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The model dependence of the predictions of nucleon resonances with hidden charm is investigated. We consider
several coupled-channel models which are derived from relativistic quantum field theory by using (1) a unitary
transformation method and (2) the three-dimensional reductions of the Bethe-Salpeter equation. With the same
vector-meson exchange mechanism, we find that all models give very narrow molecularlike nucleon resonances
with hidden charm in the mass range of 4.3 < MR < 4.5 GeV, consistent with the previous predictions.
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I. INTRODUCTION

In the classical quark models, each baryon is made of
three constituent quarks [1]. The pattern of the spectra and
the static properties of the ground and low-lying excited
states of baryons can be described reasonably well within
these models. However, there are large deviations between the
predictions from these models and the experimental data [2],
such as the strong coupling of N∗(1535) to the strangeness
and the mass order between N∗(1535) and �∗(1405). In the
classical three-quark models, the N∗(1535) with (uud) quarks
is expected to be lighter than �∗(1405) with (uds) quarks.
This problem may be solved by the pentaquark picture for
these excited baryons. In the pentaquark models, the N∗(1535)
with [uu][ds]s̄ is naturally heavier than the �∗(1405) with
[ud][sq]q̄ [3]. Actually, the conventional orbital excitation
energy of an original constituent quark in a baryon is already
comparable to dragging out a qq̄ pair from the gluon field. As
a result, some excited baryons are proposed to be meson-
baryon dynamically generated states [4–11] or states with
large (qqqqq̄) components [3,12,13]. But, because the same
resonances predicted by different models are in similar energy
regions, there are always some adjustable ingredients in each
model to fit the experimental data. Thus it is difficult to pin
down the nature of these baryon resonances. One way to avoid
such a difficulty is to replace light flavor qq̄ in these baryons
by cc̄. Brodsky et al. [14] proposed in the early 1980s that
there are about 1% uudcc̄ components in the proton. Recently,
Refs. [15–18] have used different methods to predict some nar-
row hidden charm N∗

cc̄ and �∗
cc̄ resonances with masses above

4 GeV and widths smaller than 100 MeV. These resonances, if
observed, cannot be easily identified with the predictions from
the traditional three-quark model. Therefore, it is important
to investigate the extent to which the predicted N∗

cc̄ and �∗
cc̄

resonances can be more firmly established.
In this work we focus on the predictions [15] from a

Beijing-Valencia collaboration. These results are from solving
the following algebraic coupled-channel equations:

Tα,β (s) =
∑

γ

Vα,γ (s)Ĝγ (s)Tγ,β(s) + Vα,β (s), (1)

where α, β, γ = D̄�c, D̄�c, ηcN , and s is the square of the
center-of-mass (CM) energy. In Eq. (1) the meson-baryon
potential is based on the vector-meson exchange mechanisms
of Ref. [5] and is written in the following separable form:

Vα,α(s) = Cα,α

4f 2

(
2EMα

)
,

Vα,β (s) = −Cα,β

m2
ρ

4f 2
(2)

× EMα
+ EMβ

m2
Mα

+ m2
Mβ

− 2EMα
EMβ

− m2
V

(α �= β),

where the EMα
is the on-shell energy of the α channel’s meson

and mV is the mass of exchange vector. The factorized prop-
agator Ĝγ (E) is calculated from either using the dimensional
regularization or introducing a cutoff parameter �:

Ĝ(E) → GDR(E)

= 2mB

16π2

(
aμ + ln

m2
B

μ2
+ m2

M − m2
B + s

2s
ln

m2
M

m2
B

+ q̄√
s

{
ln

[
s − (

m2
B − m2

M

) + 2q̄
√

s
]

+ ln
[
s + (

m2
B − m2

P

) + 2q̄
√

s
]

− ln
[ − s − (

m2
B − m2

M

) + 2q̄
√

s
]

− ln
[ − s + (

m2
B − m2

M

) + 2q̄
√

s
]})

, (3)

Ĝ(E) → GC(E)

=
∫ �

0

q2dq

4π2

2mB(ωM + ωB)

ωM ωB [s − (ωM + ωB)2 + iε]
, (4)

where q̄ is the on-shell three-momentum of the MB sys-
tem, ωM =

√
q2 + m2

M , and ωB =
√

q2 + m2
B . The parameter

aμ ∼ −2 [15] is the subtraction constant in the dimensional
regularization of the factorized propagator Ĝ(E). It was found
that the solutions of the above equations yield few narrow
resonances above 4.0 GeV.

As discussed in Ref. [15], Eqs. (1)–(4) are derived from
making approximations on the Bethe-Salpeter (BS) equation.
Schematically, the BS equation is (omitting the channel
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indices)

T (q ′, q, P )

= V (q ′, q, P ) +
∫

d4kV (q ′, k, P )

× 1[(
P
2 + k

)2 − m2
M + iε

][(
P
2 − k

)2 − m2
B

] + iε

× T (k, q; P ), (5)

where P is the total four-momentum of the system and q, q ′,
and k are the relative momenta. For the considered vector-
meson exchange, the interaction kernel is

V (q, k, P ) = C
1

(q − k)2 − m2
V

, (6)

where C is a coupling constant. The complications in solving
Eq. (5) are well known, as discussed in, for example,
Ref. [19] for πN scattering. Thus approximations, such as
those used [15] in obtaining Eqs. (1)–(4), are needed for prac-
tical calculations. There exist other approximations to solve
BS equations and alternative approaches to derive practical
hadron reaction models from relativistic quantum field theory.
It is thus necessary to investigate the extent to which the results
from Ref. [15] depend on the approximations employed. This
is the objective of this work. We will consider several coupled-
channel models derived from using a unitary transformation
method [20] and the three-dimensional reductions [21] of the
Bethe-Salpeter equation. These formulations have been used
in studying πN scattering [20,22,23], NN scattering [24],
and coupled-channel πN and γN reactions in the nucleon
resonance region [25,26].

In Sec. II, we present the considered coupled-channel
formulations and discuss their differences from Eqs. (1)–(4).
The numerical procedures for solving the considered
coupled-channel equations are described in Sec. III. We
then investigate in Sec. IV the numerical consequences of
the differences between different coupled-channel models
in predicting the resonance positions and the reaction cross
sections. A summary is given in Sec. V.

II. FORMALISM

Following Ref. [15], we assume that the interactions
between the considered meson-baryon (MB) channels are
due to the vector-meson exchange mechanism and can be
calculated from the following interaction Lagrangian:

Lint = LV V V + LPPV + LBBV , (7)

with

LV V V = ig〈V μ[V ν, ∂μVν]〉,
LPPV = −ig〈V μ[P, ∂μP ]〉, (8)

LBBV = g(〈B̄γμ[V μ,B]〉 + 〈B̄γμB〉〈V μ〉),
where P and V stand for the pseudoscalar and vector mesons of
the 16-plet of SU(4), respectively, and B stands for the baryon.
The coupling constant g = MV /2f is taken from the hidden
gauge model with f = 93 MeV being the pion-decay constant
and MV = 770 MeV being the mass of the light vector meson.

B

M M

B

V

FIG. 1. One-vector exchange mechanism of meson-baryon inter-
actions.

By using Eq. (7), the invariant amplitude of the PB →
PB and V B → V B transitions due to the one-vector-meson
exchange interaction, as illustrated in Fig. 1, can be written as
(suppressing the spin quantum numbers)

MPB,I,V (qi, qj ) = C
PB,I,V
i,j

M2
V

4f 2

p
μ

V pν
V

/
m2

V − gμν

p2
V − m2

V

× ūBi
γμ

(
pMi

+ pMj

)
ν
uBj

, (9)

MV B,I,V (qi, qj ) = C
V B,I,V
i,j

M2
V

4f 2

p
μ

V pν
V

/
m2

V − gμν

p2
V − m2

V

× ūBi
γμ

(
pMi

+ pMj

)
ν
uBj

(−ε∗
Mi

· εMj

)
,

(10)

where the subindices i and j stand for the MiBi and MjBj

channels, I is the total isospin of the system, V denotes the
exchanged vector meson, qi is the relative momentum of the
MiBi channel in the center-of-mass frame, pα is the the four-
momentum of particle α, uBi

is the Dirac spinor of the baryon
Bi , and εMi

is the polarization vector of the external vector
meson Mi . The coefficients C

PB,I,V
i,j and C

V B,I,V
i,j in Eqs. (9)

and (10) are taken from Ref. [15] and listed in Tables I and II.
We consider the coupled-channel models derived by using

the unitary transformation method of Refs. [10,20] and the
three-dimensional reductions of the Bethe-Salpeter equations
employed in Ref. [23]. In the center-of-mass (CM) frame,
the scattering equations within these models can be cast into
the following general form (suppressing the spin quantum
numbers):

T̂ α,I (
qi, 
qj ,
√

s)

= V̂ α,I (
qi, 
qj ,
√

s) +
∑

k

∫
d 
qkV̂

α,I (
qi, 
qk,
√

s)

× N (
qk,
√

s)√
s − EMk

(
qk) − EBk
(
qk) + iε

T̂ α,I (
qk, 
qj ,
√

s),

(11)

TABLE I. Coefficients C
PB,I,V
MiBiMj Bj

in Eq. (9) for the PB system
in the sector I = 1/2, 3/2, S = 0. The exchanged vector mesons
V = ρ, ω,D∗ are indicated next to the values of the coefficients.

I = 1/2 D̄�c D̄�+
c ηcN

D̄�c −2ρ + ω 0 −√
3/2D∗

D̄�+
c 0 ω

√
3/2D∗

ηcN −√
3/2D∗ √

3/2D∗ 0

I = 3/2 D̄�c

D̄�c ρ + ω
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TABLE II. Coefficients C
V B,I,V
MiBi→Mj Bj

in Eq. (10) for the V B system
in the sector I = 1/2, 3/2, S = 0. The exchanged vector mesons
V = ρ, ω, D∗ are indicated next to the values of the coefficients.

I = 1/2 D̄∗�c D̄∗�+
c J/ψN ρN

D̄∗�c −2ρ + ω 0 −√
3/2D∗ −1/2D∗

D̄∗�+
c 0 ω

√
3/2D∗ −3/2D∗

J/ψN −√
3/2D∗ √

3/2D∗ 0 0
ρN −1/2D∗ −3/2D∗ 0 −2ρ

I = 3/2 D̄∗�c

D̄∗�c ρ + ω

where α = PB, V B, 
qi is the relative three-momentum in
channel i,

√
s is the total energy, and Eαi

(
qi) = √
m2

αi
+ 
q 2

i

is the energy of the particle α = M,B with a mass mαi
. All

external particles in the MB channels are on their mass shell.
Explicitly, we choose


qi = 
pMi
= − 
pBi

,

pMi
= [

EMi
( 
pMi

), 
pMi

]
, (12)

pBi
= [

EBi
( 
pBi

), 
pBi

]
.

In Eq. (11), the calculation of the driving term
V̂ α,I (
qi, 
qj ,

√
s) from the invariant amplitude Mα,I,V (qi, qj )

of Eqs. (9) and (10) and the function N (
qk,
√

s) in the
propagator depend on the approximations used in deriving
the above three-dimensional equations from the relativistic
quantum field theory. In the following, we specify these two
ingredients in each model.

A. Model based on the unitary transformation method

(1) N (
qk,
√

s) = 1.
(2) The driving term is calculated from the invariant

amplitudes M of Eqs. (9) and (10) by expressing the four-
momentum of the exchanged vector meson in terms of the
incoming and outgoing momenta. Explicitly, we use Eq. (9)
for PB → PB to get

V̂ PB,I,V (
qi, 
qj ) = C
PB,I,V
i,j

M2
V

4f 2
ūBj

[
γμ

(
pMi

+ pMj

)
ν

]
uBi

× 1

2

⎡
⎣

(pMi
−pMj

)μ(pMi
−pMj

)ν

m2
V

− gμν

(
pMi

− pMj

)2 − m2
V

+
(pBj

−pBi
)μ(pBj

−pBi
)ν

m2
V

− gμν

(
pBj

− pBi

)2 − m2
V

⎤
⎦ , (13)

where the kinematic variables are given in Eq. (12).
The procedure for calculating the V B → V B from Eq. (10)

is same since the factor −ε∗
Mi

· εMj
does not depend on pV of

the exchanged vector meson.

B. Models based on three-dimensional reductions

We consider the three-dimensional reductions developed
by Kadyshevsky, Blankenbecler and Sugar, and Thompson, as
explained in Ref. [23]. All have the same form of the potential
which is defined by setting the time component of the four-
momentum of the exchanged vector meson V to zero. By using
Eq. (9) for PB → PB, we get

V̂ PB,I,V (qi, qj ) = C
PB,I,V
i,j

M2
V

4f 2

ūBj

{
( 
pV · 
γ )[ 
pV ·( 
pMi

+ 
pMj
)]

M2
V

− [
EMi

( 
pMi

) + EM2

( 
pMj

)]
γ 0 − ( 
pMi

+ 
pMj

) · 
γ
}
uBi

− 
p 2
V − m2

V

. (14)

The procedure for calculating the V B → V B from Eq. (10)
is same since the factor −ε∗

Mi
· εMj

does not depend on pV of
the exchanged vector meson.

The function N (
k,
√

s) of the propagator of Eq. (11) for
each reduction is as follows:

(1) Kadyshevsky:
N (qi,

√
s) = 1. (15)

(2) Blankenbecler and Sugar:

N (qi,
√

s) = 2
[
EMi

(qi) + EBi
(qi)

]
√

s + [
EMi

(qi) + EBi
(qi)

] . (16)

(3) Thompson:

N (qi,
√

s) =
[
EMi

(qi) + EBi
(qi)

]
√

s
. (17)

Note that for the on-shell momentum, defined by
√

s =
EMi

(q0i) + EBi
(q0i), N (q0i ,

√
s) = 1. Thus all models satisfy

the same unitarity condition defined by the cuts of the
propagators of Eq. (11).

III. CALCULATION PROCEDURES

In this section, we describe our procedures for solving the
coupled-channel equations to obtain the MB → MB cross
sections.

It is convenient to cast Eq. (11) into the following familiar
form:

T α,I (
qi, 
qj ,
√

s)

= V α,I (
qi, 
qj ,
√

s) +
∑

k

∫
d 
qkV

α,I (
qi, 
qk,
√

s)

× 1√
s − EMi

(
qk) − EBi
(
qk) + iε

T α,I (
qk, 
qj ,
√

s), (18)

044002-3



JIA-JUN WU, T.-S. H. LEE, AND B. S. ZOU PHYSICAL REVIEW C 85, 044002 (2012)

where α = PB, V B, and

V α,I (
qi, 
qj ,
√

s)

= N1/2(qi,
√

s)
∑
V

V̂ α,I,V (
qi, 
qj ,
√

s)N1/2(qj ,
√

s), (19)

T α,I (
qi, 
qj ,
√

s)

= N1/2(qi,
√

s)T̂ α,I (
qi, 
qj ,
√

s)N1/2(qj ,
√

s). (20)

With the normalization 〈 
p| 
p ′ 〉 = δ( 
p − 
p ′
) for

plane-wave states, we obtain from Eq. (18) the
following coupled-channel equations in each partial

wave:

T
J,I
L1,S1,L2,S2

(q1, q2,
√

s)

= V
J,I
L1,S1,L2,S2

(q1, q2,
√

s) +
∑
L3,S3

∫
q2

3dq3V
J,I
L1,S1,L3,S3

× (q1, q3,
√

s) G(q3,
√

s) T
J,I
L3,S3,L2,S2

(q3, q2,
√

s), (21)

where J is the total angular momentum; Li and Si are the
orbital angular momentum and total spin of the MiBi channel,
and the propagator is

G(qi,
√

s) = 1√
s − EMi

(qi) − EBi
(qi)

. (22)

The matrix elements of the potential in Eq. (21) can be
conveniently calculated from Eq. (19) by using the LSJ -
helicity transformation [25]. Explicitly, we obtain

V
J,I
L1,S1,L2,S2

(q1, q2,
√

s) = FL1,L2 (q1, q2)

√
(2L1 + 1)(2L2 + 1)

2J + 1

1

(2π )3

√
mB1mB2

2EM (q1)EB(q1)2EM (q2)EB(q2)

×
∑
V

G
I,V
1,2

∑
λM1 λB1

∑
λM2 λB2

C
J,MS1
L1,S1,0,MS1

C
S1,MS1
jM1 λM1 ,jB1 −λB1

C
J,MS2
L2,S2,0,MS2

C
S2,MS2
jM2 λM2 ,jB2 −λB2

×N1/2(q1;
√

s)
〈
q1; −λB1 , λM1

∣∣VJ
∣∣λM2 ,−λB2 ; q2

〉
N1/2(q2,

√
s), (23)

where λα is the helicity of particle α, and by writing
Eqs. (13) or (14) (and also the similar forms for V B) in helicity
representation we can evaluate

〈
q1; −λB1 , λM1

∣∣VJ
∣∣λM2 ,−λB2 ; q2

〉

= (2π )
∫ 1

−1
d cos θ dJ

λM1 −λB1 ,λM2 −λB2
(θ )V̂ PB/V B,I,V

λM1 λB1 ,λM2 λB2

× (q1, q2, θ,
√

s), (24)

where cos θ = q̂1 · q̂2, and the matrix element in the integrand
can be calculated by writing Eqs. (13) or (14) (and also the
similar forms for V B) in helicity representation for each of
the considered coupled-channel models.

In Eq. (23) C
J,M
j1,mj1 ,j2,mj2

= 〈J,M|j1, j2,mj1 ,mj2〉 is the
Clebsh-Gordon coefficient, the isospin factor is

G
I,V
1,2 =

∑
mIM1

mIB1

∑
mIM2

mIB2

C
I,MI

IM1 ,IB1 ,mIM1
,mIB1

C
I,MI

IM2 ,IB2 ,mIM2
,mIB2

,

(25)

where (IMmIM
, IBmIB

) are the isospin quantum numbers of
MB, and the form factor is chosen as

FL1,L2 (q1, q2) =
(

�2
V

�2
V + q2

1

)( L1
2 +2)(

�2
V

�2
V + q2

2

)( L2
2 +2)

, (26)

where the cutoff parameter �V is assumed to be the same
value for all exchanged vector mesons for simplicity. This form
factor can suppress the matrix element V

J,I
L1,S1,L2,S2

(q1, q2,
√

s)
in the high-momentum region such that the integration equa-
tion (18) has solutions. Similar phenomenological procedures
are commonly used in the meson exchange models of hadron-
hadron interactions [20,22–25,27].

The differential cross sections are calculated from the
partial-wave amplitudes by

dσ

d�
= 16π4

s

q2

q1

EM1EB1EM2EB2(
2jM1 + 1

)(
2jB1 + 1

) ∑
mjM1

mjB1

×
∑

mjM2
mjB2

|〈M2B2|T (
√

s)|M1B1〉|2, (27)

with

〈M2B2|T (
√

s)|M1B1〉 = 〈
jM2mjM2

jB2mjB2
, IM2mIM2

IB2mIB2

∣∣T (
√

s)
∣∣jM1mjM1

jB1mjB1
, IM1mIM1

IB1mIB1

〉

=
∑
J,I

∑
L1,S1,L2,S2

T
J,I
L1,S1,L2,S2

(q1, q2,
√

s)YL2,ML2
(θ, φ)

√
2L1 + 1

4π
C

J,MJ

L1,S1,0,MS1
C

S1,MS1
jM1 ,jB1 ,mjM1

,mjB1

×C
J,MJ

L2,S2,ML2 ,MS2
C

S2,MS2
jM2 ,jB2 ,mjM2

,mjB2
C

I,MI

IM1 ,IB1 ,mIM1
,mIB1

C
I,MI

IM2 ,IB2 ,mIM2
,mIB2

. (28)
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Obviously, MJ = MS1 = mjM1
+ mjB1

, MS2 = mjM2
+ mjB2

,
ML2 = (mjM1

+ mjB1
) − (mjM2

+ mjB2
), and MI = mIM1

+
mIB1

= mIM2
+ mIB2

.

IV. RESULTS

In this section, we show the results from the four models
listed in Sec. II and then discuss their differences from previous
works [15–17].

A. Results of four models listed in Sec. II

We first consider the model based on the unitary trans-
formation method described in Sec. II A. We determined
the resonance pole positions (MR = M − i �

2 ) by using the
analytic continuation method of Ref. [28]. We find that the
resonance positions are sensitive to the cutoff �, as seen in
Table III. The resonances are generated only when the cutoff
is larger than 800 MeV. As the cutoff � changes from 800 to
2000 MeV, the “binding energy” (�E = M − Ethr) is changed
greatly from 0.002 to 23.9 MeV. The corresponding changes
in imaginary parts are also very large.

These resonances are very close to the threshold of D̄�c

in the PB sector and D̄∗�c in the VB sector. They are mainly
caused by the strong attractive potential from the t-channel
ρ meson exchange in the D̄�c → D̄�c and D̄∗�c → D̄∗�c

processes. The situation here is different from the case when
only light flavors are involved. For the πN interaction, there is
no resonance below the πN threshold, although the t-channel
ρ meson exchange also provide attractive potential there with
a similar coupling constant. The differences between the two
cases are mainly from the term (pMi

+ pMj
) in Eq. (13). The

potential is proportional to (mMi
+ mMj

) near the threshold of
the system. For the D̄�c case, (mMi

+ mMj
) ∼ 4 GeV, while it

is about 0.3 GeV for the πN case. Hence the attractive potential
of D̄�c is an order of magnitude stronger than that of πN .
This give a natural explanation why the PB system with heavy
quarks can have quasibound states while the corresponding

TABLE IV. Comparison of four models with cutoff � =
1500 MeV and J P = 1/2− for the PB system, where the threshold
energy Ethr is 4320.79 MeV of D̄�c. A is the model based on the
unitary transformation method, B is the Kadyshevsky model, C is the
Blankenbecler-Sugar model, and D is the Thompson model. �EA

and �A are the binding energy and width for case A. The unit is MeV.

Models M − i�/2 �E

∣∣∣�E−�EA

�EA

∣∣∣ ∣∣∣ �−�A

�A

∣∣∣
A 4314.531 − 1.448i 6.259 0 0
B 4314.983 − 1.737i 5.807 7.222 % 19.96%
C 4314.436 − 1.879i 6.354 1.518% 29.77%
D 4314.824 − 2.041i 6.966 11.30% 40.95%

pure light quark sector cannot. A similar thing happens also
for the VB system.

The three other models based on three-dimensional reduc-
tions in Sec. II B give similar results as shown in Table IV,
together with those from the model based on the unitary
transformation method, taking the cutoff parameter � =
1500 MeV. The corresponding results for the total cross section
of ηcp → ηcp are shown in Fig. 2. All these four models
predict a resonance below the D̄�c threshold. The masses
and widths of the resonances from these different models are
almost the same.

B. Comparison with previous works

In Ref. [15], using the Valencia model, the mass and
width of predicted resonance in the PB system are about
4265 and 23 MeV (for the ηcN channel only). Both binding
energy and width are much larger than the results in this
work. All models considered in this work differ from the
model used in Ref. [15] in calculating the MB → MB

potentials Eqs. (9) and (10). We will get the form used in
Ref. [15], if we (1) neglect the lower component of the
Dirac spinor and keep only the time component γ 0; (2) set
the momentum squared of the exchanged vector meson V

TABLE III. The pole position (M − i�/2) and “binding energy” (�E = Ethr − M) for different cutoff parameters � and spin-parity JP .
The threshold Ethr is 4320.79 MeV of D̄�c in the PB system and 4462.18 MeV of D̄∗�c in the VB system. The unit for the listed numbers is
MeV.

J p � PB system VB system

M − i�/2 �E M − i�/2 �E

1
2

−
650 – – – –
800 – – 4462.178 − 0.002i 0.002

1200 4318.964 − 0.362i 1.826 4459.513 − 0.417i 2.667
1500 4314.531 − 1.448i 6.259 4454.088 − 1.662i 8.092
2000 4301.115 − 5.835i 19.68 4438.277 − 7.115i 23.90

3
2

−
650 – – – –
800 – – 4462.178 − 0.002i 0.002

1200 – – 4459.507 − 0.420i 2.673
1500 – – 4454.057 − 1.681i 8.123
2000 – – 4438.039 − 7.268i 23.14
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FIG. 2. The total cross section of ηcp → ηcp vs CM energy
shown for four models. The four lines correspond to the four models
listed in Table IV.

to be p2
V = (Eon

Mi
− Eon

Mj
)2 − (qon

i − qon
j )2, where Eon

Mi
and qon

i

are, respectively, the on-shell energy and momentum of the
meson in channel i. We have investigated the effects from
taking each of these two assumptions. If we only make the
first simplification by neglecting the spin of baryons, then
the corresponding results for the resonance are shown as for
potential A′ in Table V; if we continue to make the second
simplification by neglecting the momentum of the exchanged
vector meson, the results are shown as for potential A′′
of Table V. In Fig. 3, we show the results corresponding to
these two simplifications (the dashed line for A′ and dot-dashed
line for A′′) for the ηcp → ηcp total cross section, compared
with that (the solid line for A) from the model based on unitary
transformation. Clearly, the second simplification shifts the
resonance position to a much lower value and also increases
the width significantly. This is the main reason for the dif-
ference between our present results and those from Ref. [15].
The second simplification makes p2

V and hence the potential
V independent of the integral momentum in Eq. (5) so that
Eq. (5) is simplified to Eq. (1) instead of Eq. (18) where the
potential V with integral momentum dependence is inside the
integration. Equations (1) and (18) give the different results.

Besides Ref. [15], there are two later publications [16,17]
also predicting the existence of N∗ around 4.3 GeV with
hidden charm.

In Ref. [16], the s-wave �cD̄ and �cD̄ states with isospin
I = 1/2 and spin S = 1/2 are dynamically investigated within

TABLE V. Comparison for different potential approximations
with cutoff � = 1500 MeV and J P = 1/2− for the PB system. The
threshold Ethr is 4320.79 MeV of D̄�c. A is the full potential, A′ is
the neglect of spin of baryons, and A′′ is the neglect of both spin of
baryons and momentum of exchanged vector meson. �EA and �A

are the binding energy and width for case A. The unit is MeV.

Potential M − i�/2 �E

∣∣∣�E−�EA

�EA

∣∣∣ ∣∣∣ �−�A

�A

∣∣∣
A 4314.531 − 1.448i 6.259 0 0
A′ 4316.315 − 0.967i 4.475 28.50% 33.22%
A′′ 4229.362 − 3.914i 91.43 1361% 170.3%

FIG. 3. The total cross section of ηcp → ηcp vs CM energy
for different potential approximations. The solid line is for the
full potential, corresponding to A in Table V; the dashed line
is for the neglect of spin of baryons, corresponding to A′ in
Table V; the dot-dashed line is for the neglect of both spin of
baryons and momentum of exchange vector, corresponding to A′′ in
Table V.

the framework of a chiral constituent quark model by solving
a resonating group method equation. The calculation not only
includes vector-meson (ρ and ω) exchange, but also scalar-
meson (σ ) exchange, which provides an additional attractive
force. Therefore, the binding energy in Ref. [16] is larger than
that in this work. The mass of the bound state of D̄�c is about
4279–4316 MeV.

In Ref. [17], the Schrodinger equation was used to find the
bound state of D̄�c and D̄∗�c with effective meson exchange
potential. For the PB system, the ρ, ω, and σ exchanges were
considered. They tried the different sign of coupling constants
of various vertices. When they chose the ω exchange to be
repulsive, and the ρ and σ exchange to be attractive, they also
found the isospin 1/2 bound state of D̄�c with cutoff � >

1.6 GeV. The binding energy is about 0–16 MeV, corre-
sponding to � = 1.6–2.2 GeV, similar to the results in this
work.

V. SUMMARY

We have investigated the possible existence of nucleon
resonances with hidden charm within several coupled-channel
models which are derived from relativistic quantum field
theory by using a unitary transformation method and the
three-dimensional reductions of the Bethe-Salpeter equa-
tion. With the same vector-meson exchange mechanism,
we find that all models give very narrow molecularlike
nucleon resonances with hidden charm in the mass range of
4.3 < MR < 4.5 GeV, consistent with the previous predictions.
From our analysis, the heavy mass of particles with the c or
c̄ components would make the attractive potential stronger
than the case with only light flavors. The widths of these
resonances are very narrow in our models, because they need
heavy vector-meson D∗ exchange to decay to open channels.
Furthermore, we compare our results with previous works.
All of models predict a resonance below the D̄�c threshold.

044002-6



NUCLEON RESONANCES WITH HIDDEN CHARM IN . . . PHYSICAL REVIEW C 85, 044002 (2012)

We also find that the pole position would be shifted a lot if
we set p2

V = (Eon
Mi

− Eon
Mj

)2 − (qon
i − qon

j )2 for the exchanged
vector meson V in the potential. We look forward to finding
these predicted resonances with hidden charm in the reac-
tions, such as ep → eJ/ψp, pp → pηc(J/ψ)p, and pp̄ →
pηc(J/ψ)p̄.

Similarly the superheavy N∗ with hidden beauty should
also exist, although the binding energies may be not as large
as given by the simple Valencia model calculation of Ref. [29].
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