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Similarity renormalization group and many-body effects in multiparticle systems
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The similarity renormalization group (SRG), based on the simple one-body free harmonic oscillator
Hamiltonian, is applied to various nucleon-nucleon realistic interactions to investigate the unitarity of the SRG
transformations. Two-body and three-body contributions to the SRG-evolved Hamiltonian are studied in the
framework of spectral distribution theory for reasonable SRG cutoffs and in multiparticle systems, with up
through 28 particles considered. The outcome points to the first evidence for the overall importance of three-body
SRG-induced interactions and especially, of its two-body effective content in multinucleon systems, without the
need for large-scale shell model calculations for many light to heavier nuclei.
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I. INTRODUCTION

The similarity renormalization group (SRG) approach [1,2]
to internucleon interactions aims to achieve a softer (renor-
malized) interaction [3,4] that enables the use of manageable
model spaces within the framework of modern ab initio shell
model studies (e.g., [5–8]). These models, in turn, can be in-
voked to provide accurate descriptions of light, and ultimately
even heavier nuclei. The Heff renormalized interaction is
obtained via continuous unitary transformations of the original
realistic Hamiltonian and is thus equivalent to the original
one, provided that the Heff includes all the non-negligible
many-body SRG-generated terms. Clearly, if the latter are only
of low particle rank, say up to three-body, then a three-particle
(a = 3) model space can be employed for the SRG evolution
(SRGa), and model-independent unitarity of the result is
assured. Furthermore, such an SRGa-evolved interaction can
be used for ab initio descriptions for nuclei of mass numbers
A � a. This places a premium on the study of and estimates
for the significance of many-body terms generated throughout
an SRG evolution, both in few-body systems (a � 3) as well
as in many-nucleon systems, such as a ∼ 12 − 16 that are of
interest to current ab initio shell model studies.

In this paper, we present results for SRG evolutions in
multiparticle systems, 2 � a � 28. We focus on the most
dominant SRG-induced many-body contribution. We have
shown [9] that it is generated at the very beginning of the SRG
flow, namely, by the double commutator H ′

0 = [[C,H0],H0].
For a one-body SRG operator C and a two-body initial
Hamiltonian H0 = HNN , H ′

0 includes up to three-body terms.
We have also shown in [9] that for flows not infinitely
evolved (as for decoupling parameters λd used in practical
applications), the overall contribution of other SRG-induced
terms practically results in only varying the strength of H ′

0.
This could be also understood by the fact that SRG-induced
terms, which rapidly decrease in strength with the flow,
project almost entirely onto H ′

0 during the initial stage of
the flow when the low-lying eigenvalues of H0 are affected
most. Therefore, by studying the many-body content of the
first SRG-induced term in an a-particle system, we examine
the non-negligible many-body induced contributions to the
SRGa-evolved Hamiltonian. In this analysis we take a from

2 up to 28 particles, which is more than sufficient to demon-
strate the effect of the evolution with increasing number of
particles.

The present analysis are carried forward within the frame-
work of spectral distribution theory (SDT) [10–12] (see [13],
for a review on SDT), where, e.g., a three-body interaction can
be straightforwardly cast into a sum of ‘density-dependent’
monopole (centroid), one-body (induced single-particle ener-
gies), and two-body parts together with its residual, irreducible
three-body part. It is interesting to note that SDT provides an
easy-to-follow prescription—readily extensible to four-body
interactions and beyond—on how to extract these parts and
furthermore, on how they propagate with the number of
nucleons (as shown in the Appendix). This information is of
special interest when three-body (or higher rank) interactions
are invoked (e.g., [14–16]).

The outcome of the present study offers the first evidence
for the overall importance of three-body SRG-induced inter-
actions (when a one-body C is employed) for a range of nuclei
that reaches beyond the lightest few-nucleon systems. The
effect of neglecting these interactions is also studied. This
is achieved without the need for carrying out large-scale shell
model calculations for many light to heavier nuclei. It also goes
beyond the information a few low-lying energy states could
provide by treating the full Hamiltonian and its many-body
terms in their entirety at an operator level. This ensures the
extensibility of the results as it relates to the influence of
the induced many-body interaction on a broad variety of
spectral observables, as well as on Hamiltonian eigenstates,
and points toward a means for studying the effect of the
renormalization on related observables (e.g., transition rates).
We note that for the purpose of this study, namely to explore
the overall significance of the many-body contributions to the
SRG-induced interactions, only low-order energy moments
are sufficient (e.g., the second-order moment of an interaction
that yields its strength). Nonetheless, if one were to include
higher-order energy moments that are typically much less
important to the low-energy nuclear dynamics, one would
obtain more detailed results that, in principle, should enable a
reproduction of all observables associated with conventional
microscopic analyses.
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II. SRG-INDUCED MANY-BODY INTERACTIONS

The SRG has been designed as a nonperturbative method
that performs a continuous sequence of unitary transforma-
tions of a H Hamiltonian, Hs = U (s)HU †(s), yielding the
following class of equations [1,2]:

d

ds
Hs = [ηs,Hs] = [[C,Hs],Hs], (1)

where C can be any Hermitian operator, which in turn
defines the anti-Hermitian ηs = [C,Hs] generator and the
U (s) transformation [ηs = dU (s)

ds
U (s)†]. If C is chosen to be

diagonal in the representation of the initial H , Hs is driven
toward a (block-)diagonal form in this representation with
decreasing “decoupling” energy parameter λd = 1/

√
s.

The present study and the analysis of its outcome refer
to a one-body C and a two-body H0 initial Hamiltonian. Let
a

(†)
i denote the fermion annihilation (creation) operator, which

destroys (creates) a fermion in a state labeled by a set of
quantum numbers i. Then, for a diagonal one-body C, C =∑

i Cia
†
i ai , and a two-body H0 = 1

(2!)2

∑
ijkl Vijkla

†
i a

†
j alak ,

the initial transformation yields a change in H0 given by
Eq. (1):

d

ds
Hs

∣∣∣∣
s=0

= [η0,H0] = [[C,H0],H0] = 1

16

∑
ijrs

a
†
i a

†
j

(
2
∑
kl

(Ci + Cj + Cr + Cs − 2Ck − 2Cl)VijklVklrs

+ 4
∑
lkq

(Ci + Cj + Cr + Cs − Ck − Cq − 2Cl)VijklVlqrsa
†
qak

)
asar

= 1

4

∑
ijrs

Wijrsa
†
i a

†
j asar + 1

4

∑
ijkrsq

WNA
ijqrska

†
i a

†
j a

†
qakasar = H 2b

I + H 3b
I . (2)

The first term, H 2b
I , realizes the two-body contribution to the

SRG-induced interaction with matrix elements,

Wijrs = 1

2

∑
kl

(Ci + Cj + Cr + Cs − 2Ck − 2Cl)VijklVklrs ,

(3)

while the second term, H 3b
I , introduces a three-body interac-

tion given by non-antisymmetrized matrix elements,

WNA
ijqrsk = −

∑
l

(Ci + Cj + Cr + Cs − Ck − Cq − 2Cl)

×VijklVqlrs , (4)

with the corresponding antisymmetrized ones written as

Wijqrsk = WNA
ijqrsk − WNA

ijqrks − WNA
ijqksr − WNA

iqjrsk + WNA
iqjrks

+WNA
iqjksr − WNA

qjirsk + WNA
qjirks + WNA

qjiksr . (5)

For finite flows evolved to reasonable λd , the [η0,H0]
initial SRG-induced interaction of Eq. (2) constitutes the
predominant contribution to the total SRG-induced interaction
[9]. Indeed, while higher-order SRG-induced terms may be
important, each of these terms can be expressed as a sum of
an interaction of the [η0,H0] kind and higher-particle rank
interactions. The latter can be controlled to be negligible [9].
It is thus clear that the higher-order SRG-induced terms, if
found significant, can only affect the overall [η0,H0] strength,
that is, the magnitude of the total induced interaction, without
introducing appreciable mixing of interactions of other kinds
or of higher particle ranks. Therefore, for a one-body C and
a two-body H0, it is sufficient to study the two-body (H (2b)

I )
and three-body (H (3b)

I ) content of the [η0,H0] SRG-induced
term (2), as well as its role in many-particle systems. This,

in turn, provides information about the dominant many-body
contributions within a many-body SRG-evolved Hamiltonian.

If Eq. (1) is applied to operators in a matrix representation
associated with the many-body basis space of a particles
(SRGa), then for a = 2, the H 2b

I interaction is the only term
that contributes to the total SRG-induced interaction. However,
when the SRG evolution is performed within a general
a-particle basis (a � 3), the H 3b

I interaction is needed and
together with H 2b

I (and negligible SRG-induced interactions
of a higher particle rank) assures the unitarity of the SRG
transformations. The contribution of the H 3b

I to the total
SRGa-induced interaction can be evaluated based on the
H 3b

I properties between all possible triples formed by the a

particles. Such a study, which encompasses SRG evolutions
for systems with a large number of particles—in the case of this
paper, up through a = 28, is made possible in the framework
of spectral distribution theory.

III. SPECTRAL DISTRIBUTION THEORY AND
DERIVATION OF ‘DENSITY-DEPENDENT’ TERMS

Spectral distribution theory (SDT) [10–12,17] originated as
an alternative microscopic approach to the conventional shell
model technique. The efficacy of the theory stems from the fact
that typically low-order energy moments dominate the many-
particle spectroscopy as a result of leading surviving features
of the underlying microscopic interaction. Convergence to the
shell-model results improves as higher-order energy moments
are taken into account or toward the limit of many particles
occupying a much larger available single-particle space. The
theory also provides the means to calculate important average
contributions, nuclear level densities, degree of symmetry
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violation, as well as various measures. The SDT approach
has been successfully applied to studies of energy spectra
and reactions for p-, sd, and fp-shell nuclei [18–23], as
well as for understanding dominant features and differences
among sd-shell realistic effective interactions [24,25]. Recent
applications include explorations on quantum chaos, nuclear
structure, and parity/time-reversal violation (for example,
see [13,26–30]). In the present study, we do not utilize the
SDT microscopic approach but rather make use of tools
developed in SDT. Specifically, we employ second-order
energy moments widely used as measures of the overall
strength of an interaction and its similarity to other interactions.

In SDT, for an arbitrary basis of dimension Nd the
traceless (many-body) Hamiltonian matrix representation can
be mapped onto a vector in a multidimensional linear vector
space. The σH vector “length” (specifying the interaction
“strength”) is related to the Hilbert-Schmidt norm,

σ 2
H = 〈(H − 〈H 〉)†(H − 〈H 〉)〉 (6)

with 〈· · ·〉 ≡ 1
Nd

Tr(· · ·), while the spatial orientation of two
operators, H and H ′, is given by their correlation coefficient
(specifying the similarity between the two interactions),

ζH,H ′ = 〈(H − 〈H 〉)†(H ′ − 〈H ′〉)〉
σH σ ′

H

= cos θ (7)

with θ being the angle between H and H ′. Hence, σH is a
natural measure of the H operator size and realizes the spread
of the H eigenvalue distribution. As is well known, the smaller
the σH (the weaker the interaction), the more compressed the
energy spectrum of H and the smaller its effect on the (H +
H ′) spectrum for a much stronger H ′ [11].

Furthermore, SDT provides a tool to express an interaction
of a particle rank k—e.g., k = 3 for the H 3b

I in Eq. (2)—in
terms of H(k)(ν) interactions of a definite particle rank ν for
an A-particle system,

H (k) =
k∑

ν=0

(
A − ν

k − ν

)
H(k)(ν). (8)

The H(k)(ν) are also called “pure” ν-body interactions. For
example, for a scalar distribution over a single-particle basis
space of dimension N , the H(k)(ν) is an U(N ) irreducible
tensor of rank ν = 0, 1, . . . , k, for a k-body interaction. From
a physical point of view, this expansion realizes contributions
to the H (k) interaction from ‘density-dependent’ ν-body terms
with, e.g., ν = 0 and ν = 1 giving the vacuum expectation
value and the ‘density-dependent’ mean field, respectively.

In what follows, we will use a scalar distribution, which
invokes averages over all single-particle basis states.

A. Two-body interactions

For a two-body interaction as given in [12], the monopole
moment (centroid), which is the average expectation value, is
defined in the scalar case as

W (2)
c = 1(N

2

) ∑
r<s

Wrsrs =
∑

rs Wrsrs

N (N − 1)
, (9)

where N is the dimensionality of the single-particle model
space and ( N2 ) = ∑

r<s 1. For a spherical harmonic oscillator

(HO) basis (m scheme) of like particles, N = ∑
η(η + 1)(η +

2), where η is the oscillator shell quantum number.
Contraction of the two-body interaction into an effective

one-body operator under the particular group structure yields
the effective mean field contribution, sometimes referred as
induced single-particle energies,

λ
(2)
rt = 1

N − 2

∑
s

Wrsts (10)

with their traceless counterparts given as

λ̃
(2)
rt = λ

(2)
rt − δrt

1

N
∑

s

λ(2)
ss = λ

(2)
rt − δrt

N − 1

N − 2
W (2)

c . (11)

Hence, the traceless pure two-body matrix elements are
defined as

ṽ
(2)
rstu = Wrstu − (

λ̃
(2)
rt δsu + λ̃(2)

su δrt − λ̃(2)
ru δst − λ̃

(2)
st δru

)
−W (2)

c (δrt δsu − δruδst ). (12)

For A particles, which interact through a two-body interaction
H (2), the strength of the interaction reflects its propagation in
the many-particle systems and is given as

σ 2
H (2)(A) = P(1, A)

∑
ir

(A − 1)2λ̃
(2)
ir λ̃

(2)
ir

+P(2, A)
∑

i<j,k<l

ṽ
(2)
ijkl ṽ

(2)
ijkl (13)

with N -dependent propagation functions,

P(ν,A) =
(
A

ν

)
(N

ν

)
(N−A

ν

)
(N−ν

ν

) . (14)

Note that σH (2)(A) (13) depends only on sums calculated for
the two-body system and is exactly equal to σH (A) that can
be calculated by constructing the corresponding many-body
H (A) Hamiltonian and using Eq. (6) with H (A).

B. Three-body interactions

We use the SDT method outlined in [12] and apply it
to a three-body interaction to derive its pure interactions of
a particle rank 1, 2, and 3 under the space partitioning in
consideration, namely, the scalar distribution (Appendix). The
monopole moment (centroid) is thus defined as

W (3)
c = 1(N

3

) ∑
i<j<q

Wijqijq =
∑

ijq Wijqijq

N (N − 1)(N − 2)
, (15)

where ( N3 ) = ∑
i<j<q 1. The effective one-body interaction is

given in terms of

λ
(3)
ir = 1(N−2

2

) ∑
j<q

Wijqrjq = 1

(N − 2)(N − 3)

∑
jq

Wijqrjq

(16)
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TABLE I. SRG-induced interactions and the corresponding notations used in the paper. The interactions H
(2b)
I and H

(3b)
I are derived using

Eqs. (3)–(5). The H
(3b)
I,2b includes pure one- and two-body interactions with matrix elements calculated using Eqs. (17) and (19), respectively,

for the three-body H
(3b)
I .

two-body induced, H
(2b)
I

}
total two-body induced, H tot

I,2b

⎫⎬
⎭total induced, H tot

Ithree-body induced, H
(3b)
I

{
two-body of three-body induced, H

(3b)
I,2b

pure three-body of three-body induced, H
(3b)
I,3b

with the corresponding interaction of a particle rank one
(traceless mean-field contribution) defined by means of

λ̃
(3)
rt = λ

(3)
rt − δrt

1

N
∑

s

λ(3)
ss = λ

(3)
rt − δrt

N − 1

N − 3
W (3)

c . (17)

The two-body matrix elements, constructed by contraction of
the three-body interaction,

v
(3)
ijrs = 1

N − 4

∑
q

Wijqrsq , (18)

yield, in turn, the matrix elements of the pure two-bodyH(3)(2),

ṽ
(3)
rstu = v

(3)
rstu − N − 3

N − 4

(
λ̃

(3)
rt δsu + λ̃(3)

su δrt − λ̃(3)
ru δst − λ̃

(3)
st δru

)
− N − 2

N − 4
W (3)

c (δrt δsu − δruδst ). (19)

For A particles, the strength of an interaction that is up to
three-body is given as

σ 2
H (1+2+3)(A)

= P(1, A)
∑
ir

(
λ̃

(1)
ir + (A − 1)λ̃(2)

ir +
(

A − 1

2

)
λ̃

(3)
ir

)2

+P(2, A)
∑

i<j,k<l

(
ṽ

(2)
ijkl + (A − 2)ṽ(3)

ijkl

)2

+P(3, A)
∑

i<j<q,r<s<k

w̃
(3)
ijqrskw̃

(3)
ijqrsk, (20)

where the N -dependent P propagation functions are given
in Eq. (14), as well as λ̃

(1)
ii = λ

(1)
ii − 1

N
∑

s λ(1)
ss are related

to λ
(1)
ii single-particle energies (if used in the model at

hand). The explicit construction of the pure three-body
matrix elements w

(3)
ijqrsk is not required to evaluate the

w
(3)
ijqrsk-dependent sum in the last term of Eq. (20). This

sum can be calculated using Eq. (20) for A = 3 and

that σ 2
H (3)(3) = ( N3 )

−1 ∑
i<j<q,r<s<k WijqrskWijqrsk is known.

Clearly, σ 2
H (3)(A) follows from Eq. (20) with λ̃

(1)
ir , λ̃(2)

ir , and ṽ
(2)
ijkl

set to zero.
In the present study, the ‘density-dependent’ one-body

and two-body parts of the H
(3b)
I three-body interaction are

calculated using Eqs. (17) and (19), respectively. If the pure
three-body contribution to the H

(3b)
I is found to be insignificant

for the description of certain spectral features, these equations
offer a straightforward approach to extract from the H

(3b)
I its

one- and two-body parts and thus, simplifying the problem to
one utilizing a two-body SRG-evolved interaction. The various

SRG-induced interactions and their notations used throughout
the paper are given in Table I.

IV. APPLICATION OF SRG RENORMALIZED
INTERACTIONS TO HEAVIER NUCLEI

A. Model description

While the SRG renormalization of NN or NNN interac-
tions is typically restricted to a two- or three-particle model
space [31,32] and furthermore, most many-body SRG-induced
interactions are impossible to handle, the SDT framework
presented above provides a straightforward approach to in-
vestigate the overall role of the SRG-generated interactions
for evolutions in model spaces of larger particle numbers, e.g.,
out to a = 28 in the current study. We apply the SRG procedure
[Eq. (1)] using the free HO Hamiltonian C = HHO (one-body)
to various realistic NN interactions H0, namely, N3LO (HO
parameter h̄ω = 11 MeV) [33] and JISP16 (15 MeV) [34],
as well as, for illustration, CD-Bonn (15 MeV) [35] and
AV18 (18 MeV) [36], in an m-scheme basis for six to ten
j -levels (0s1/2, 0p1/2, 0p3/2, 1s1/2, 0d3/2, 0d5/2, 1p1/2, 1p3/2,
0f5/2, and 0f7/2) and for like particles. As shown below,
these model spaces already reveal a convergence trend for
the quantities studied here. This, together with the similar
patterns observed when random interactions are employed,
brings forward results that are not significantly restricted by
the choice of interactions or model spaces. In addition, while
studies of the important T = 0 part of the interactions are
needed and underway, the present investigation focuses on
the T = 1 part, which yields three-body interactions that are
comparatively simpler to handle. Such a restriction is expected
not to alter the present conclusions, because—even though
there are strong detailed differences—the overall features
relevant to this study for both T = 0 and T = 1 parts are very
similar. For example, for ten j -levels up through the pf shell,
the strength of the T = 0 (T = 1) N3LO NN interaction is
2.84 MeV (1.65 MeV) with a strength of its pure one-body part
being 0.33 MeV (0.19 MeV) and of its monopole part being
−0.82 MeV (−0.44 MeV). This together with a correlation
of the interaction to the C = HHO SRG operator of 0.103 for
T = 0 and 0.093 for T = 1 shows that no large discrepancies
are expected for the T = 0 and T = 1 results.

As previously mentioned, it is sufficient, without neglecting
any significant SRG-induced terms, to study the two-body
(H (2b)

I ) and three-body (H (3b)
I ) SRG-induced terms defined

in Eq. (2). The effect these interactions have for SRG
evolutions performed for a � 3, is calculated using Eqs. (13)
and (20), which reflect the overall properties of the many-body
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Hamiltonian for a particles that interact through two-body and
three-body interactions. In particular, first, we show the role
of the pure three-body interactions (H (3b)

I,3b) for SRG evolutions
in a model space of 3 � a � 28 particles. We also study the
two-body part H

(3b)
I,2b that emerges from the H

(3b)
I term. Finally,

we compare full SRGa calculations (excluding negligible
higher-order SRG-induced terms) to the case of omitting the
H

(3b)
I term (equally, employing an SRGa=2 flow) and show the

effect it has on the SRG-evolved interaction.

B. Results and discussions

The analysis of the results reveals that for an SRG evolution
performed in a three-particle (a = 3) system, two-body inter-
actions (H tot

I,2b)—those that realize the combined contribution

of the two-body induced H
(2b)
I and the H

(3b)
I,2b two-body part

of the three-body induced term—account for ∼60% of the
total SRG-induced interaction (Fig. 1, red lower bars, a = 3).
For example, for N3LO, this portion is 57.4% for four HO
shells (ten j -levels) and 58.9% for three HO shells (similarly,
55.9% for JISP16). Equally, only ∼40% is realized by the
pure three-body interactions, H

(3b)
I,3b (Fig. 1, blue upper bars,

a = 3). As shown in Fig. 1, this three-body contribution first
increases with increasing number of particles to ∼2/3 of the
total induced interaction, and beyond this, steadily decreases
as more particles fill up the model space. These features, we
find, have already exhibited a tendency toward convergence for
the ten-level model space considered (Fig. 2). The induced
H tot

I,2b and the initial HNN two-body interactions thus comprise
the dominant contribution to the SRG-evolved Hamiltonian.
This remarkable result points to the fact that the renormalized
interaction is essentially two-body driven for any a-particle
system.

Note that the dominating two-body portion shown in Fig. 1
includes a two-body contribution, H

(3b)
I,2b, from the three-body

SRG-induced term of Eq. (2), which is not accounted for
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maximum contribution among systems of 3 � a � 38 particles is
shown (red squares) together with the contribution within a three-
particle system (blue diamonds).

in an SRGa=2 flow. However, our findings reveal that the
role this contribution plays in an SRG-evolved interaction is
considerable and even dominant for heavier systems (Fig. 3,
magenta dotted vectors). This is in agreement with additional
evidence for the need of an SRGa=3 flow based on observations
of low-lying state energies in a few light nuclei [16,31,32],
but the systematic importance of the two-body content of the
three-body induced terms has not been detected heretofore.
Figure 3 displays a vector representation of the SRG-induced
interactions under consideration (Table I) for an SRG evolution
performed for representative model spaces. Namely, we show
model spaces of a = 3, a = 6 (around the maximum contri-
bution of the pure three-body interaction to the total induced
one) and a = 12 particles. The total two-body SRG-induced
interaction, which is shown in Fig. 1 as red (lower) bars,
is represented in Fig. 3 by a red (dashed) vector, which is
made up of the two-body induced H

(2b)
I (a purple vector

in the horizontal plane) and the H
(3b)
I,2b. The latter together

with the pure three-body interaction (blue vector along the
vertical axis) make up the H

(3b)
I three-body SRG-induced

term, which, in turn, adds up to H
(2b)
I to yield—according

to Eq. (2)—the total SRG-induced interaction (vertical-plane
black vector in Fig. 3). Higher-order SRG-induced terms, if
found non-negligible, have an overall significant effect only
on the axis scale (different vector lengths). As manifested in
Fig. 3, while H

(3b)
I,2b plays a negligible role for a = 3 particles,

its contribution is essential and, for larger a, is comparable
to or even larger than the H

(2b)
I . This points to the fact

that the three-body induced interactions, and especially their
‘density-dependent’ two-body content, that are not accounted
for in an a = 2 SRG evolution of a HNN play an essential role
in describing heavier systems using such SRG-renormalized
interactions.

It is important to further explore H
(2b)
I and H tot

I . H
(2b)
I is

the total SRGa=2-induced interaction that yields an SRG-
renormalized interaction no longer unitarily equivalent to
the original one for A > 3 nuclei. H tot

I is the total induced
interaction, which retains the unitarity. As shown in Fig. 3, even
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FIG. 3. (Color online) Vector representation of the SRG-induced interactions (Table I) relative to the NN interaction strength. In the
horizontal plane: H

(2b)
I (solid purple), H

(3b)
I,2b (magenta, dotted), and total H tot

I,2b (red, dashed); in the vertical plane: pure three-body H
(3b)
I,3b (solid

blue, along the vertical axis) and total H tot
I (solid black); and H

(3b)
I (light blue, long dashed). Induced interactions are shown for (a) N3LO, (b)

JISP16, (c) CD-Bonn, and (d) AV18 NN interactions and for six-level a = 3 (smallest set of vectors), 6, and 12 (largest set of vectors) model
spaces. For each a, the vector corresponding to the H tot

I,2b is fixed along the y axis.

though both interactions typically have a comparable strength,
they are actually expected to render quite different spectral
features. This is manifested by the large angle observed
between the two corresponding vectors (given by means of
their correlation ζ

H
(2b)
I ,H tot

I
). In fact, the heavier the nucleus to

be considered, the larger the deviation. For example, for a
six-nucleon (A = 6) system, the H tot

I vector gives the total
induced interaction for the SRGa=6, and H

(2b)
I vector gives

the total SRGa=2-induced interaction propagated to A = 6.
Clearly, both vectors possess a comparatively small similarity
with a correlation coefficient, ζ

H
(2b)
I ,H tot

I
= .45 (or 63-degree

angle between the corresponding vectors) for both N3LO and
JISP16. The square of the correlation coefficient, ζ 2

H
(2b)
I ,H tot

I

,

indicates the portion of the H tot
I that behaves as the H

(2b)
I

interaction (Fig. 4). That is, this portion of H tot
I yields the same

energy spectrum for an A-particle system as the one produced
by the H

(2b)
I for the same number of particles. Likewise,

1 − ζ 2
H

(2b)
I ,H tot

I

demonstrates the contribution of interactions in

H tot
I not accounted for by H

(2b)
I but needed to retain the SRG

unitarity in a general many-body system. Indeed, the results
indicate that these interactions make up a considerable fraction

of the total induced interaction. For example, as shown in
Fig. 4, while the H

(2b)
I -like portion of H tot

I is comparatively
large for A = 3 (50–90%), it rapidly decreases for heavier
nuclei and becomes almost negligible in heavier systems. The
outcome holds for both six-level and ten-level model spaces,
as seen in Fig. 4. This, in turn, has a direct consequence on the
applicability of an SRGa=2 renormalized interaction to light
nuclei. Namely, without the important H

(3b)
I,2b, the unitarity for

SRGa=2-evolved interactions no longer holds for A > 3 nuclei
and hence, when employed in nuclear structure and reaction
calculations, may describe only certain spectral features.

While it is clear that SRG evolving HNN with a one-body
C yields a renormalized interaction that appears to be
two-body driven, the SRG, if restricted to an a = 2 system,
neglects a large three-body contribution and hence is not
suitable for A � 3 nuclear structure applications. An SRGa=3

neglects, in addition to an even smaller contribution of higher
particle rank interactions, induced four-body interactions. For
reasonable λd , the only significant contribution of the latter
emerges through their up-to-three-body part, in particular,
through their projection along the [η0,H0] interaction. This,
as mentioned above, only affects the overall strength of
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FIG. 4. (Color online) Portion of the total SRG-induced inter-
action H tot

I that yields the same energy spectrum for an A-particle
system as the one produced by the two-body SRG-induced H

(2b)
I

interaction in the same A-particle system for various NN realistic
interactions, N3LO (for ten and six levels), as well as JISP16,
CD-Bonn, and AV18 (six levels).

the total induced interaction. Note that the most dominant
induced contribution is five-body if evolving HNN+3N , which
requires at least SRGa=5 calculations. This term is four-body
for evolving HNN with the two-body Csu3

2 , the second-order
Casimir invariant of SU(3), or the two-body Trel relative
kinetic energy. Fortunately, in the SU(3) case, the use of
symmetry renders four-body terms manageable.

Finally, it is interesting to point out that the overall behavior
of both N3LO and JISP16 is essentially similar in the model
spaces considered. Indeed, while other interactions manifest
various differences, the properties studied here for both N3LO
and JISP16 interactions reveal a considerable similarity [see,
Figs. 1, 3(a) and (b), as well as Fig. 4, red filled diamonds and
green squares].

V. CONCLUSIONS

In the SDT framework, we applied the SRG renormalization
approach to various NN realistic interactions and, for the first
time, investigated the overall contribution of the SRG-induced
many-body interactions and their effective two-body part for
many-nucleon systems, up through A = 28 particles. This
was done by allowing the nucleons to interact through the
most dominant SRG-induced interaction of the [η0,H0] kind,
which in the present case is up-to-three-body (leaving out
only negligible contributions of higher-order interactions).
The size of various contributions was estimated by their
second-order energy moment (strength σ ). For A particles,
these strengths were evaluated with the help of SDT using
only the three-particle information. We note that the procedure
yields exactly the same strengths as if one were to construct
the corresponding many-body Hamiltonians for A particles
and then calculate their norm. Results are shown for SRG
flows not infinitely evolved and using the free HO Hamiltonian
C = HHO (one-body) for N3LO and JISP16, as well as, for

illustration, CD-Bonn and AV18 realistic NN interactions in
m-scheme basis for six to ten j -levels up through the pf -shell
and for like particles.

Among the many-body SRG-induced interactions, neces-
sary to ensure the unitarity of SRG transformations, only those
that emerge at the very beginning of the SRG transformations
play a key role and above all, have a low particle rank.
What we find here is that, for a one-body C and a two-
body initial Hamiltonian, three-body interactions are crucial.
Nonetheless, their major contribution is found to be two-
body rendering a simpler final SRG-evolved Hamiltonian.
This remarkable result reveals that the SRG-renormalized
interaction is essentially two-body driven. While it is clear
that three-body interactions need to be taken into account,
for certain problems, retaining only the two-body part of
the SRG-evolved many-body Hamiltonian may be sufficient.
Above all, the extraction of this two-body part is readily
available in the SDT framework. This reduces the nuclear
eigenvalue problem to one that employs manageable basis
spaces with simple one-body and two-body inter-nucleon
interactions.

The significance of the three-body induced interaction,
in turn, has a direct consequence on the applicability of an
SRGa=2 renormalized interaction to light nuclei. Namely,
without the important two-body part of the three-body term,
SRGa=2-evolved interactions are no longer unitarily equivalent
to the original NN interaction for A > 3 nuclei and hence,
when employed in nuclear structure and reaction calculations,
may describe only certain spectral features. If a realistic
NN + 3N interaction is employed, the initial dominating
SRG-induced term is up to five-body and requires SDT
propagation formulas for interactions of a particle rank �5.
The SDT-based method used in the present study can also be
applied to other choices for the SRG-generating operator (C)
and NN interactions, as well as to 3N interactions.

In short, we carried forward first studies of the overall
many-body contributions to an SRG-evolved interaction in a
many-particle system at an operator level (based on properties
of the Hamiltonian) without restricting to energy spectra
observations, and found that three-body interactions and their
two-body part play a significant role.
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APPENDIX: DERIVATION OF PURE ν-BODY
INTERACTIONS

We follow [12] to derive the pure zero-, one-, two-, and
three-body interactions of a three-body interaction like H

(3b)
I

of Eq. (2). For a scalar partitioning of the HO basis space
of dimension N , the definite particle rank (pure ν-body)
interactions, H(k)(ν), for a given k-body Hamiltonian H (k)
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and A particles are given as

H(k)(ν) = 1

(k − ν)!
(N−2ν

k−ν

) k∑
t=k−ν

(−)t−k+ν

(t − k + ν)!

×
(N − ν − k + t + 1

t − k + ν

)−1(
A − k + t

t − k + ν

)
DtH (k).

(A1)

In Eq. (A1), the DtH (k) unitary-scalar contractions of an
operator H are defined as

DtH (k) =
∑

i

{a†
i , [ai,D

t−1H (k)]}, (A2)

and D0H (k) ≡ H (k). Here, {A,B} and [A,B] denote anti-
commutator and commutator, respectively. Hence, a three-
body interaction (k = 3),

H (3) = 1

(3!)2

∑
ijqrsk

Wijqrska
†
i a

†
j a

†
qakasar , (A3)

can be expanded into interactions of a definite particle rank
using Eq. (8),

H (3) =
(

A

3

)
H(3)(0) +

(
A − 1

2

)
H(3)(1)

+ (A − 2)H(3)(2) + H(3)(3), (A4)

where, according to Eq. (A1) with k = 3,

H(3)(0) = 1

3!

1(N
3

)D3H (3) ≡ W (3)
c , H(3)(1) = 1

2!

1(N−2
2

)(
D2H (3) − A

N D3H (3)

)
,

H(3)(2) = 1

N − 4

(
DH (3) − A − 1

N − 2
D2H (3) + 1

2

(
A

2

)
(N−1

2

)D3H (3)

)
, (A5)

H(3)(3) = H (3) − A − 2

N − 4
DH (3) + 1

2

(
A−1

2

)
(N−3

2

)D2H (3) − 1

3!

(
A

3

)
(N−2

3

)D3H (3).

The D interactions are derived with the help of Eq. (A2):

D3H (3) =
( ∑

ijq

Wijqijq

)
, D2H (3) =

∑
ir

( ∑
jq

Wijqrjq

)
a
†
i ar , DH (3) = 1

4

∑
ijrs

(∑
q

Wijqrsq

)
a
†
i a

†
j asar . (A6)

Hence, the first term in each H(3)(ν) of Eqs. (A5) gives Eqs. (15), (16), and (18). The traceless counterparts are obtained by
considering the remaining terms in Eq. (A5), which yields Eqs. (17) and (19).
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[31] E. D. Jurgenson, P. Navrátil, and R. J. Furnstahl, Phys. Rev. Lett.
103, 082501 (2009).

[32] R. Roth, J. Langhammer, A. Calci, S. Binder, and P. Navrátil,
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