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Proton pygmy dipole resonances in 17,18Ne: Collective versus noncollective excitations
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The proton pygmy dipole resonances (PDRs) in the proton-rich nuclei 17,18Ne are investigated in the framework
of the interacting shell model. The shell model with the self-consistent Skyrme-Hartree-Fock wave functions well
reproduces the experimental data of the ground-state properties. The proton PDRs in the neighboring 17,18Ne are
predicted. However, the detailed study involving the transition densities and collectivity shows that the PDR in
17Ne is highly collective and due to the oscillation of the valence protons against the interior core, while in 18Ne
the dipole resonance in the PDR region is noncollective and more likely to be the configuration splitting of the
giant dipole resonances.
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I. INTRODUCTION

The exotic behavior of nuclei approaching the drip lines is
one of the top subjects in nuclear physics studies. The loosely
bound nucleons can oscillate against the isospin saturated
core. Large enhancement of electric dipole (E1) response is
expected in the low-energy region, namely, the pygmy dipole
resonance (PDR). Although PDR exhausts only a few percent
of the total energy-weighted sum rule, nucleon capture rates
could be largely enhanced in the r-process nucleosynthesis
[1]. The neutron PDRs have been intensely studied in heavy
and medium-heavy nuclei [2–9]. Due to the existence of the
Coulomb barrier, the proton skin or halo can only appear in
light nuclei and is less profound than the neutron skin or halo.
And proton PDRs are much rarer than neutron PDRs [10,11].
However, the nature of PDRs is still controversial, since not
only can PDRs be developed by this soft mode, but also
single-particle excitation near the threshold can enhance the
dipole excitations [3,12,13]. The controversy can be further
shown by the fact that mean-field theories have predicted
the increasing integrated strength of neutron PDRs with the
increasing of the neutron excess or the neutron skin thickness
[2], while experimental studies show a nontrivial dependence
of the total E1 strength as a function of the neutron number,
such as in 40,44,48Ca [14,15]. In some light and heavy nuclei,
relativistic and nonrelativistic theories have also predicted the
low-lying strengths to be of noncollective nature [16–18].

Most of the studies on the pygmy and giant dipole
resonances are based on the mean-field theory with random-
phase-approximation (RPA) or quasiparticle RPA. However,
mean-field theories cannot predict the mixing of different
configurations, which is critical for loosely bound nuclei.
The collectivity of the giant dipole resonances (GDRs) in
light nuclei is less profound than in medium-heavy and heavy
nuclei. Therefore the response function could distribute over
several configuration-dependent peaks. For electric dipole
resonances, most of the contributions come from the cross shell
(�N = 1) particle-hole excitations near the Fermi surface.
Although the conventional configuration-mixing shell model
is confined in a restricted valence space, it was shown that
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the GDRs were well reproduced with this model in light
nuclei [19,20]. Another advantage of the shell model is that
the pairing effect is well treated, which is very important in
open-shell nuclei especially in Borromean nuclei such as 11Li
and 17Ne. With the pygmy dipole resonances lying in the lower
energy region, the fully microscopic shell-model calculations
could provide more insightful prediction in light nuclei. In
Refs. [21,22], shell-model studies on the neutron PDRs in
light or medium nuclei were reported, with rare examples
of proton PDRs [23]. The PDRs in neutron-rich oxygen
isotopes predicted by the shell model [19] were confirmed
experimentally [24]. However, only transition strength was
given in the previous shell-model studies. Detailed transition
densities and collectivity are very important to revealing the
dynamics of the proton PDRs.

17Ne and 18Ne exhibit proton halo or skin in spite of the
Coulomb barrier [25]. The Borromean 17Ne is a prominent
candidate for a two-proton halo, which can be regarded as
an 15O core in its ground state plus two protons in the d2 or
halo-like s2 configurations. The nonresonant soft dipole mode
in 17Ne was predicted by a three-body model [26]. In the
present paper, the pygmy dipole resonances in 17Ne and 18Ne
are predicted in the interacting shell model. The differences
of PDRs in these two nuclei are discussed when the transition
densities and information on collectivity are available.

II. SHELL MODEL TRANSITION DENSITY AND
TRANSITION STRENGTH

The one-body transition density (OBTD) is the standard
output of the shell-model code such as OXBASH and
NUSHELL@MSU [27]. The OBTDs are unrelated to the radial
wave function but related to the angular momentum part
between the initial and final states. Thus the transition matrix
element can be given by the transition operator and the
transition density can be given by the density operator using
the same OBTDs. The detailed formulas are given in the
following discussion.

In the second-quantized representation, the λ-rank one-
body operator reads

Ôλ
μ =

∑
αβ

〈α|Oλ
μ|β〉a+

α aβ, (1)
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where α stands for the single-particle quantum number set
(nαlαjαmα). In the shell-model M scheme, this operator can
be written in the tensor coupled form [28]

Ôλ
μ =

∑
kαkβ

〈kα||Oλ||kβ〉
[
a+

kα
⊗ ãkβ

]λ

μ√
2λ + 1

, (2)

where kα stands for (nαlαjα). The reduced transition matrix
element between the final state |Jf 〉 and initial state |Ji〉 can
be expressed by the OBTDs and reduced single-particle matrix
elements of the valence orbitals,

〈Jf ||Ôλ||Ji〉 =
∑
kαkβ

OBTD(f ikαkβλ)〈kα||Ôλ||kβ〉, (3)

where Ji and Jf include all the quantum numbers needed to
distinguish the states, and OBTD is given by

OBTD(f ikαkβλ) = 〈Jf |∣∣[a+
kα

⊗ ãkβ

]λ∣∣|Ji〉√
2λ + 1

. (4)

The OBTD can also be defined to include the isospin freedom
[28].

The transition density between the final state |Jf 〉 and initial
state |Ji〉 is defined as

δρ(�r) = 〈Jf |
∑

i

δ(�r − �ri)|Ji〉, (5)

and the radial transition density δρλ(r) is given by

δρ(�r) ≡
∑
λ,μ

δρλ(r)Yλμ(r̂). (6)

Using the orthonormal relation of spherical harmonics, we
have

δρλ(r) =
∫

〈Jf |
∑

i

δ(�r − �ri)|Ji〉Y ∗
λμ(r̂)d�. (7)

As δ(�r − �ri) = 1
4πr2 δ(r − ri)δ(r̂ , r̂i), by integrating out the

angular part, we have

δρλ(r) ∼ 〈Jf |∣∣∑i
1
r2 δ(r − ri)Yλ

∣∣|Ji〉√
2Ji + 1

. (8)

In order to normalize the radial transition density to the
transition strength, we leave out the coefficient in front of
Eq. (8) and redefine it as

δρλ(r) ≡ 〈Jf |∣∣∑i
1
r2 δ(r − ri)Yλ

∣∣|Ji〉√
2Ji + 1

= 1√
2Ji + 1

∑
kα,kβ

OBTD(f ikαkβλ)

×〈kα|
∣∣∣∣ 1

r2
δ(r − r ′)Yλ

∣∣∣∣|kβ〉, (9)

where

〈kα|
∣∣∣∣ 1

r2
δ(r − r ′)Yλ

∣∣∣∣|kβ〉 = ψkα
(r)ψkβ

(r)〈kα||Yλ||kβ〉, (10)

and ψkα
(r) is the radial wave function of the valence orbital

kα . For a λ-rank one-body transition operator,

Ôλ
μ(�r) = rλYλμ(r̂), (11)

using Eqs. (3) and (9), the electric reduced transition probabil-
ity B(Eλ) is readily expressed with the proton radial transition
densities,

B(Eλ, i → f ) = |〈Jf ||Ôλ||Ji〉|2
2Ji + 1

=
[∫

eδρ
p

λ (r)rλ+2dr

]2

.

(12)

However, since the effective charges are frequently used in the
calculation of B(Eλ), Eq. (12) should be modified accordingly
using both proton and neutron transition densities,

B(Eλ, i → f ) =
[∫ [

eeff
p δρ

p

λ + eeff
n δρn

λ

]
rλ+2dr

]2

, (13)

where eeff
p and eeff

n are the effective charges of protons and
neutrons, respectively.

III. RESULTS AND DISCUSSION

In the present shell-model calculations, the NUSHELL@MSU

code [27] with the WBP10 effective interaction [29] in
the spsdpf model space, is used. The Warburton-Brown
interaction WBP was originally constructed by fitting the
energy levels in the 0h̄ω–1h̄ω space. In the WBP10 interaction,
the coupling between the following multi-h̄ω configurations
is cut off, i.e., the two-body matrix elements for the 1p-1h
2h̄ω excitations are all set equal to 0 due to the Hartree-Fock
condition. The cross shell 2h̄ω two-body matrix elements
between 0s2 and 0p2 are also set equal to 0. The WBP10
interaction is enclosed in the NUSHELL@MSU package. The
standard Lawson method is used to remove the center-of-
mass spurious components in the wave function by adding
a fictitious Hamiltonian which acts only on the center-of-mass
excitation [30]. In the present calculation, the 0h̄ω–1h̄ω

configuration space is adopted. Our calculation shows that
the whole picture of the calculated E1 response function is
similar if the 2h̄ω–3h̄ω configurations are included, also see
the discussion in Ref. [22].

The s2 occupation probability of the ground state in
17Ne is very controversial in theoretical predictions [25,26].
Three-body cluster theory predicted a large s2 component
and therefore a halo-like structure. However, the analysis
based on the Coulomb displacement energies [31,32] or the
magnetic moment [33] suggested a smaller s2 component.
In Table I the ground-state properties in 17,18Ne calculated
by the shell model are compared with the experimental
data and fermion molecular dynamic (FMD) model results.
Obviously for the nuclei near the drip lines, it is not appropriate
to use the harmonic wave functions but Wood-Saxon or
mean-field wave functions [19,34] when calculating physical
properties involving single-particle radial wave functions.
In our calculations, the self-consistent Skyrme-Hartree-Fock
(SHF) wave functions with the SkM* interaction [35] are
used in the evaluation of nuclear radii and electric transition
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TABLE I. Mass and charge radii in 17,18Ne. SM(HO) and SM(HF) denote the shell-model results using the harmonic oscillator and
Hartree-Fock single-particle wave functions.

Proton s2 Mass Charge
A J π probability δpn

a (fm) radii (fm) radii (fm)

FMD SM FMD SM(HO) SM(HF) Expt. FMD SM(HO) SM(HF) Expt. FMD SM(HO) SM(HF)

17 1/2−
g.s. 42% 23.6% 0.45 0.17 0.43 2.75(7) 2.75 2.78 2.86 3.042(21) 3.04 2.85 3.02

18 0+
g.s. 15% 15.0% 0.15 0.25 2.81(14) 2.70 2.78 2.82 2.971(20) 2.93 2.85 2.93

aδpn = √〈r2〉p −
√

〈r2〉n.

matrix elements. The wave functions of positive energy states
are obtained by the box approximation. When the harmonic
oscillator wave function is used, the parameter b = 1.8 fm is
adopted, which is slightly larger than the value b = √

41.4/h̄ω

where h̄ω is the global fit h̄ω ≈ 45A−1/3–25A−2/3 [36].
Clearly from Table I, the shell model with the SHF wave
functions reproduces well the mass radii and charge radii both
in 17,18Ne. In Fig. 1 the calculated nucleon and matter density
distributions are compared with the available experimental
data. It is worth noting that the halo nucleon can appear in
the classically forbidden region for the halo nuclei [37]. In the
present calculations, the probabilities of finding one proton at
r > 5 fm is 41% and 28% in 17,18Ne, respectively. In 17Ne,
this probability is close to the FMD prediction of 40%. Thus
by employing the more realistic radial wave functions, the
halo-like structure in 17Ne is reproduced in the shell model
without changing the composition of configurations.

To further remove the additional spurious components due
to the usage of the Skyrme-Hartree-Fock wave functions, the
center-of-mass removed dipole operator is used [38] in the

FIG. 1. (Color online) Nucleon and matter density distributions
of the ground states in 17,18Ne. The experimental errors are indicated
by the gray area.

calculation of the dipole transition strength,

Q̃λ=1
μ = e

N

A

Z∑
i

riY1μ(r̂i) − e
Z

A

N∑
i

riY1μ(r̂i), (14)

where Z, N , and A are proton, neutron, and mass number, re-
spectively. The effectiveness of this method was demonstrated
in Ref. [19]. To smooth out the discrete strengths, the transition
strengths are averaged by a Lorentz-type factor ρ(ω),

dB̄(E1; ω)

dω
=

∫ ∑
n

B(E1; ωn)ρ(ω − ωn)dω, (15)

where ω is the phonon energy and

ρ(ω − ωn) = 1

π

�/2

(ω − ωn)2 + �2/4
. (16)

The arbitrary total width � = 1 MeV is chosen. In this way,
the response function is like the superposition of many isolated
Breit-Wigner resonances.

The electric dipole response functions and the B(E1) values
of discrete transitions in 17,18Ne are shown in Fig. 2. We

FIG. 2. (Color online) Electric dipole response functions from the
excited states to the ground state in 17,18Ne with the Skyrme-Hartree-
Fock single-particle wave functions. The thin lines are the B(E1, T =
Tz) values of discrete transitions in the shell-model calculations, with
the solid-cyan lines representing the J π = 1/2+(J π = 1−) states in
17Ne (18Ne), the dotted-magenta lines representing the J π = 3/2+

states in 17Ne.
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have included the contribution from T = Tz and T = Tz + 1
states in order to give the energy-weighted sum rule (EWSR)
which is comparable with the Thomas-Reiche-Kuhn (TRK)
sum rule. As an odd-A nucleus, the level density in 17Ne is
much higher than in even-A 18Ne, so the isovector dipole
transition strengths in 17Ne are more spread out than in
18Ne. The shell model predicts two levels in 17Ne and one
level in 18Ne with strong E1 transitions around 10 MeV,
which will give appreciable pygmy resonances. In 17Ne,
the shell model also predicts a very low Jπ = 1/2+ state
at E = 1.87 MeV, which is 0.39 MeV above the proton
emission threshold. A B(E1) value of 0.00277 fm2 could
indicate some importance for the astrophysical 2p capture of
15O in the hot CNO cycle. For 18Ne, the recent study using
the approach of Hartree-Fock-Bogoliubov + quasiparticle
random-phase-approximation (HFB + QRPA) with the Gogny
force did not predict a PDR around 10 MeV [39]. Although
the pairing was included, their calculations gave the lowest
resonance at 14.2 MeV, whose transition densities behave
more closely to the giant dipole resonance. For 18O, the mirror
nucleus of 18Ne, several peaks around 10 MeV were already
observed [40,41]. Only with phonon coupling to the resonance
included, the QRPA plus phonon coupling model can give
some strength around 10 MeV in 18O [16].

The sum rule is a useful measure of the collectivity of
the giant resonances. For the isovector GDR, the classical
energy-weighted sum rule is given by

STRK =
∫∑
n

h̄ωn

∣∣〈n|Ôλ=1
μ |g.s.〉∣∣2 = h̄2

2m

9

4π

NZ

A

= 14.9
NZ

A
e2 (MeV fm2), (17)

neglecting the contributions of exchange terms. This is known
as the Thomas-Reiche-Kuhn (TRK) sum rule. There is another
sum rule, named the energy-weighted cluster sum rule which
can be viewed as a measure of the adiabaticity between
the giant and pygmy resonances [22,42]. Assuming that the
nucleus (A,Z) can be decomposed into two clusters with
(A1, Z1) and (A2, Z2), the cluster sum rule is given by

Scluster = h̄2

2m

9

4π

(Z1A2 − Z2A1)2

AA1A2
. (18)

Table II gives the sum rules of PDRs and GDRs in 17,18Ne.
Since the high-lying T = Tz + 1 states do not contribute to
the response functions in the pygmy region, only the T = Tz

states are included in the lower table. Using E = 12 MeV as
a cut energy, the pygmy resonances exhaust 4.9% and 3.1%
of the total sum rules in 17,18Ne, respectively. In the FMD
calculations, 17,18Ne can be interpreted essentially as the 15O
or 16O cores plus two protons found mainly in the s2 or d2

configurations [25]. If assuming the two protons as the valence
nucleons and other nucleons as the core, the pygmy resonances
will exhaust 56.7% and 39.1% of the cluster sum rules in
17,18Ne, respectively.

TABLE II. Ground-state spins, energy-weighted sum rule
(EWSR) values of E1 transitions in 17,18Ne. The values are obtained
by summing up to Ex = 40 MeV. The cluster sum rules are obtained
assuming that the valence cluster has Z = 2, A = 2.

Nuclides J π
g.s. T EWSR STRK

EWSR
STRK

(MeV e2 fm2) (MeV e2 fm2) (%)

17Ne 1/2− 3/2 36.7
5/2 30.2

Total 66.9 61.4 109
18Ne 0+ 1 35.8

2 47.0
Total 82.8 66.2 125

Nuclides J π
g.s. T EWSR(pygmy) Scluster

EWSR(pygmy)
Scluster

(MeV e2 fm2) (MeV e2 fm2) (%)
17Ne 1/2− 3/2 3.25 5.73 56.7
18Ne 0+ 1 2.59 6.62 39.1

Although the transition strengths in 17,18Ne seem to be
similar, only the detailed information, i.e., transition densities,
can give the possible differences between them. In the previous
shell-model studies, the transition densities of the pygmy
resonances and GDRs were not included [19,21–23]. Using the
formulas discussed above, the calculated transition densities
of the typical resonance states in 17,18Ne are shown in Fig. 3.
Figures 3(a) and 3(b) are for the dominant states of 17Ne
in the usual pygmy region. We can see that the proton and
neutron move in phase in the nuclear interior, while only
protons move in the exterior. This scenario is the typical pygmy
resonances of the halo protons oscillating against the inner
core. The state in Fig. 3(c) is located in the GDR region. The
given transition densities have shown a typical oscillation in
the opposite phase between the bulk protons and neutrons.
There is no contribution from either protons or neutrons in the
exterior region. For comparison, the transition densities of two
states in the PDR region of 18Ne are displayed in Figs. 3(d)
and 3(e). Although the behavior in Fig. 3(d) is somewhat
similar to that in Figs. 3(a) and 3(b), the peaks of proton
and neutron transition densities are out of phase by about 0.9
MeV. And the B(E1) value of this state is too small when
compared with the state at E = 9.413 MeV, not to mention
the dominant GDR states. The proton and neutron transition
densities in Fig. 3(e) do not show clear-cut in-phase behavior.
The interval of the proton and neutron peaks is 1.26 MeV.
This state is clearly not the soft mode but more similar to
the giant resonances like in Fig. 3(f), where the state is a
typical GDR.

Unlike the GDR region, the level density is sparse in the
PDR region. Further detailed information on the collectivity
of the discrete PDR states can be obtained by viewing the
contributions to the total transition matrix element from the
valence orbital transitions. These contributions to the isovector
operator [Eq. (14)] for the important PDR states discussed in
the last paragraph are given in Fig. 4, where the horizontal axis
is the single-particle excitation energies of valence orbitals.
This figure shows that the dominant PDR states in 17Ne
have several components including the transitions 1p ↔ 2s1d
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FIG. 3. (Color online) Shell-model transition densities of discrete dipole transitions in 17,18Ne.

and 2s1d ↔ 1f 2p, which have prominent contributions to
the total matrix elements. Together with the discussions on
the transition densities, the 17Ne has shown us an excellent
example of collective proton PDR due to the soft mode
between the valence protons and the core. However, for
18Ne, the PDR states are much less collective since only a
few transitions contribute, most of which comes from the
1p ↔ 2s1d transitions. Together with the discussions on the

FIG. 4. (Color online) Contributions to the total matrix elements
of valence orbitals for the deexcitations from PDR states in 17,18Ne.
The magenta bars with slanted lines, the solid red bars, and the open
blue bars indicate the transitions between the valence orbitals of
1s ↔ 1p, 1p ↔ 2s1d , and 2s1d ↔ 1f 2p, respectively.

transition density, the nature of the E = 9.413 MeV state in
18Ne is more likely to be the configuration splitting of the
GDRs, but in the usually PDR energy region. The differ-
ent nature of pygmy dipole resonances may also give a
possible explanation for the nontrivial dependence of PDRs
as a function of the neutron number in the Ca isotopes.
Further theoretical investigations on this trend is highly
needed.

IV. SUMMARY

In summary, we have used the shell model to study
the ground-state properties and the proton pygmy dipole
resonances in 17,18Ne. The shell model with the self-consistent
Skyrme-Hartree-Fock wave functions reproduces well the
experimental mass radii and charge radii. The mass density
distributions of the ground state in 17Ne also can be well given.
The transition densities of the dipole resonances are calculated
from the shell-model output. The pygmy resonances around
10 MeV in both 17,18Ne are predicted. However, detailed
study involving transition densities and collectivity shows
that the PDRs in 17Ne are highly collective and due to the
oscillation between the valence protons and the core, while in
18Ne the dipole resonance in the PDR region is noncollective
and more likely to be the configuration splitting of the
GDRs.
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