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Formations of loose clusters in an unbound region of 12Be
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The generalized two-center cluster model (GTCM), which can treat covalent and atomic configurations in
general two-center systems, is applied to the light neutron-excess system 12Be = α + α + 4N . The changes
of the orbits of the neutrons are analyzed by calculating adiabatic energy surfaces with a variation of the α-α
distance. The smooth transition from covalent molecular orbits to atomic He-dimer states is realized in the
adiabatic energy surfaces. According to this smooth transition, the adiabatic states are divided into two regions,
the internal covalent region and the external He-dimer region, by introducing boundaries of the change in
structure. The intrinsic structure of the excited energy levels is investigated. We found that, in an unbound region,
the He dimers appear as the molecular resonances of α + 8Heg.s., 6Heg.s. + 6Heg.s., and 5Heg.s. + 7Heg.s.. An
exotic superdeformation, which has a hybrid configuration of both the covalent and He-dimer structures, is also
realized in the same energy region. These unbound states can be classified into internal and external states, and
the excitation degrees of freedom are assigned for the individual states. The level scheme of these unbound states
reveals a strong degenerate feature with a considerable mixture of the different configurations. From the result
of the level scheme, the “loose clusters” are introduced to characterize the unbound states in the neutron-excess
system 12Be.
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I. INTRODUCTION

The ground states of nuclear systems are well understood
by a shell-model picture, which assumes that nucleons move
in individual orbits in an average field produced by the other
nucleons. In contrast, a cluster structure, in which a nucleus is
decomposed into subunits, is one of the characteristic features
appearing in the excited states of light nuclear systems [1]. In
particular, the most famous subunit is the α particle, and typical
examples are the 3α structure in 0+

2 of 12C at Ex = 7.65 MeV,
called the Hoyle state [2,3], α + 12C in 0+

2 of 16O at Ex =
6.60 MeV [4], and α +16O in 0+

4 of 20Ne at Ex = 8.03 MeV
[5]. The α particle is quite inert because of a large nucleon’s
separation energy of ∼20 MeV; hence, it is considered to be a
building block for light N = Z systems. The multi-α structures
are still current issues, and some recent studies are shown in
Refs. [6,7].

The cluster structures are considered to appear according to
the threshold rule [8]. The threshold rule for the 4N nuclei is
summarized as an Ikeda diagram, which has proved to be very
powerful in identifying 4N cluster structures (α,12C,16O, etc).
The diagram illustrates various cluster structures that could
exist in excited states of light nuclei based on the hypothesis
that particular cluster structures will emerge for excitation
energies near the corresponding threshold energy decaying
into the respective cluster configuration. Since there are several
combinations of subunits in a nucleus, cluster structures can
change from level to level, and they coexist in the same nucleus
with energy intervals of possible cluster decay thresholds
[9,10].

Cluster degrees of freedom are also quite important in
neutron-excess systems. In neutron-excess nuclei, the cluster
cores are surrounded by the excess neutrons. Therefore, it
is natural to introduce a model focusing on the coupling

between the relative motion of the clusters and the valence
neutrons. In particular, the molecular orbit (MO) model,
originally proposed for N = Z systems [11], is successful
in describing the low-lying states of light neutron-excess
nuclei [12–16]. In this model, valence neutrons perform
single-particle motions in a mean field generated by cluster
cores, and are similar to covalent electrons forming chemical
bonds in atomic molecules. The MO model has been applied
mainly to Be [12,13,17] and B [14,17] isotopes built on a
structure of α + α in 8Be plus valence nucleons (N ). Recent
studies have extended the MO picture to other systems, such as
the C isotopes (3α + N + N · · ·) [15,18] and the Ne isotopes
(α + 16O + N + N · · ·) [19,20].

The possibility exists that various cluster structures beyond
the MO structure appear in the excited states, although the
covalent MO model is quite successful in describing the low-
lying states of the neutron-excess system. This is because, in
systems with a considerable neutron excess (N � Z), there are
many combinations of subunits obtained by rearrangements
of excess neutrons around the cluster cores. Furthermore,
their energy difference becomes small because the separation
energies of the neutrons are small. Therefore, various cluster
thresholds reveal a degenerate-like behavior, and this feature
is in marked contrast to the case of N = Z systems, where
there is a large energy gap among the decay thresholds of the
clusters [9,10]. From these conditions, we can generally expect
that, in neutron drip-line systems, various cluster structures
coexist within small energy intervals. It is an interesting subject
to investigate the coexistence phenomena of various clusters
of neutron-excess systems in connection to threshold rules and
the low-lying MO states.

Be isotopes are typically good systems for such research
subjects. Amongst them, the 12Be nucleus is a very interesting
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system. In its low-lying states, the breaking of the N = 8 magic
number, which has a close connection to the MO formation,
has been reported already [21,22]. In addition, the decay into
α + 8Heg.s. opens at 9.0 MeV, and other thresholds for decays
into subunits of He isotopes appear with a small energy interval
of about 1–2 MeV: 10.1 MeV for 6Heg.s. + 6Heg.s., 11.9 MeV
for 6Heg.s. + 6He(2+

1 ), and 13.2 MeV for 5Heg.s. + 7Heg.s.. In
view of this information, various clusters with nuclear dimers
of He isotopes, such as xHe + yHe, are expected to appear
with a degenerate-like behavior. In fact, above the α-decay
threshold, many resonant states with small energy spacings of
less than 1 MeV, which strongly decay into 6Heg.s. + 6Heg.s.

and α + 8Heg.s., are observed [23–27].
The MO basis are optimal configurations at the small α-α

distance and are valid for describing the spatially compact
states. Thus, the MO states should be classified into “internal
states,” which are confined in the region of the compact α-α
distance. Recently, we have studied the nuclear structure of the
low-lying states in 12Be [28] and the enhancement of monopole
transitions from the ground state [29]. According to the results
in Refs. [28,29], the low-lying yrast states can be nicely
understood by the internal MO states [28,29]. In contrast, in
the excited states, the α-α distance must be extended because
of its orthogonality to the internal MO states. This spatial
extension leads to the formation of the “external states” with
the He dimers [30,31], which correspond to asymptotic binary
channels. Therefore, nuclear structures can be divided into
two parts: the internal MO and the external He-dimer states.
In the present study, we analyze the structure changes from
the viewpoint of the transition between the internal MO states
and the external He-dimer states.

External He-dimer states are realized as the weakly bound
or scattering states according to predictions of the threshold
rule. This means that a scattering boundary condition is
essential in order to discuss the changes from the internal
MO to the external He dimer. Recently, we have developed
a generalized two-center cluster model (GTCM), which can
handle both the covalent MO formation and its smooth
separation into binary clusters, such as the He-dimer states, in
the asymptotic region [28,32]. In GTCM, basis functions for
a total system are given by atomic orbital (AO) configurations
with a classification of excess nucleon partitions such as (C1 +
N1 + N1 + · · ·) + (C2 + N2 + N2 + · · ·), where Ni denotes
the valence nucleons localized at the ith cluster core Ci

(i = 1, 2). The AO basis is analogous to ionic configurations in
diatomic systems, where electrons are captured by one nuclei.
If we superpose various AO bases as much as possible in a
variational calculation, both the MO states and the He-dimer
states can be described consistently [33]. This consistent
description means that it is possible to treat reaction processes
such as in the formation of MOs and the decay into He dimers.

In a series of our recent studies, we have applied the
GTCM to 10,12Be [28,29,32–36] and performed unified studies
of nuclear structures and reactions. In the study of 12Be
[28,29,34–36], global features in structural changes from MO
states in a bound region to He dimers analogous to the
molecular resonances (MRs) in a continuum are predicted
[34]. In subsequent studies, a reaction mechanism on the
formations and decay scheme of MRs through the transfer

of the two neutrons, α + 8Heg.s. →6Heg.s. + 6Heg.s., is
investigated [35,36]. In the present paper, we report the
structural transition in 12Be from the internal MO states to
the external He-dimer states on which the scattering boundary
condition is explicitly imposed. In particular, we focus on
the level scheme of the resonant states above the α threshold
and its intrinsic structures, in which the external states are
predominant. We demonstrate that there is a degenerate-like
feature in the resonant levels and all the energy levels can be
characterized in terms of the internal and external states.

The organization of the present article is the following: In
Sec. II, we give a detailed explanation of GTCM in connection
to the two-center shell-model treatment. In Sec. III, the smooth
transitions from the covalent MOs to the ionic He dimers
in the adiabatic energy surfaces are shown. From the smooth
transition, we introduce the “conjunction distances,” which are
the boundaries dividing the adiabatic states into the internal
MO region and the external He-dimer region. In Sec. IV,
the coupled-channels equation with the scattering boundary
condition is explicitly solved on the basis of the internal
MOs and the external He dimers. The obtained results of the
energy spectra and their intrinsic structures are discussed. All
levels are classified in terms of the squared amplitudes of the
internal and external states. According to this classification,
individual levels are characterized by the excitation degrees of
freedom. Section V is devoted to a summary, and an anomalous
feature observed in 12Be is characterized in terms of the “loose
clusters.”

II. FRAMEWORK

The brief explanations of GTCM are given in Refs. [29,
32,34]. Here, we formulate GTCM from the viewpoint of the
extension of the two-center shell models. The single-particle
orbits for valence neutrons are constructed by the linear
combination of the atomic orbitals (LCAO), in which the
left-side atomic orbit ϕ̃(L) and the right-side orbit ϕ̃(R) are
superposed as ϕ̃(L) ± ϕ̃(R).

If the atomic orbits (AOs) around individual α cores are
restricted to the 0p wave, then there are three pairs of the
covalent orbits around two α cores constructed by the LCAO
treatment, and the schematic picture of the LCAO single-
particle levels is shown in Fig. 1. The explicit expressions
of the LCAO covalent orbits are given by

π±
K=+3/2 = ϕ̃(L,+1,↑) ∓ ϕ̃(R,+1,↑), (1)

σ∓
K=+1/2 = ϕ̃(L, 0,↑) ± ϕ̃(R, 0,↑), (2)

π±
K=+1/2 = ϕ̃(L,+1,↓) ∓ ϕ̃(R,+1,↓), (3)

where ϕ̃(A, lz, τ ) is the 0p-wave AO localized around one
of the α clusters, which is labeled by the center A (=L or
R), the orbital direction of lz (=±1, 0), and the nucleon’s
spin τ (=↑ or ↓). All covalent orbits include the distance
parameter of two α cores, S. The explicit functional form of ϕ̃

is taken to be the 0p wave function in the harmonic oscillator
(HO) potential placed at each center [28]. Here, the relative
coordinate between α cores is taken to be the z axis for the
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FIG. 1. (Color online) Schematic picture of the single-particle
levels around two α cores. The solid and dashed lines represent the
binding and antibinding orbitals, respectively. The naive shell-model
orbit, corresponding to MO in the zero limit of the α-α distance
(S →0), is shown in the left part of the single-particle energy levels.
The half integers at the right part represent the Kπ quantum number.

definition of the K-quantum number, and all of the orbits have
good K-quantum numbers. The extension of AO to the higher
shell-model orbits, such as 1s, 0d, 1p, . . . , can also be done in
a straightforward manner, although in the present studies AOs
are restricted to the lowest unoccupied orbit, 0p, for simplicity.

In Eqs. (1)–(3), the orbits with a lower sign are called the
“binding orbits,” while those with an upper sign are called the
“antibinding orbits.” In general, energies of the binding orbits
are lower than those of the antibinding orbits because the latter
orbits have an additional node along the α-α axis in comparison
with the former orbits. In Fig. 1, the location of the single-
particle level is shown schematically by the solid and dashed
levels for the binding and antibinding orbits, respectively. At
the left part of the single-particle levels, we show the naive
shell-model orbits, to which the covalent orbits correspond in
the zero limit of the α-α distance. As can be confirmed from
Fig. 1, we consider the covalent orbits around two α cores
up to the 1p0f configuration for the excess neutrons in the
present treatment, in which AO is restricted to the 0p shell.

When four excess neutrons occupy these three pairs of the
covalent orbits, various MO configurations can be obtained,
such as (π−

3/2)2(σ+
1/2)2, (π−

3/2)2(π−
1/2)2, and so on. According to

the LCAO approximation, general MO configurations, which
are the product of the orbits in Eqs. (1)–(3), are constructed
by the linear combination of the AO wave function of four
neutrons,

4∏
j=1

ϕ̃j (Aj, lzj , τj ), (4)

where A, lz, and τ have a subscript of the neutron number
j . Furthermore, each of the 0p-wave AOs, ϕ̃(A, lz, τ ), having
a good K-quantum number, can be expressed by the orbits

defined in Cartesian coordinates such as

ϕ̃(A,±1, τ ) = ∓ϕ(A, x, τ ) − iϕ(A, y, τ ), (5)

ϕ̃(A, 0, τ ) = ϕ(A, z, τ ). (6)

Here, ϕ(A, k, τ ) with k = x, y, z denotes a similar 0p-wave
AO to ϕ̃(A, lz, τ ), but it is a function in Cartesian coordinates.
Because of the equivalence in Eqs. (5) and (6), we can employ
the direct products of ϕ in Cartesians coordinate as basis
functions in describing the general MO motions of the four
neutrons, instead of the products of the orbits of ϕ̃ with
spherical harmonics.

The basis function {�Jπ

m (S)}, which contains the α cores’
degree of freedom explicitly, is given by

�Jπ

m (S) = P̂ J π

K=0 A
{

ψL(α)ψR(α)
4∏

j=1

ϕj (mj )

}
S

. (7)

The α cluster ψn(α) (n = L,R) is expressed by the (0s)4

configuration of the HO potential centered at the left (L)
or right (R) side with the relative distance S [37]. ϕj (mj )
represents the 0p-wave AO for the j th neutrons in Cartesian
coordinates, and {mj } are indices of AO (A, k, τ ). In the
left-hand side of Eq. (7), m represents a set of AOs for
the four neutrons, m = (m1,m2,m3,m4). The intrinsic basis
functions with the full antisymmetrization A are projected to
the eigenstate of the total spin parity Jπ and its intrinsic angular
projection K , which is restricted to the axial symmetric case
(K = 0) by the projection operator P̂ J π

K . The restriction to the
axial symmetric configurations for the low-energy phenomena
has already been justified in studies of the sub-barrier fusion
reaction based on the time-dependent wave-packet approach
[38].

The wave function of 12Be is finally given by taking
a superposition over the relative distance parameter S and
m as

	Jπ

ν =
∫

dS
∑

m

CJπ ν
m (S) �Jπ

m (S). (8)

It should be stressed that the total wave function in Eq. (8) with
the basis in Eq. (7) can reproduce not only MO configurations
but also the asymptotic binary channels composed of the He
dimers, such as α + 8He [A1A2A3A4 = LLLL or RRRR

in Eq. (7)], 6He + 6He (LLRR or RRLL), and 5He + 7He
(LLLR or RRRL). The detailed explanation of the flexibility
and advantages of our wave function is given in Ref. [29].

The coefficients CJπ ν
m (S) in Eq. (8) for the νth eigenstate are

determined by solving a coupled-channel generator coordinate
method) (GCM) equation [37],〈

�Jπ

m (S)
∣∣H − EJπ

ν

∣∣	Jπ

ν

〉 = 0. (9)

The bound states below the particle decay threshold are
calculated by a diagonalization procedure, while the scattering
boundary condition is explicitly imposed above the threshold.
The details of the scattering boundary condition will be
explained in the later sections.

As for the NN interaction, we use the Volkov No.2 and
G3RS for the central and spin-orbit parts, respectively. The
details of the parameters in the interactions and the size
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TABLE I. Comparisons of the threshold energies in the calcula-
tion with those in the experiment. The energy is shown in units of
MeV. The parameters of Volkov No.2 are M = 0.643 and B = H =
0.125, while the strength of G3RS is taken to be +3000 MeV and
−2000 MeV for the repulsive and attractive parts, respectively. The
radius parameter of harmonic oscillator b is fixed to 1.46 fm.

Channel Experiment Calculation

α + 8Heg.s. 9.0 9.3
6Heg.s. + 6Heg.s. 10.1 11.8
6Heg.s. + 6He(2+

1 ) 11.9 13.7
5Heg.s. + 7Heg.s. 13.2 14.6

parameter of HO are explained in Ref. [28]. In Table I,
the calculated thresholds for the lowest four open channels
are shown. The energy difference of α + 8Heg.s. and
6Heg.s. + 6Heg.s. in the calculation is a little larger than
that in the experiments, but the relative differences among
the thresholds are reasonably reproduced by the present NN
interaction. Since the threshold energy corresponds to the
order of magnitude of the interaction strength to dissociate
a compound system into a pair of clusters, the reproduction of
the threshold energy is crucial in discussing the formation of
cluster structures.

III. ADIABATIC ENERGY SURFACES

A. Transition from internal states to external states in AESs

Before solving the full equation with Jπ = 0+, we solve
Eq. (9) at a fixed S,

〈�m(S)|H − Eμ(S)
∣∣�μ

AS(S)
〉 = 0, (10)

�
μ

AS(S) =
∑
m′

D
μ

m′ (S)�m′(S). (11)

The eigenvalue Eμ(S) and the mixing amplitude D
μ
m(S) for

the μth state depend on the relative distance parameter S.
We call the solutions of energies Eμ(S) and wave functions
�

μ

AS(S) “adiabatic energy surfaces” (AESs) and “adiabatic
states” (ASs), respectively. In Eqs. (10) and (11), the quantum
number of Jπ = 0+ is omitted for simplicity. The calculated
AESs for the Jπ = 0+ state are shown in Fig. 2. In the present
calculation, we obtained 38 AESs, and the lowest four AESs
are plotted in this figure.

Below the α + 8Heg.s. threshold, two local minima appear
at S ∼ 3.6 fm in the dashed (A) and solid (B) curves. A detailed
analysis on the coupling scheme of the lowest two AESs has
been done in Refs. [28,29]. Around these minima, each valence
neutron rotates around both α clusters, and the MO structure is
formed. In contrast, in the energy region above the threshold,
two AESs (C) and (D) with shallow minima appear. Around
the shallow minima, exotic structures different from the simple
MO structure are realized. In the following subsection, we
show a detailed analysis of the changes in structure in the
AESs.
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FIG. 2. (Color online) Adiabatic energy surfaces (AESs) for
J π = 0+. The calculated thresholds for the open channels,
α + 8Heg.s. (origin of the ordinate) and 6Heg.s. + 6Heg.s. are also
shown. The circles on the AESs represent the boundary of the internal
MO state and the external He-dimer state. See text for details.

1. AES in the bound region

The main configuration of the solid curve (B) at the
minimum is (π−

3/2)2(σ+
1/2)2, while curve (A) has the dominant

configuration of (π−
3/2)2(π−

1/2)2 for the four neutrons, as shown
by the schematic picture in Fig. 2. The former and latter
MO configurations correspond to (0p)2(1s0d)2 and (0p)4

configurations at the limit of S = 0, respectively. The AESs
show the interchange of the main components around the min-
imum point; hence, the strong mixing of these configurations
occurs around the optimal S value. As S increases, these two
surfaces are continuously changed to α + 8Heg.s. (B) and
5Heg.s. + 7Heg.s. (channel spin I = 2) (A) in the outside
region of the circles.

The interchange of (A) and (B) is generated by a crossing
of the unperturbed (diabatic) energy curve of (π−

3/2)2(σ+
1/2)2

and (π−
3/2)2(π−

1/2)2. The energy of the pure (π−
3/2)2(σ+

1/2)2

configuration is higher than that of (π−
3/2)2(π−

1/2)2 because
the latter MO state has a large component of the closed-shell
configuration of the neutrons, ν(0p)6. However, there is a large
correlation energy for (π−

3/2)2(σ+
1/2)2, which arises from the

coupling to the spin triplet configuration of (π−
3/2)2(σ+

1/2π
+
1/2)

[28,29]. Due to this correlation energy, the diabatic energy of
(π−

3/2)2(σ+
1/2)2 becomes comparable to that of (π−

3/2)2(π−
1/2)2,

and the coupling between them strongly occurs as shown in
Fig. 2.

2. AES in the continuum

The dashed curve (C) has a specific character such that
the continuous change from MO to a He dimer occurs at
a small α-α distance. In the small-S region where the two
α clusters strongly overlap, this surface has a pure covalent
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MO configuration of (π−
3/2)2(π+

3/2)2. Substituting Eq. (1) for
(π−

3/2)2(π+
3/2)2 and considering the antisymmetrization among

the four neutrons, we can get the following expression for this
MO configuration:

A{(π−
3/2)2(π+

3/2)2}
= A{ϕ̃(L,+1,↑)ϕ̃(L,−1 ↓)ϕ̃(R,+1,↑)ϕ̃(R,−1 ↓)}.

(12)

This MO configuration contains a pair of neutrons at the left
and right sides. Thus, this MO configuration is identical to
the 6He + 6He cluster state. In general MO configurations,
three partitions, α + 8He, 6He + 6He, and 5He + 7He, are
coherently mixed with each other [28], but, in (π−

3/2)2(π+
3/2)2,

only the 6He + 6He partition survives because of the anti-
symmetrization effect. Such a selection of a specific partition
always occurs when the excess neutrons equally occupy both
the binding [(π−

3/2)2] and antibinding [(π+
3/2)2] orbits. The main

component of (C) finally changes to 6Heg.s. + 6Heg.s. in the
large-S region beyond the circles.

Around the energy minimum point of the solid curve (D),
two of the valence neutrons are localized around the individual
α as 5He + 5He, which is the AO structure, and the remaining
two neutrons occupy the σ+ orbital and rotate around both
clusters, which represents the MO character. Specifically, the
minimum state of (D) has an intermediate character of MO and
He dimers, and its configuration is constructed from Eqs. (1)
and (2) as

A{ϕ̃(L) ϕ̃(R) (σ+
1/2)2} (13)

with the definitions

ϕ̃(L) ≡ ϕ̃(L,+1,↑) = (π−
+3/2 + π+

+3/2),
(14)

ϕ̃(R) ≡ ϕ̃(R,−1 ↓) = (π−
−3/2 − π+

−3/2).

The localized orbits of ϕ̃(L) and ϕ̃(R) can be obtained by
an equal mixing of the binding (π−

3/2) and antibinding (π+
3/2)

covalent orbits. Because of the two neutrons in the σ orbital,
the clustering (the optimal S value) is enhanced in the same
way as in the second 0+ state of 10Be [13,32,33]. In this paper,
we call this strongly deformed state with the covalent neutrons
the covalent superdeformed (covalent SD) state. The covalent
SD state finally changes to the He dimer of 5Heg.s. + 7Heg.s.

(I = 0) outside region of the circle.

B. Adiabatic conjunction

In this section, we show a feature of the adiabatic conjunc-
tion, which is a smooth transition from the internal MO states
to the external He-dimer states, and define the conjunction
distance, which is the boundary between the internal states
and the external states. To confirm the features of the adiabatic
conjunction clearly, we show the squared overlap of the
lowest (μ = 1) adiabatic state (AS), �

μ=1
AS (S), and the MO

or He-dimer state, φγ (S), where γ represents a kind of MO or
He-dimer configuration. The squared overlap f γ (S) is defined
by

f γ (S) = ∣∣〈φγ (S)
∣∣�μ=1

AS (S)
〉∣∣2

. (15)

For the overlap with γ = MO states, we consider

(π−
3/2)2(π−

1/2)2, (π−
3/2)2(σ+

1/2)2, (π−
3/2)2(σ+

1/2π
+
1/2), (16)

while, for the overlap with γ = He-dimer states, we prepare

α + 8Heg.s.,
6Heg.s. + 6Heg.s.,

5Heg.s. + 7Heg.s. (I = 0).

(17)

The overlap with the MO states is shown in Fig. 3(a).
The μ = 1 adiabatic state contains various MO configurations,
but (π−

3/2)2(π−
1/2)2 and (π−

3/2)2(σ+
1/2)2 in Eq. (16) are the main

components. At the inner region of S � 3.4 fm, the amplitude
of (π−

3/2)2(π−
1/2)2 is dominant, as shown by the dot-dashed

curve (inverse triangles) in Fig. 3(a). However, the amplitude
suddenly decreases as the distance becomes larger, and the
main component is replaced by (π−

3/2)2(σ+
1/2)2 around the

distance of S ∼ 3.6 fm, which is the interchange point in
Fig. 2. This sudden transition is generated by the crossing of
the diabatic energy curves of these two MO configurations.
The amplitude of (π−

3/2)2(σ+
1/2)2 is dominant up to S = 5 fm

and finally decreases beyond S = 6.4 fm.
In the region with a dominance of (π−

3/2)2(σ+
1/2)2, there

is a considerable mixture of (π−
3/2)2(σ+

1/2π
+
1/2), which has a

triplet-odd configuration. As confirmed in Refs. [28,29], the
coupling to the triplet-odd state gives a large binding energy
gain for (π−

3/2)2(σ+
1/2)2. As a result of this coupling effect,

a considerable mixture of (π−
3/2)2(σ+

1/2π
+
1/2) appears in the

μ = 1 adiabatic state.
The overlap with the He-dimer states is shown in Fig. 3(b).

At the short distance of S ∼ 1 fm, where two α cores strongly
overlap, the squared amplitude of these three He-dimer chan-
nels reaches about unity. This means that these channels cannot
be distinguished at a small S because of the antisymmetrization
effect among nucleons [37]. The strong mixture of the three
channels continues up to S ∼ 3 fm, where a clear component
of (π−

3/2)2(π−
1/2)2 can be observed in Fig. 3(a). At S ∼ 4 fm,

the component of 5Heg.s. + 7Heg.s. completely decreases, and
the dominant amplitude of the MO configuration also changes
from (π−

3/2)2(π−
1/2)2 to (π−

3/2)2(σ+
1/2)2 at the same S. With the

limit of the larger S, where (π−
3/2)2(σ+

1/2)2 is suppressed, the
adiabatic state changes to the pure α + 8Heg.s. cluster state.

In the arrow region (5 � S � 6.4 fm) shown in Figs. 3(a)
and 3(b), the amplitude of α + 8Heg.s. begins to increase,
while (π−

3/2)2(σ+
1/2)2 begins to decrease in the same region.

Thus, the transition of (π−
3/2)2(σ+

1/2)2 → α + 8Heg.s. can
be confirmed in the arrow region. It should be noticed
that this transition from MO to the dimer state gradually
occurs in contrast to the sudden transition induced by the
level crossing, (π−

3/2)2(π−
1/2)2 → (π−

3/2)2(σ+
1/2)2. In addition,

this smooth transition does not involve any avoided crossing
as can be seen in Fig. 2. Such a continuous transition is defined
as the adiabatic conjunction [29]. In the conjunction region of
S = 5−6.4 fm, the main component of (π−

3/2)2(σ+
1/2)2 begins

to go into the α + 8Heg.s. channel. Therefore, the adiabatic
state at the conjunction region has an intermediate character
of MO and an asymptotic cluster.

044308-5



MAKOTO ITO PHYSICAL REVIEW C 85, 044308 (2012)

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

α + 8Heg.s.

S ( fm )

f  
 (

S
)

γ

(b)

(a)

5Heg.s. +  7Heg.s.

6Heg.s. +  6Heg.s.

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

(π3/2
− )2(σ1/2

+ )2

S ( fm )

f  
 (

S
)

(π3/2
− )2(π1/2

− )2

γ

(π3/2
− )2(σ1/2

+π1/2
+ )

FIG. 3. (Color online) (a) Squared overlap of the lowest adiabatic
states and the MO states. The inverse triangles show the squared
magnitude of (π−

3/2)2(π−
1/2)2, while the circles and the diamonds

represent that of (π−
3/2)2(σ+

1/2)2 and (π−
3/2)2(σ+

1/2π
+
1/2), respectively.

(b) The same as in panel (a), except for the overlap with the
cluster states. The double circles, the triangles, and the diamonds
represent the cluster channels of α + 8Heg.s., 6Heg.s. + 6Heg.s., and
5Heg.s. + 7Heg.s., respectively.

From the analysis of the squared overlap, we can define
the “conjunction distance,” SC , at which the transition from
MO to He dimer occurs. As the distance parameter S becomes
larger, the amplitude of MO and the He dimer decreases and
increases, respectively. Therefore, the conjunction distance is
defined by the point where the squared amplitude of MO (or the
He dimer) falls below (or exceeds) 50%. In the case of Fig. 3,
SC can be identified as 5.6 fm because, beyond this distance,
the population of (π−

3/2)2(σ+
1/2)2 falls below 50%, while that

of α + 8Heg.s. exceeds 50%. In the higher-energy region,
the assignment of SC becomes difficult due to the high level
density of the AESs. However, we can fix SC by employing

TABLE II. Conjunction distance (SC) and the dominant configu-
rations of the internal (S � SC) and external regions (S � SC). SC is
in units of fm. See text for details.

AES SC Internal (S � SC) External (S � SC)

A 4.8 (π−
3/2)2(π−

1/2)2 5Heg.s. + 7Heg.s. (I = 2)

B 5.6 (π−
3/2)2(σ+

1/2)2 α + 8Heg.s.

C 5.6 (π−
3/2)2(π+

3/2)2 6Heg.s. + 6Heg.s.

D 7.2 [ϕ̃(L)ϕ̃(R) (σ+
1/2)]2 5Heg.s. + 7Heg.s. (I = 0)

the criterion that either the He-dimer amplitude exceeds 50%
or the MO amplitude falls below 50%.

The identified SC is shown in Table II. The SC is a boundary
between the internal MO state and the external He-dimer state.
The dominant MO (S � SC) and He dimer (S � SC) are shown
in the same table, and the identified SC are also plotted in Fig. 2
by the circles. SC of (A)–(C) is close to the barrier-top position
of the He-dimer state. In particular, SC for (D) is the largest of
all the AESs. This is because the pair transfer of the neutrons
strongly activates over a large α-α distance because of the
σ+-orbital formation.

C. The orthogonality effect and cluster formation

In the previous section, we confirmed the smooth transition
between the internal MO states and the external He-dimer
states in AESs. The internal MO state appears as a local mini-
mum state in the internal region of the α-α distance. The stable
energy level is generated by the internal MO states around
the local minimum when the variational equation (9), which
superposes all the adiabatic states, is fully solved. However,
such a local minimum, which is an ingredient for the formation
of an energy level, does not exist for the external He-dimer
state. In the formation of the energy levels with the He-dimer
states, the orthogonality effect is essential. In this section, we
discuss the formation mechanism of the external He-dimer
states in connection with the orthogonality condition.

The orthogonality to the internal MO states plays an
important role in the formation of the He-dimer states. To
see the orthogonality effect clearly, we calculate AESs by
employing the orthogonalized AO basis

�̃m(S) = �m(S) −
∑
ν=1,2

	ν〈	ν |�m(S)〉. (18)

In Eq. (18), 	ν represents the wave function of the ground
0+

1 (ν = 1) and the first excited 0+
2 (ν = 2) states, which are

obtained in the full calculation shown in Eq. (9). The 0+
1 and

0+
2 states are mainly generated by the superpositions of the

adiabatic states around the lowest and second minima with
(A) and (B) in Fig. 2 as discussed in Refs. [28,29]. Thus, in
the model space spanned by Eq. (18), the components of the
internal MO states, which have a spatially compact structure,
are excluded. This exclusion means that we can clearly observe
the He-dimer formation in the complementary space to the
low-lying MO states.

The AESs calculated in the orthogonalized AO space are
shown by the dotted and dot-dashed curves in Fig. 4. The
dotted curve is calculated with the orthogonality condition
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FIG. 4. (Color online) Lowest AES with the orthogonality condi-
tion. The AESs (A) and (B) are the same as those plotted in Fig. 2. The
dotted and dot-dashed curves represent the results with orthogonality
to the 0+

1 and (0+
1 + 0+

2 ) states, respectively. The α + 8Heg.s. threshold
is taken to be the zero energy in the ordinate. The horizontal arrow
shows the dominant range of S in the 0+

1 and 0+
2 states. The circle

represents the conjunction distance identified in Table II.

to the ground 0+
1 state, while the orthogonality to 0+

1 and
0+

2 is taken into account for the dot-dashed curve. When we
impose the orthogonality to 0+

1 , the resultant dotted curve is
slightly shifted and still has a deep minimum, which is a similar
shape to the second AES in Fig. 2. The shifted minimum
corresponds to the other low-lying state, 0+

2 . The minimum of
the dot-dashed curve, calculated in the complementary space
to both the 0+

1 and 0+
2 states, is much shallower than that of

the dotted curve. This shallow minimum corresponds to the
0+

3 state, and its energy position is close to the α + 8Heg.s.

threshold (the origin of the vertical axis). The 0+
3 state in the

full calculation appears just above the respective threshold by
about 1 MeV, as shown in Sec. IV. Such a cluster formation
due to the orthogonality is a general phenomena, which can be
observed in an excited state of light nuclei [1].

In the dot-dashed curve, there is a strong repulsive core
at S � 5 fm, and this structure core is generated so as to
avoid the internal region [39] shown by the horizontal arrow,
which is a main component contained in the 0+

1 and 0+
2 states.

Due to a strong repulsive core at the inner region, which
prevents α and 8Heg.s. from merging together, the 0+

3 state
has a large component of the weakly coupled α + 8Heg.s.

structure. The minimum point of the dot-dashed curve is just
the same as the conjunction distance, SC = 5.6 fm (circle),
where a smooth transition of the internal (π−

3/2)2(σ+
1/2)2 and

the external α + 8Heg.s. occurs. This means that the smooth
change is important for the formation of the 0+

3 state, which
has a well-developed α + 8Heg.s. structure.

IV. ENERGY SPECTRA OF THE Jπ = 0+ STATES

A. The scattering boundary condition

Above the particle decay threshold, the formation and de-
cays of the internal states occur through the external state. This
means the scattering boundary condition should be explicitly
imposed on the external He-dimer states when the system
is excited above the particle decay threshold. An external
He-dimer state is completely the same as the channel wave
function, which is the basis in the scattering problem. Thus,
we can naturally impose the scattering boundary condition
on the external states, and the coupling of the internal states
and the external states can be solved. An explicit form of the
channel wave function is given by

χJπ

βL(Rβ, S) = A
{
�L(Rβ, S) �̂Jπ

βL(R̂β, ξβ)
}
, (19)

where �̂Jπ

βL(R̂β, ξβ) denotes the internal wave function for
the channel β ≡ (n1, n2, I1, I2, I ), which is designed by a
combination of the intrinsic spin of the colliding He nuclei,
(I1, I2), the channel spin I with I = I1 + I2, and other quantum
numbers (n1, n2) which are needed to specify the combination
of the scattering He isotopes (excitation energies and so
on). (Rβ, R̂β) represent the radial and angular part of the
relative coordinate between two He nuclei in channel β, and
L represents the conjugate momentum of R̂β . �L(R, S) is
the radial basis function, which has a local peak around the
distance of R ∼ S [37].

The total wave function in Eq. (8) is expanded by the
channel wave function in Eq. (19), and the resultant coupled-
channels equations are solved under the scattering boundary
condition. The scattering boundary condition can be imposed
on individual channels by employing the Kohn-Hulthén-Kato
variational method [33,34,40,41]. In the present calculation,
the computational procedure is the same as in the method with
the trial function (II) shown in Ref. [41].

In the present model space of the AO basis, we can construct
the 38 channels for Jπ = 0+, which are the α + 8He,
5He + 7He, and 6He + 6He partitions. The possible internal
states of the He nucleus are shown in Table III. In solving the
scattering problem, we include all 38 channels, which is much
more channels than the previous coupled-channel calculation
of (α + 8Heg.s.) + (6Heg.s. + 6Heg.s.) in Ref. [30].

B. Energy levels

By imposing the appropriate boundary conditions, we
obtain whole energy spectra from the bound states to the
unbound states as shown in Fig. 5 (Jπ = 0+). In this figure,

TABLE III. Spin-parity states of the He isotopes included
in the present calculation. Individual states are shown in order
of their excitation energy.

5He 3/2−, 1/2−
6He 0+

1 , 2+
1 , 2+

2 , 1+, 0+
2

7He 3/2−
1 , 5/2−, 3/2−

2 , 1/2−, 3/2−
3

8He 0+
1 , 2+

1 , 2+
2 , 0+

2
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FIG. 5. (Color online) Energy spectra for J π = 0+. The solid
curve at the right part shows the total reaction probability of the
α + 8Heg.s. scattering with a scale at the top axis. The dotted lines
represent the threshold energy of the open channels considered in the
calculation.

the total reaction probability, which is defined by 1 − �Sel

with the elastic S matrix of Sel , is also shown.
We can clearly observe the formation of the various

chemical bonding-like structures in the calculated spectra.
The obtained 0+ states are classified into three categories:
(i) MO states: Two bound states, 0+

1 and 0+
2 , appear below

the α + 8Heg.s. threshold. Here the four neutrons are in
MO motion around the two α cores [(π−

3/2)2(σ+
1/2)2 in 0+

1

and (π−
3/2)2(π−

1/2)2 in 0+
2 ]. (ii) MR states: The resonant states,

0+
3 , 0+

4 , and 0+
6 , have the He-dimer configuration of the

corresponding threshold, α + 8Heg.s , 6Heg.s. + 6Heg.s., and
5Heg.s. + 7Heg.s., respectively. The relative wave function
between two He nuclei is largely extended and, hence, these
resonant states can be interpreted in terms of the molecular
resonances (MRs), composed of the He dimers. (iii) Covalent
SD state: The main component of 0+

5 is the mixture of (σ+
1/2)2

and 5He + 5He. Due to the (σ+
1/2)2 formation, this state has a

large clustering (S ∼ 5 fm) in comparison with the radius of
an α particle (∼1.4 fm).

A comparison of the levels with the respective He-decay
thresholds is summarized in Fig. 6. In this figure, the six-body
channel, α + α + 4N , is also plotted, although the degree
of freedom for the six-body decay is not considered in the
present calculation. Since the calculated threshold difference,
�E = Eth(6Heg.s. + 6Heg.s.) − Eth(α + 8Heg.s.), is larger by
about 1.3 MeV than the experimental value (See Table I), the
thresholds and the energy levels above Eth(6Heg.s. + 6Heg.s.)
are shifted by 1.3 MeV to the lower energy side. As explained
in Sec. III B, the 0+

3 state with α + 8Heg.s. appears around the
respective decay threshold, and one-to-one correspondence
between the levels and the thresholds is also clearly confirmed
in other levels. The cluster structures with the chemical bonds

0

1

2

3

4

5

E
ne

rg
y 

( 
M

eV
 )

 6He + 6He

 5He + 7He

+ 8Heα

α α+ + 4N

03
+

04
+

05
+

06
+

α 8He

6He6He

7He5He

FIG. 6. (Color online) Energy levels in the continuum. The
threshold for the binary He channels (calculation) and the α +
α + 4N (experiment) are shown by the dotted lines, while the energy
levels are plotted by the solid lines. The threshold and the energy
levels above E = 1 MeV are shifted by about 1.3 MeV. See text for
details.

of the neutrons change from level to level according to the
threshold rules.

As shown in Fig. 6, all the threshold energies are confined
within the range of ∼4 MeV, and the energy interval between
neighboring thresholds is just ∼1 MeV. Because of the small
spacings of the threshold energies, the mixing of the He-cluster
components is strong, although the dominant component can
be identified in each of the energy levels. In Table IV, the
dominant populations calculated by f γ (S = 6 fm) in Eq. (15)
are shown. The squared amplitude of 5Heg.s. + 7Heg.s. in 0+

6
is the smallest of all the levels, and the dominant populations
in the individual levels are about 50% on average. Thus, each
level contains impurities besides a main component. Such a
mixture of the impurities is important for reducing the decay
width of the levels, as discussed in Refs. [28,35].

The level scheme of the unbound states nicely reproduces
the features in the recent observation, obtained in the inelastic
scattering of 12Be by an α target [24]. In this inelastic
scattering, the 0+ strength, which reveals the overlapping
resonances with a distance of ∼ 1 MeV, is observed in the same
energy region as the present calculation. Furthermore, there
are at least two observed levels consistent to the calculated
levels [29,35]; the calculated 0+

3 and 0+
5 states has a dominant

decay width into the α + 8Heg.s. and 6Heg.s. + 6Heg.s.

TABLE IV. The main component of the adiabatic states at S =
6 fm. The main populations represent f γ (S) shown in Eq. (15).

Levels Main component (γ ) f γ (S = 6)

0+
3 α + 8Heg.s. 0.56

0+
4

6Heg.s. + 6Heg.s. 0.63
0+

5 ϕ̃(L)ϕ̃(R)(σ+
1/2)2 0.61

0+
6

5Heg.s. + 7Heg.s. (I = 2) 0.28
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FIG. 7. (Color online) Rotational bands of 12Be. The shaded area
represents the region where the overlapping resonances are observed
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resonance energies of Refs. [24–26] are measured from the calculated
threshold of 6Heg.s. + 6Heg.s.. The dashed line at the right denotes
the calculated threshold of 6Heg.s. + 6Heg.s.. See text for details.

channels, respectively, and the two levels having similar
decay schemes are observed around the same energy re-
gions. In a much deeper comparison of the theory with the
experiments, the comparison of the partial decay width is
important.

To compare the present calculation with the recent exper-
iments over a wide energy and spin region, we perform a
similar calculation for the nonzero spins. In the calculation
for the nonzero spins, we restricted the AO basis with an
axial symmetric configuration to identify the Kπ = 0+ bands
clearly. Since the KHK method cannot be directly applied
to the nonzero spin state in the restriction of Kπ = 0+, we
employ the closed-state method [34–36]. In this method, we
solve the coupling of the spinless open channels [α + 8Heg.s.,
6Heg.s. + 6Heg.s., 5Heg.s. + 7Heg.s. (I = 0)] and the intrinsic
states obtained by diagonalizing the total Hamiltonian. The
details of the closed-state method are explained in Ref. [36].
The rotational bands are shown in Fig. 7. In this figure, the
partial reaction cross sections of the α + 8Heg.s. scattering,
which is defined by 1 − �SJ

el with the elastic S matrix SJ
el for

spin J , are also plotted. We can clearly see the change of the
bands from the bound states to the scattering states with the
variation of the excitation energy.

The maximum spin of the ground rotational band (solid
squares) reaches Jπ = 8+ because of the nature of the
neutrons’ (σ+

1/2)2 configuration, which is the origin of the
breaking of the N = 8 magic number [28]. The second
band (solid circles) has the main component of a closed
0p-shell configuration of the neutrons, and, hence, this band
terminates at Jπ = 2+. Furthermore, four rotational bands

appear in the continuum region. We can see the overlapping
behavior of the α + 8Heg.s. band (double squares) and
the 6Heg.s. + 6Heg.s. one (double diamonds) as the spin
becomes high. This behavior occurs because coupling with the
scattering continuum becomes strong in the high-spin region;
hence, identifying these two bands as isolated states becomes
difficult. In addition, the 5Heg.s. + 7Heg.s. molecular band
(double circles) appears with a moment of inertia comparable
to those of the α + 8Heg.s. and 6Heg.s. + 6Heg.s. bands. The
energy position of the SD band with covalent neutrons (double
triangles) is quite close to the position of the molecular bands
of the He dimer.

The present calculation nicely reproduces the energy-spin
systematics of the experimental data observed as isolated
levels from the bound region (solid triangles [22] and one
open triangle [27]) to the continuum region (crosses [26]). In
particular, the unbound states in the Jπ = 0+ and 2+ states
are located in the region of the shaded area where the many
resonant structures are fragmented with overlapping features
[24,25]. To obtain the resonances with small energy spacings,
it is quite important to describe not only the internal MO states
realized at the local minimum points in the AESs, but also
the external He dimers appearing in the outside conjunction
region. Our method covers the smooth connection of the
internal MOs and the external He dimers, and, hence, such
degenerate resonance phenomena can be reproduced.

C. Internal and external amplitudes in the energy levels

The final solutions in the energy levels shown in Figs. 5
and 6 contain both the components of the internal MO and the
external He-dimer states identified in Table II. In this section,
we investigate the population of the internal and external states
in each energy level. Here we calculate the squared amplitude

h(ν, μ, S) = ∣∣〈�μ

AS(S)
∣∣	ν

〉∣∣2
, (20)

where �
μ

AS(S) represents the μth adiabatic states with μ =
A ∼ D, shown in Fig. 2 and in Table II at the distance of S,
while 	ν is the full solution in Fig. 5 (0+

ν , ν = 1 ∼ 6). From
h(ν, μ, S), we define the population of the internal (Pin) and
external (Pex) states, which are divided by a boundary of the
conjunction distance, SC , as in

Pin(ν, μ) =
∫ SC

Smin

dSh(ν, μ, S)/Ptot(ν, μ), (21)

Pex(ν, μ) =
∫ Smax

SC

dSh(ν, μ, S)/Ptot(ν, μ), (22)

where Ptot = Pin + Pex . Pin(ν, μ) [Pex(ν, μ)] represents the
population of the internal [external] state of the μth AES
included in the νth energy level.

Pin and Pex of the dominant adiabatic state in each level
are shown in Table V. In this analysis, we set Smin =
2.0 fm and Smax = 8.8 fm. The upper two rows show the
results for the low-lying bound states, while the results of the
newly identified resonances are shown in the lower four rows.
From this table, we can easily characterize the type of the
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TABLE V. The squared amplitude of the internal and external
states in the energy levels. The left-most column and the second one
represent the number of the energy level (0+

1 –0+
6 ) and the dominant

AES, (A–D shown in Fig. 2 and Table II) for the respective energy
level. In the third and fifth column from the left, the squared amplitude
of the internal (in.) and the external (ex.) adiabatic states, which
are divided by SC (fourth column), are shown in units of %. The
underlining represents the dominant population. In the second column
from the right, the dominant configurations are shown.

ν μ Pin SC Pex Main con. Type

0+
1 B 96 5.6 4 (π−

3/2)2(σ+
1/2)2 in.

0+
2 A 98 4.8 2 (π−

3/2)2(π−
1/2)2 in.

0+
3 B 22 5.6 78 α + 8He ex.

0+
4 C 42 5.6 58 6He + 6He in. + ex.

0+
5 D 91 7.2 9 ϕ̃(L)ϕ̃(R)(σ+

1/2)2 in.

0+
6 A 24 4.8 76 5He + 7He (I = 2) ex.

energy levels in terms of either the internal state (in.) or the
external state (ex.).

Pin for the bound states 0+
1 and 0+

2 exceeds 90%. Thus,
a large part of the wave function is localized in the internal
region, and its small fraction, Pex. ∼ 5 %, penetrates into the
external region. The unbound 0+

5 state can also be classified
into the internal state, but its conjunction distance SC is a
1.3–1.5 times larger value than that for the bound 0+

1 and 0+
2

states because of the hybrid structure of the 5He dimer and the
σ+ orbital in the 0+

5 state. Therefore, the 0+
1 , 0+

2 , and 0+
5 states

with Pin. ∼ 90 % can be clearly classified into the internal
state, although there is a difference among the conjunction
distances.

In contrast to these internal states, the 0+
3 and 0+

6 states
have a large Pex of 80% and have a dominant configuration
of the He dimer with a minor contribution of the internal
state, Pin. ∼ 20%. This dominance of Pex. means that 0+

3 and
0+

6 can be characterized as the external states. In a similar
classification, the 0+

4 state has an intermediate character of
the internal and external states because a strong mixture of
both states with Pin. ∼ Pex. ∼ 50% occurs in this state. By
introducing the conjunction distance SC , the intrinsic structure
can be characterized in terms of the internal and external states
as well as its dominant configuration, which is often used in
the structural analysis.

D. Classification of the excited energy levels

We summarize the identified energy levels as follows: The
internal MO states, (π−

3/2)2(σ+
1/2)2 in 0+

1 and (π−
3/2)2(π−

1/2)2 in
0+

2 , appear in the bound region. These two states are obtained
by the rearrangements of the pair of neutrons, (σ+

1/2)2 ↔
(π−

1/2)2. In addition to bound MO states, we newly identified the
four resonant states, and the internal and external states coexist
in the resonant states. The He dimers, such as α + 8Heg.s.

in 0+
3 and 5Heg.s. + 7Heg.s. in 0+

6 , are the external state,
while 6Heg.s. + 6Heg.s. in 0+

4 and ϕ̃(L)ϕ̃(R)(σ+
1/2)2 in 0+

5
are classified into the intermediate state (internal + external)
and the extended internal states, respectively. All of these
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FIG. 8. (Color online) Energy spectra classified by the excitation
degrees of freedom (J π = 0+). See text for details.

resonances are confined inside of the α-α Coulomb barrier
with a mean height of about 1.5 MeV.

According to the classification of the internal and external
states, we identify the excitation degrees of freedom for
individual excited levels. The excitation schemes are shown
in Fig. 8 and are summarized as follows:

(1) Molecular orbital (MO) excitation. The 0+
2 and 0+

5 states
have a large population of internal MO states because they
correspond to the local minimum states in AESs (A) and (D),
respectively. The ground state is also an internal MO state
generated by the AES (B) and, hence, the 0+

2 and 0+
5 states

can be characterized by the molecular orbital excitation of the
neutrons from the ground 0+

1 state. These excitations involve
the pair rearrangements of the neutrons: (σ+

1/2)2 → (π−
1/2)2 for

0+
2 and (π−

3/2)2 → ϕ̃(L)ϕ̃(R) for 0+
5 . The MO excitations are

not a static excitation of the neutrons around a spatially fixed
two α particle, but a dynamic excitation which strongly couples
to the breathing of the two α cores.

(2) Cluster excitation. The 0+
3 state has a dominant

amplitude of the external state of the AES (B), which has the
main component of α + 8Heg.s.. Specifically, the formation
of 0+

3 involves the extension of the α-α distance, and the 0+
3

state is formed by the nodal excitation of the α-α relative
wave function from the 0+

1 state, which is the internal state
of the AES (B). In a similar classification, the 0+

6 state with
5Heg.s. + 7Heg.s. corresponds to the excited state of the two-α
relative motion from the 0+

2 state. The 0+
3 and 0+

6 states are the
higher nodal states in the α-α relative wave function from the
0+

1 and 0+
2 states, respectively.

(3) Double excitation. The main component of 0+
4 is the

AES (C), and the state contains both the internal and external
states. The coexistence of two regions is a strong mixture
of the internal MO state of (π−

3/2)2(π+
3/2)2 and the external

6Heg.s. + 6Heg.s. state. Therefore, the 0+
4 state is generated by

the double excitation of both the α-α relative motion and the
molecular orbits of the neutrons.

In 12Be = α + α + 4N , two degrees of freedom exist: the
α-α relative motion and the single-particle motion of the four
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excess neutrons. All the excited states are realized as a result of
the excitation of these two degrees of freedom. Recent studies
have shown that the excitation of the cluster degrees of freedom
involves the enhancement of the monopole transition [42]. The
detailed analysis of the monopole transition in 12Be is shown in
Ref. [29]. According to the result, all the monopole strengths of
0+

1 → 0+
ex. are comparable to or larger than the single-particle

strength [29], and a transition from the ground 0+
1 state to its

higher nodal state, 0+
3 , is especially enhanced.

V. SUMMARY AND DISCUSSION

In sum, the generalized two-center cluster model (GTCM),
which can handle covalent and atomic configurations in
general two center systems, is applied to the light neutron-
excess system, 12Be = α + α + 4N . The changes of the orbits
of the neutrons are analyzed by calculating adiabatic energy
surfaces with a variation of the α-α distance. We pursue a
smooth transition from the covalent molecular orbits (MOs) to
the atomic He-dimer states, which are realized in the adiabatic
energy surfaces. The covalent MO structures are realized at the
local minimum points in the inner AESs, while the He dimers
appear at the asymptotic region of the α-α distance. According
to the smooth transition, the adiabatic states are divided
into two regions, the internal MO region and the external
He-dimer region, by introducing boundaries of the conjunction
distance SC .

In the calculation of the energy levels, four resonant
states are newly discovered above the α-decay threshold in
addition to the two bound MO states, which have already been
studied in previous works [13,28]. One-to-one correspondence
between all four resonant levels and the respective thresholds
is observed. Specifically, the various chemical-bonding-like
states appear according to the threshold rule. The newly
obtained resonances reproduce nicely the observed energy-
spin systematics; hence, the present treatment based on the
α + α + 4N model can describe the global features of
12Be. This result strongly supports the claim that 12Be should
be considered a system that potentially has this six-particle
degree of freedom, and a similar picture is expected to be
valid for the heavier isotope, 14Be = α + α + 6N .

By introducing the identified conjunction distance SC ,
which is a boundary of the internal and external states, it
is possible to characterize the energy levels with three MO
structures and three He-dimer structures in terms of either the
internal states inside of SC or the external states outside of SC .
Two bound states are almost pure internal states, in which
the squared amplitude of the internal region, Pin, exceeds
about 90%. In contrast, a large mixture of the external state
occurs, and the population of Pex reaches about 80% in the 0+

3
state with the α + 8Heg.s. structure, for instance. Because of
the orthogonality to two internal MO states, the internal
amplitude Pin is suppressed in the four resonant states, and
a large mixture of Pex strongly occurs. According to the
classification using SC , all the energy levels are characterized
by the excitation degrees of freedom: either the α-α relative
excitation or the molecular orbital excitation of the four
neutrons. The former excitation represents the nodal excitation
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FIG. 9. (Color online) Threshold and level scheme of 12C, 12B,
and 12Be. The threshold energies of the α emission are taken to be the
origins. The energy levels are plotted by the dotted lines, while the
threshold energies are shown by the solid lines. The threshold energy
for the decay into two α plus four nucleons is also plotted.

of the α-α relative wave function, while the rearrangements of
the MO orbits of the neutrons occur in the latter excitation. In
particular, the direct α-α excitation from the ground state can
be observed as the enhancement phenomena in the monopole
transition.

The energy intervals of the resonant levels are quite small,
and the levels have a strong degeneracy. This degeneracy is
peculiar to the neutron-excess system, 12Be, and we can easily
understand its peculiarity in the A = 12 systematics illustrated
in Fig. 9. In this figure, the α decay threshold energies are set
to be a zero-energy point, and various thresholds obtained
by the neutron’s or proton’s rearrangements from the lowest
α threshold are plotted by the solid lines. The six-body-
breakup threshold of α + α + nucleons (N = neutron and
P = proton) are also plotted for the individual nuclei.

In 12Be, the threshold energies are located with a mean
interval of less than 1 MeV, but the interval of the thresholds
becomes large in 12B (∼4 MeV). In 12C with N = Z, there
are large energy intervals in the threshold energies, which
are about 7 MeV on average. This interval is larger by about
one order of magnitude than that of 12Be, and the thresholds
in 12Be reveal a strong degenerate feature in a comparison
with those in 12C. This difference between 12C and 12Be is
attributed to a change of the building blocks in the system.
The 12C nucleus is described nicely by the 3α particle, while,
in 12Be, four excess neutrons are weakly coupled to two α

cores. Since a large amount of energy is needed to break an
α particle in 8Beg.s. = α + α, the threshold interval in 12C is
much larger than that in 12Be.

The Hoyle state identified around the α + 8Beg.s. threshold
has an almost pure α + 8Beg.s. structure [2] because there are
no other thresholds with the rearrangements of the neutrons
near the Hoyle state. In contrast to the N = Z system, the
levels in 12Be contain a considerable amount of impurities
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due to the threshold degeneracy and hence, they are not
rigid clusters by comparison to the normal α-cluster states
in N = Z systems. In this situation, the unbound He dimers
in 12Be should be called “loose clusters.” The loose clusters
mean that the 4–8He nuclei form a main cluster component
corresponding to the He-decay threshold, but the constituent
two-He clusters can easily emit and/or absorb the neutrons
due to a small threshold difference. The rearrangements of the
neutrons easily occur because the binary potentials are weak,
such as α-N , neutron-neutron, and α-α, in which no bound
states exist. The weakness of the interaction between clusters
and excess neutrons is a common feature in neutron-excess
systems. Therefore, the results of the present study strongly
suggest that the loose clusters can be observed in a wide range

of systems close to the drip line of the neutrons. Systematic
studies are now under way in light nuclear systems.
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