave functions is illustrated in Table IX where the
components of the wave functions of the 0+

1 and 0+
2 states are

listed in two cases. We define the quantity Wn that measures
the correlation content of the wave functions in terms of the
order of excitation n, namely 0p-0h, 1p-1h, 2p-2h, . . .. For a
given eigenfunction |�β〉,

Wβ
n =

∑
kn

∣∣Aβ

kn

∣∣2
, (13)

where kn represents the Slater determinant components with
np-nh excitations (n = nπ + nν). Case (a) in Table IX corre-
sponds to a full calculation and case (b) to a calculation without
residual proton-neutron interaction. The wave functions 0+

1
and 0+

2 have quite different structures. For the ground state,
excited 2p-2h configurations play a role as important as the
initial 0p-0h configuration. When the proton-neutron residual
interaction is turned off, most of the correlations disappear.
One sees that the 2p-2h configurations built from 1p-1h
proton excitations combined with 1p-1h neutron excitations
are essential for the description of the ground state. For the
excited state, the absence of proton-neutron interaction is
even worse as it destroys fully the 0p-0h component and
produces the solutions based on a 1p-1h proton or on a 1p-1h
neutron configuration. One observes that the proton-neutron
interaction brings a lot of fragmentation in the wave functions,

TABLE IX. Weights Wn (n � 8) calculated for 0+
1 and 0+

2 states
in 28Si. Case (a) corresponds to the full mp-mh calculation and case
(b) to a calculation without residual proton-neutron interaction. The
index π (ν) specifies the proton (neutron) solution.

State Case W0 W1 W2 W3 W4 W5 W6 W7

0+
1 (a) 34.48 0.00 34.77 11.55 12.78 4.25 1.76 0.34

(b) 93.77 0.00 6.03 0.02 0.17 0.00 0.00 0.00
0+

2 (a) 43.70 0.00 12.26 14.12 16.37 8.68 3.82 0.90
(bπ ) 0.00 91.51 2.82 5.34 0.20 0.12 0.00 0.00
(bν) 0.00 91.39 3.25 5.04 0.21 0.11 0.00 0.00

TABLE X. Proton and neutron occupation probabilities of the
d5/2, s1/2, and d3/2 orbitals, for 0+

1 and 0+
2 states in 28Si. Case (a)

corresponds to a full calculation and case (b) to a calculation without
residual proton-neutron interaction.

State Case πd5/2 νd5/2 πs1/2 νs1/2 πd3/2 νd3/2

0+
1 (a) 5.053 5.047 0.603 0.606 0.344 0.347

(b) 5.939 5.932 0.018 0.020 0.043 0.047
0+

2 (a) 4.960 4.978 0.716 0.698 0.324 0.324
(bπ ) 4.941 5.912 1.007 0.037 0.050 0.050
(bν) 5.935 4.935 0.033 1.008 0.046 0.057

hence collectivity. The precise knowledge of this residual inter-
action is therefore mandatory in mp-mh configuration mixing
approaches, in particular when calculations are performed at
sphericity. Consistently with the results for the wave functions,
occupation probabilities display strong changes as can be seen
in Table X in the case of proton and neutron 1d5/2, 2s1/2, and
1d3/2 orbitals.

IV. STATISTICAL PROPERTIES OF HIGHLY EXCITED
CONFIGURATIONS

One of the main issues raised by multiconfiguration
approaches is the number of relevant configurations for
describing low-lying states. Because of the proton-neutron
excitations, this number can rapidly explode. In realistic
calculations, one has to think about truncations based on
physical arguments. When going beyond the mean-field
with the mp-mh approach, it is assumed that short-range
correlations have already been taken into account through the
effectiveness of the nucleon-nucleon interaction used (the D1S
Gogny interaction in our case). Our aim is to treat explicitly
the long-range correlations corresponding to the attractive
part of the nucleon-nucleon interaction. Two standard types
of truncation can be proposed, independently of the choice
(or not) of a valence space: a truncation on the order of the
excitations and/or a truncation on the configuration excitation
energies. Both types of truncations seem to be reasonable in
the present context. In order to define appropriate truncations
based on relevant physics argument, we discuss below the
behavior of highly excited configurations.

We have followed the direction used in Refs. [12–16]
where the analysis was based on the properties of the strength
function associated with the Slater determinants. Using second
quantization and the standard Wick’s theorem decomposition,
the Hamiltonian Ĥ, Eq. (6), is the sum of an independent
particle part Ĥ0 (one-body) and a residual part Ĥ′ (one-body
and two-body),

Ĥ = Ĥ0 + Ĥ′. (14)

The eigenfunctions |k〉 of the unperturbed Hamiltonian H0,

H0|k〉 = εk|k〉, (15)

describe noninteracting fermions. In the basis |k〉, the residual

interaction Ĥ′ has both diagonal, Ĥ, and off-diagonal, ˜̂H,

matrix elements: Ĥ′ = Ĥ + ˜̂H. Full diagonalization leads to
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FIG. 5. (Color online) Centroid energies (in MeV) for 28Si. The
x axis corresponds to the number of centroids ordered by increasing
energies.

the stationary states |α〉 and their energies Eα ,

Ĥ|α〉 = Eα|α〉. (16)

The eigenfunctions |α〉 may have a complicated structure in
the original basis |k〉,

|α〉 =
∑

k

Aα
k |k〉. (17)

where A is a unitary matrix:∑
k

Aα
k Aα′

k = δαα′
,
∑

α

Aα
k Aα

k′ = δkk′ . (18)

A completely delocalized wave function |α〉 would have a
number of relevant components close to the total dimension
N of the multiconfiguration space (for given exact quan-
tum numbers). In this limit the typical magnitude of each
component is 1/

√
N . In general, a number Nα of principal

components |k〉 characterizes the delocalization of a state |α〉
in the given basis (15). Indeed, a two-body interaction cannot
couple configurations differing by more than two particle states
which implies a band-like Hamiltonian matrix, favoring the
localization of eigenfunctions in the Hilbert space. Conversely,
the fragmentation of simple basis states over the energy
spectrum can be provided by the strength function defined
by the quantity

Fk(E) = 〈k|δ(E − Ĥ (ρ))|k〉 =
∑

α

∣∣Aα
k

∣∣2
δ(E − Eα). (19)

The strength function contains rich information but requires
the knowledge of the full nuclear spectrum. Fortunately, one
can study the main characteristics of the system from the first
and the second moment of the strength function which does not
require the actual diagonalization of H. These two moments
are the centroid, Ek , and dispersion, σk , of the state distribution,

FIG. 6. (Color online) Dispersions σk (in MeV) of Kπ = 0+, 1+, 2+, and 3+ Slater determinants for 28Si. The x axis represents the excitation
energies E∗ of Slater determinants. The color code indicates the number of Slater determinants per bins of excitation energy and dispersion.
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FIG. 7. (Color online) The 28Si strength functions associated
with Kπ = 0+, 1+, 2+, 3+, and 4+ components in linear scale
(upper panel) and logarithmic scale (lower panel). Logarithmic
representation is shown in lower panel. Calculations have been
performed with a 0.1 MeV bin.

given by

Ek =
∫

dEEFk(E) = Hkk = εk + Hkk, (20)

and

σ 2
k =

∫
dE(E − Ek)2Fk(E) =

∑
l(�=k)

(H′
lk)2, (21)

respectively. The centroid Ek coincides with the unperturbed
energy Hkk , whereas the dispersion depends only on the off-
diagonal matrix elements H′

lk .
Below we discuss the example of the 28Si isotope. Similar

calculations have been done for other nuclei with similar
conclusions. At this point, it is important to recall that the
mp-mh configuration mixing formalism presented in Sec. II
has been developed, in practice, using an axially deformed
harmonic oscillator basis. In order to preserve the spherical
symmetry, all the mp-mh calculations displayed in this study
have been done for β = 0. In the following, our analysis is

FIG. 8. (Color online) The 28Si Slater determinant distributions
ρ(E) (upper panel) and the 28Si locally normalized strength functions
〈Fk(E)〉/ρ(E) (lower panel) for Kπ = 0+, 1+, 2+, 3+, and 4+

components. Calculations have been performed with a 0.1 MeV bin.

done in terms of different projections K of a given angular
momentum J . All configurations of the sd shell (up to
12p-12h) have been introduced in the wave functions; the
maximum size of the Hamiltonian matrices that have been
fully diagonalized was ∼90 000 × 90 000.

Figure 5 displays the values of the centroid energies Ek ,
where centroids are labeled by Nk and ordered by increasing
energy. One observes a characteristic behavior for all values
of K from 0 to 4. The lowest centroid energy, the one
associated with the 0p-0h configuration, is −239.203 MeV.
Only few configurations have small excitation energy. The
level density increases rapidly with excitation energy, and most
configurations are located in the range [−210; −160] MeV.
The final increase, beyond −160 MeV, is an artifact of the
finite valence space that reduces the number of possible highly
excited states.

Figure 6 shows the dispersions σk of Eq. (21) for all
configurations characterized by K = 0, 1, 2, and 3 and their
excitation energies E∗ (in MeV). The color code indicates
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FIG. 9. (Color online) Convergence of ground state and a few excited state energies in 28Si as a function of the number of configurations
ordered by their centroid energies.

the number of configurations in a given excitation energy
and σk bin. As expected, the structure of the configuration
distribution is different for different values of K but most
configurations are concentrated along a central line, and
characteristic structures appear in the most dense areas. Such
areas are more pronounced in the most dense zone in the K = 0
case for all values of E∗. A large majority of configurations
display a dispersion σk that is rather constant along the
spectrum; its mean value can be evaluated to be ∼9 MeV.
This important result which implies that strength functions
can be characterized by essentially the same width is the first
indication of expected exponential convergence.

The strength function of 28Si is presented in Fig. 7 for
different values of K as a function of the energy counted
from the corresponding centroid, Eα − Ek . The value of the
bin is set to 0.1 MeV. An average over all configurations
has been done in order to reveal possible generic behavior.
The upper panel displays the strength function in linear scale
and the lower panel in logarithmic scale. The central part
of the distribution is intermediate between a Gaussian and
a Lorentzian one, whereas the behavior in the wings is found
to be a decreasing exponential. This is clearly visible in the
logarithmic scale. In agreement with [12–16], the coupling of
highly excited configurations with low-energy eigenfunctions
therefore exhibits an exponential regime and the “3σ” rule
characterizing the start of the exponential convergence, which

is important in practical calculations of the level density by
methods of statistical spectroscopy [31], seems to hold here
also.

In the case of the K = 0 projection, one observes two
unusual bumps at energies Eα − Ek ∼ 40 MeV and 60 MeV.
Actually, the strength function (19) combines two types of
information: the density of configurations and the mixing
coefficients whose values are determined by the nucleon-
nucleon interaction. In order to disentangle these effects, we
calculate the density of configurations ρ(E) = ∑

k,α δ(E −
Eα) and the locally normalized strength function 〈Fk(E)〉/ρ(E)
where 〈Fk(E)〉 = ∑

k Fk(E)/N . These quantities are shown
in Fig. 8 [the density of configurations, upper panel (a), and
the locally normalized strength function in logarithmic scale,
lower panel (b)]. The configuration density has a regular shape
expected for a finite Hilbert space whereas the bumps of the
strength function in Fig. 7 appear magnified on the normalized
strength function plot (lower panel). One also notices that the
coupling of matrix elements is fully exponential (linear on
logarithmic scale), if one forgets about the bumps. As the
density of configuration is quasilinear in logarithmic scale at
large energy, one understands the exponential convergence
behavior of the strength function observed on Fig. 7. The two
bumps come from the specific interaction rather than from
the statistics. The matrix elements that are responsible for the
bumps correspond to the same proton-neutron ME discussed
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FIG. 10. (Color online) The Wi components [Eq. (13)] of 0+
1 and 2+

1 wave functions in 28Si.

in Sec. III B for 30Si, which appear to be too large at the
level of the approximate resolution of the mp-mh configuration
mixing method presented in this study. Reducing by hand the
values of these proton-neutron ME makes the bumps disappear.
Hence, the study of the chaotic behavior of highly excited
Slater determinants can be considered as an additional way of
highlighting not well-calibrated coupling ME. In other words,
statistical properties may serve as an additional criterion in the
validation process of phenomenological effective interactions.
This result is consistent with and confirms our previous
discussion of Sec. III B. This analysis is similar in spirit to the
statistical search of interaction matrix elements responsible for
the equilibrium prolate deformation [32].

The exponential convergence observed in Fig. 8 is an
interesting feature that might be evaluated analytically in
the particular case of the finite-range Gogny interaction. For
example, taking the single-particle states as plane waves, the
two-body matrix elements of the Brink-Boecker part of the
Gogny force read

〈φ1φ2|e−(r1−r2)2/μ2 |φ3φ4〉
=

∫
d3r1 d3r2

(2π )6
e−ik1·r1e−ik2· r2e−(r1−r2)2/μ2

eik3·r1eik4·r2

=
∫

d3r1 d3r2

(2π )6
e−i(k1−k2)·(r1−r2)e−(r1−r2)2/μ2

. (22)

where we have used the conservation law k1 + k2 = k3 + k4.

Equation (22) reduces to the Fourier transform of a
Gaussian,

〈φ1φ2|e−(r1−r2)2/μ2 |φ3φ4〉 = μ√
2

e− mμ2

2 E, (23)

with E = k2/2m and k = k1 − k2. Thus, the matrix element
behaves, in the case of the Gogny interaction, as a decreasing
exponential with respect to excitation energy. The value of
the two ranges introduced in the Gogny interaction may serve
as a guide to decide an upper limit where the exponential
convergence regime settles. However, this behavior exists
for any physically reasonable interaction as revealed in shell
model calculations [12–16].

Below we give three examples of exponential convergence
behavior with increasing excitation energy of configurations,
namely for the total energy, for the components of the
correlated wave functions and for the occupation probabilities.
Figure 9 displays the evolution of the total energies of the
ground and excited states in 28Si, according to the number
of configurations in the correlated wave function, ordered by
increasing centroid energies. The four plots correspond to the
different values of the total momentum projection K . In all
cases, the total energy changes rapidly when only a few Slater
determinants with lowest energy are included. Then, for a
larger number of configurations a smooth regime settles, a
behavior independent of the value of K .

In Fig. 10, the evolution of the global components, Wn,
Eq. (13), of the wave functions of the 0+

1 and 2+
1 states in
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FIG. 11. (Color online) Evolution of the occupation probabilities
of proton d5/2, s1/2, and d3/2 orbitals as function of Nk .

28Si is displayed as a function of the number Ncent of centroids
ordered by centroid energy. For n � 9, the Wn are smaller than
10−9 and they are not shown. The evolution of the occupation
probabilities for d5/2, s1/2, and d3/2 orbitals according to Ncent is
displayed on Fig. 11. As can be seen from the two figures, both
the Wn and the occupation probabilities display the exponential
convergence. With all exponents being close, one can loosely
interpret this behavior as a signature of thermalization in a
self-bound mesoscopic system.

V. CONCLUSION AND PERSPECTIVES

In this work, we have investigated the application of
multiconfiguration methods for the description of low-energy
nuclear spectroscopy. A few even-even silicon isotopes have
been studied, using the D1S Gogny interaction. At this stage,
only the configuration mixing part of the method has been
put into place; the renormalization of single-particle orbitals
due to correlations has not been discussed in this paper. The
results for the positive parity states in low-lying spectroscopy
of 26−32Si have been found in rather good agreement with
experiment, taking into account the fact that the D1S Gogny
interaction has not been a priori fitted to be employed in such
a kind of approach. In particular, from the study of 30Si, it
has been found that, at the level of approximate resolution of
the mp-mh configuration mixing method (no renormalization
of orbitals) a few residual proton-neutron matrix elements
of pairing type, that are not constrained in the fitting of the
Gogny interaction, might disturb the reproduction of excitation
energies. In relation to this, the importance and magnitude of
the proton-neutron residual interaction has been discussed.

The question of the pertinent configurations that have to be
introduced in the mixing has also been addressed. Statistical
generic behavior of highly excited configurations has been put
forward. In particular, the exponential convergence already
revealed in shell model studies has been confirmed in our
approach. This is an encouraging feature that may help to
handle the very large number of configurations that appear in
multiconfiguration methods, in particular in nuclear physics
where two kinds of particles exist.

The present study proposes interesting and challenging
issues at different levels. The renormalization of orbitals
under the influence of correlations is an important question
that will be analyzed in further studies. In atomic physics,
this renormalization has been proved to play a key role in
strongly correlated systems. Even though the associated orbital
equation, see Eq. (8), looks simple, its exact solution is far from
being trivial. At present, in the most advanced applications to
atomic physics, it is solved approximately as the correlation
term that depends on the two-body density matrix can be very
complicated.

A second issue concerns the improvement of the Gogny
interaction in order to be able to use it not only in HFB,
RPA, and GCM-type methods but also in multiconfiguration
approaches. Work is in progress in this direction.

The third issue deals with the generic behavior of highly
excited configurations. The exponential convergence and
corresponding extrapolations can be of considerable help for
controlling in a safe way possible new truncation schemes
introducing explicitly only pertinent configurations. To this
aim, a formalism of the Feshbach type projection might
be quite useful. It is worth mentioning that the analysis of
statistical regularities allowed us to identify specific matrix
elements of the Hamiltonian responsible for spectroscopic
inadequacy (discussion on 30Si).

For the specific goal of nuclear spectroscopy, the inves-
tigation of transition probabilities and negative parity states
in silicon isotopes would be of great interest and may provide
essential information on the residual interaction and properties
of single-particle orbitals, including nuclei far from stability.
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APPENDIX: “CORE + VALENCE SPACE” FORMULATION

Equations (2) and (5) are quite general. As mentioned in
the Introduction, the Hilbert space has to be truncated in any
realistic calculation. Several truncation schemes, supported by
physics arguments, can be utilized, for example a limitation on
the excitation order of mp-mh configurations, a limitation in
the number of single-particle states used for the configuration
mixing, etc. This appendix deals with a truncation that
corresponds to the description in terms of “core + valence
space”. In this approach, the system, that comprises Nτ

nucleons of each isospin, is separated into:

(i) an even-even core where the Nτ
c lower individual states

are fully occupied for each isospin;
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(ii) a set of active orbitals containing Nτ − Nτ
c particles for

each isospin;
(iii) a set of unoccupied higher-energy individual states for

each isospin.

Under this prescription, the proton and neutron Slater
determinants, Eq. (3), are defined as

∣∣�ατ

〉 =
Nτ∏

j=Nτ
c +1

a+
j

Nτ
c∏

i=1

a+
i |0〉 =

Nτ∏
j=Nτ

c +1

a+
j

∣∣�cτ

〉
, (A1)

where |�cτ
〉 is the part of the wave function that describes the

core.
In addition, the Hamiltonian Ĥ (ρ), Eq. (1), can be written

by separating isospin contributions as

Ĥ (ρ) =
∑

τ=π,ν

Ĥ τ + V̂ πν(ρ). (A2)

Then, from Eq. (6),

Ĥ(ρ) =
∑

τ=π,ν

[
Ĥ τ +

∑
mnτ

Rτ
mna

+
τmaτn

]
+ V̂ πν(ρ), (A3)

where the generalized rearrangement coefficientsRτ
ij are given

by

Rτ
mn =

∫
φ∗

τm(r, σ )φτn(r, σ )B(r)d3r, (A4)

with φτi the single-particle wave functions. The difficulties in
the calculation of Rτ

mn come from the evaluation of the rear-
rangement field B(r) from the correlated wave function (2):

B(r) =
∑
αα′

A∗
α′

π α′
ν
Aαπ αν

∑
ijkl

〈
iα′

π
jα′

ν

∣∣∂V (ρ)

∂ρ(r)

∣∣ ˜kαπ
lαν

〉
× 〈

�α′
π

∣∣a+
iα′

π

akαπ

∣∣�απ

〉 〈
�α′

ν

∣∣a+
jα′

ν

alαν

∣∣�αν
〉. (A5)

The expressions (A2), (A3), and (A5) are specific to the
D1S Gogny interaction as only the proton-neutron terms are
generated by the density-dependent part of the interaction and
the density-dependence is a contact interaction. In the limit
of no configuration mixing, one recovers the standard HF
expression for the rearrangement term.

From Eq. (A3), one derives explicit expressions for
Hαπ αν ,α′

π α′
ν

in terms of the “core + valence space” formulation.
In the following evaluation of Hαπ αν ,α′

π α′
ν
, only the terms

carrying the core contributions are given.

1. Proton and neutron diagonal contributions

The proton and neutron diagonal contributions are obtained
for |�απ

〉 ≡ |�α′
π
〉 and |�αν

〉 ≡ |�α′
ν
〉 as

Hτ
απ αν ,απ αν

= 〈
φατ

∣∣Ĥ τ
∣∣φατ

〉 + ∑
mn

Rτ
mn

〈
φατ

∣∣a+
man

∣∣φατ

〉
(A6)

which yields

Hτ
απ αν ,απ αν

=
Nτ∑

iατ =1

(〈
iατ

∣∣K∣∣iατ

〉 + Rτ
iατ iατ

)

+ 1

2

Nτ∑
i,j=1

〈
iατ

jατ

∣∣V (ρ)
∣∣ ˜iατ

jατ

〉
. (A7)

In Eq. (A7), iατ
stands for the occupied single-particle state

in the |�ατ
〉 Slater determinant. The “core + valence space”

separation then leads to

Hτ
απ αν ,απ αν

=
Nτ

c∑
iατ =1

(〈
iατ

∣∣K∣∣iατ

〉 + Rτ
iατ iατ

)

+
Nτ∑

iατ =Nτ
c +1

(〈
iατ

∣∣K∣∣iατ

〉 + Rτ
iατ iατ

)

+1

2

Nτ
c∑

iατ =1

Nτ
c∑

jατ =1

〈
iατ

jατ

∣∣V ∣∣ ˜iατ
jατ

〉

+1

2

Nτ∑
iατ =Nτ

c +1

Nτ∑
jατ =Nτ

c +1

〈
iατ

jατ

∣∣V ∣∣ ˜iατ
jατ

〉

+
Nτ

c∑
iατ =1

Nτ∑
jατ =Nτ

c +1

〈
iατ

jατ

∣∣V ∣∣ ˜iατ
jατ

〉
. (A8)

In Eq. (A8), the first and third terms are pure core contributions.
The second and forth terms are the contributions from the
valence space. The mixed fifth term includes single-particle
orbitals of both the core and the valence space.

2. Proton-neutron diagonal contribution

The proton-neutron diagonal contribution is obtained for
|�απ

〉 ≡ |�α′
π
〉 and |�αν

〉 ≡ |�α′
ν
〉, as

Hπν
απ αν,απ αν

= 〈
�απ

�αν

∣∣V̂ πν
∣∣�απ

�αν

〉
. (A9)

Expansion of Eq. (A9) yields

Hπν
απ αν,απ αν

=
Nπ∑
i=1

Nν∑
j=1

〈
iαπ

jαν

∣∣V ∣∣ ˜iαπ
jαν

〉
. (A10)

Making the “core + valence space” separation leads to

Hπν
απ αν,απ αν

=
Nπ

c∑
iαπ =1

Nν
c∑

jαν =1

〈
iαπ

jαν

∣∣V ∣∣ ˜iαπ
jαν

〉

+
Nπ∑

iαπ =Nπ
c +1

Nν∑
jαν =Nν

c +1

〈
iαπ

jαν

∣∣V ∣∣ ˜iαπ
jαν

〉

+
Nπ

c∑
iαπ =1

Nν∑
jαν =Nν

c +1

〈
iαπ

jαν

∣∣V ∣∣ ˜iαπ
jαν

〉

+
Nπ∑

iαπ =Nπ
c +1

Nν
c∑

jαν =1

〈
iαπ

jαν

∣∣V ∣∣ ˜iαπ
jαν

〉
. (A11)
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In Eq. (A11), the first term comes from the core and the second
one from the valence space. The last two terms express the
coupling between the core and the valence particles.

3. Proton and neutron non-diagonal one-body contributions

The proton or neutron one-body contributions arise when
|�απ

〉 and |�α′
π
〉 differ in one particle state and |�αν

〉 ≡ |�α′
ν
〉

or when |�αν
〉 and |�α′

ν
〉 differ from one particle state and

|�απ
〉 ≡ |�α′

π
〉, respectively. Then, the contributions to H are

H1
απ αν,α′

π αν
=

Nπ
c∑

iαπ =1

〈
iαπ

jα′
π

∣∣V ∣∣ ˜iαπ
lα′

π

〉

+
Nπ∑

iαπ =Nπ
c +1

〈
iαπ

jα′
π

∣∣V ∣∣ ˜iαπ
lα′

π

〉
(A12)

and

H1
απ αν ,απ α′

ν
=

Nν
c∑

iαν =1

〈
iαν

jα′
ν

∣∣V (ρ)
∣∣ ˜iαν

lα′
ν

〉

+
Nν∑

iαν =Nν
c +1

〈
iαν

jα′
ν

∣∣V (ρ)
∣∣ ˜iαν

lα′
ν

〉
. (A13)

In Eqs. (A12) and (A13), the indices j and l refer to the
single-particle state different between the configurations α and
α′. The first term in Eqs. (A12) and (A13) corresponds to the
core contribution and the second one to the contribution of the
valence space.

4. Proton-neutron nondiagonal one-body contribution

As for the proton and neutron one-body contributions, the
proton-neutron one-body contribution arises when |�απ

〉 and
|�α′

π
〉 differ by one particle state and |�αν

〉 ≡ |�α′
ν
〉 or when

|�αν
〉 and |�α′

ν
〉 differ by one particle state and |�απ

〉 ≡
|�α′

π
〉. Similarly to Eqs. (A12) and (A13), the proton-neutron

nondiagonal one-body contribution is then given by

H1τ ′
ατ ατ ′ ,ατ α

′
τ ′

=
Nτ

c∑
iατ =1

〈
iατ

jατ ′
∣∣V πν(ρ)

∣∣ ˜iατ
lα′

τ ′

〉

+
Nτ∑

iατ =Nτ
c +1

〈
iατ

jατ ′
∣∣V πν(ρ)

∣∣ ˜iατ
lα′

τ

〉
. (A14)

In Eq. (A14), the indices j and l refer to the single-particle
states that differ between the configurations α and α′. Still, the
first term describes the core contribution and the second one
the contribution of the valence space.

[1] P. Ring and P. Schuck, The Nuclear Many-Body Problem
(Springer-Verlag, New York, 1980).

[2] M. Anguiano, J. L. Egido, and L. M. Robledo, Nucl. Phys. A
696, 467 (2001).

[3] M. Anguiano, J. L. Egido, and L. M. Robledo, Phys. Lett. B 545,
62 (2002).

[4] M. Bender, G. F. Bertsch, and P.-H. Heenen, Phys. Rev. C 73,
034322 (2006).

[5] M. Bender and P.-H. Heenen, Phys. Rev. C 78, 024309 (2008).
[6] T. R. Rodriguez, J. L. Egido, L. M. Robledo, and R. Rodriguez-

Guzman, Phys. Rev. C 71, 044313 (2005).
[7] R. Rodriguez-Guzman, L. Egido, and L. M. Robledo, Nucl.

Phys. A 709, 201 (2002).
[8] T. R. Rodriguez and J. L. Egido, Phys. Rev. C 81, 064323 (2010).
[9] J.-P. Delaroche, M. Girod, J. Libert, H. Goutte, S. Hilaire,
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